VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE

Tamanho: px
Começar a partir da página:

Download "VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE"

Transcrição

1 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 3. VIBRAÇÃO LIVRE Cofore ostrao o apítulo aterior, uitos sisteas iâios poe ser represetaos por ua equação ifereial e segua ore, liear, o oefiietes ostates (parâetros ostates). Estes oelos são eoiaos oelos e u grau e liberae (GL), pois os sisteas iâios orrespoetes tê seus ovietos efiios por apeas ua ooreaa, e traslação ou e rotação. Neste e os apítulos seguites serão aalisaas as soluções essa equação ifereial e fução os parâetros e assa, e rigiez, e aorteieto e a força etera eitaora. Iiialete serão aalisaas as soluções a equação oogêea o sistea. Esta equação orrespoe ao oelo ateátio quao as fuções eitaoras são ulas. Neste aso, estua-se as vibrações livres que oorre evio a oições iiiais ão ulas. Poese retirar u sistea e sua oição e equilíbrio e abaoá-lo a u ovieto livre e uas foras: através e ua posição iiial iferete a posição e equilíbrio ou através e u ipulso oo, por eeplo, através e u artelo e ipato que iprie ua veloiae iiial ão ula.

2 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 4. - MODELO MATEMÁTICO Cofore ostrao o apítulo aterior, o a apliação as leis o ovieto e e ipóteses siplifiaoras poe-se ostrar que uitos sisteas eâios possue u oelo ateátio represetao por: oe f (.) é a assa o oelo; é o oefiiete e aorteieto o oelo; é o oefiiete e rigiez o oelo; (t) é o esloaeto a assa a ireção o ovieto; ( t) é a veloiae a assa a ireção o ovieto; t ( t) é a aeleração a assa a ireção o ovieto e t f f (t) é a força etera apliaa a assa a ireção o ovieto. f Figura. Moelo eleetar e grau e liberae. O estuo a vibração livre é feito a partir a equação (.) torao ula a força etera apliaa, isto é, o f(t) = 0. Portato, te-se 0 (.)

3 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 5 A equação (.) é ua equação ifereial oogêea e segua ore. A solução geral possui ua as seguites foras t t A e Ae para (.3) t t A e Ate para (.4) oe e são as raízes equação a araterístia o problea, aa por 0 (.5) As ostates e itegração A e A epee as oições iiiais e posição ( e e veloiae (. Resolveo a equação algébria (.5), obtê-se 4, (.6) oe efiiu-se o oefiiete e aorteieto rítio através e (.7) A partir as raízes aas por (.6), são observaas três situações: i - para u oefiiete e aorteieto tal que, isto é, obtê-se uas raízes opleas e ojugaas aas por, i 4 oe i (.8) Neste aso, o sistea é ietifiao oo subaorteio. ii - para u oefiiete e aorteieto tal que, isto é, obtê-se uas raízes reais e iguais, aas por, (.9) Neste aso, o sistea é ietifiao oo ritiaete aorteio. Observa-se que este é u aso liite para a uaça o tipo as raízes, e opleas para reais.

4 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 6 iii - para u oefiiete e aorteieto tal que, isto é, obtê-se uas raízes reais istitas aas por, 4 (. Neste aso, o sistea é ietifiao oo sobreaorteio. Para elor ietifiar aa u estes três tipos e sisteas, poe-se efiir u parâetro aiesioal eoiao fator e aorteieto, ao pela razão (.) Portato, te-se < para sisteas subaorteios, = para sisteas ritiaete aorteios e > para sisteas sobreaorteios. Alguas apliações requere fatores e aorteieto eores que u. E outros asos, partiularete o otrole e vibrações, os sisteas eve ser ritiaete aorteios, ou até eso sobreaorteios. Deve-se observar tabé que sisteas opostos e ateriais etálios possue fatores e aorteieto uito pequeos, frequeteete eores que 0,, quao ão á ispositivos espeiais (aorteeores) projetaos para auetar este valor. O aorteieto próprio os ateriais é ifíil e ser oelao. Por isso, este parâetro é obtio usualete através e proeietos eperietais.

5 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 7. - SISTEMAS SEM AMORTECIMENTO Os sisteas ão aorteios são sisteas irreais. Poe ser aalisaos oo u aso partiular os sisteas subaorteios para os quais o oefiiete e aorteieto é aitio ulo, ou seja, = 0. As raízes a equação araterístia são opleas ojugaas, o parte real ula, ofore se vê e (.8), e são aas por, i (.) Seo as uas raízes istitas, a solução a equação o ovieto livre, aa por (.3), é: ou i t Ae i t A e (.3) C se t C os t (.4) Ipoo que a solução o problea e vibrações livres eva ser real, C e C eve ser reais a fora e solução (.4) e A e A eve ser opleos ojugaos e (.3). Defie-se etão, a partir a solução o problea e vibração livre ão aorteio, a frequêia atural, (.5) obtia e ra/s, quao os parâetros e são aos o SI e uiaes. Ua uiae uito usual para a frequêia é o Hz ou /s. Neste aso, iia-se a frequêia atural oo f (.6) O períoo este ovieto e vibração é ao etão por T (.7) f

6 u(t) VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 8 Apliao as oições iiiais e posição ( e e veloiae ( a solução aa por (.4) e a orrespoete erivaa o tepo, obté-se: C ( e C ( (.8) t Figura. - Vibração livre e sisteas ão aorteios. Apliao as ostates aas e (.8) a solução (.4), obté-se ( se t ( os t (.9) ou A se( t ) (. o a aplitue A e a fase aas por ( A C )] C [ ( 0 (.) e

7 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 9 ta C C ta ( ( (.) A figura (.) ilustra o ovieto e vibração livre se aorteieto. Poe-se observar esta figura que o ovieto orrespoe a u ovieto arôio siples. A assa osila a frequêia atural. Os zeros a fução (. oorre e itervalos e tepos iguais à etae o períoo e osilação. Os áios oorre e itervalos e tepos iguais ao períoo e osilação T. O eso oorre o os íios esta fução.

8 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE SISTEMAS SUBAMORTECIDOS Os sisteas subaorteios são aqueles para os quais o oefiiete e aorteieto é ao por, o que orrespoe a u fator e aorteieto <. Etão as raízes a equação araterístia, ofore (.8), são iguais a, i (.3) Apliao as efiições o fator e aorteieto (.) e a frequêia atural (.5) as raízes aas e (.3), obté-se, i (.4) oe efie-se a frequêia atural aorteia (.5) Assi a solução a equação o ovieto livre e sisteas subaorteios é aa por A e ( i ) t A e ( i ) t (.6) t i t i t e ( A e A e ) (.7) ou o ostates reais C e C, ofore ostrao o ite aterior, e t ( C se t C os t) (.8) Apliao as oições iiiais e posição ( e e veloiae ( a solução aa por (.8) e a sua veloiae, aa pela orrespoete erivaa o tepo, obtê-se: C ( + ( e C ( (.9) Etão a solução (.8) é igual a e t Ase( t ) (.3 o a aplitue A e a fase aas por

9 u(t) VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE ( + A [ ( ] ( (.3) ta ( ( + ( (.3) 4 3 FATOR AMORT t Figura. - Vibração livre e sisteas subaorteios. A Figura. ilustra o ovieto para três valores o fator e aorteieto, o as esas oições iiiais. Poe-se observar, esta figura, que o ovieto orrespoe ao aao ovieto arôio aorteio. A assa osila o a frequêia atural aorteia, o aplitues que iiue epoeialete a aa ilo. Os zeros a fução (.3 oorre e itervalos e tepos iguais à etae o períoo e osilação. Os áios oorre e itervalos e tepos iguais ao períoo e osilação T. O eso oorre o os íios. Observe que os áios ou íios ão são etraos e relação aos zeros.

10 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE.4 - SISTEMAS CRITICAMENTE AMORTECIDOS Os sisteas ritiaete aorteios são aqueles para os quais o oefiiete e aorteieto é igual ao rítio, ou seja, o que orrespoe a u fator e aorteieto =. Etão as raízes a equação araterístia são reais e iguais aas, a partir e (.9), por, (.33) Usao a efiição e fator e aorteieto (.34) obté-se, (.35) Coo este aso =, te-se (.36), Coo as raízes são iguais, a solução a equação o ovieto livre, ofore (.4), é t t A e A te (.37) Apliao as oições iiiais e posição ( e e veloiae ( a solução aa por (.37) e a veloiae, aa pela orrespoete erivaa o tepo, obtê-se: A ( e A ( + ( (.38) A Figura.3 ilustra o ovieto livre para este aso e aorteieto, para eteriaas oições iiiais. Poe-se observar a partir esta figura que este ovieto orrespoe a u ovieto ão osilatório o eaieto epoeial. A assa se ovieta a partir a posição iiial e ireção à posição e equilíbrio se realizar osilações.

11 u(t) VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 3.0 FATOR AMORT t Figura.3 - Vibração livre e sisteas o aorteieto rítio.

12 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE SISTEMAS SOBREAMORTECIDOS Os sisteas sobreaorteios são aqueles para os quais o oefiiete e aorteieto é ao por, o que orrespoe a u fator e aorteieto >. Neste aso as raízes a equação araterístia são reais e istitas. A partir a equação (., estas raízes poe ser esritas oo, (.39) Usao a efiição o oefiiete e aorteieto rítio (.7) e a frequêia atural (.5), obté-se, (.4 oe Neste aso, as uas raízes a equação araterístia são reais, istitas e egativas. A solução a equação o ovieto livre e sisteas sobre-aorteios é aa, a partir e (.3), por A e ( ) t A e ( ) t (.4) ou t t t e ( A e A e ) (.4) oe A e A são ostates que epee as oições iiiais. Apliao as oições iiiais e posição ( e e veloiae ( a solução aa por (.4) e a veloiae, aa pela orrespoete erivaa o tepo, obté-se: A A ( ( ) ( + ( ) ( ( (.43)

13 u(t) VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 5 Algus autores prefere esrever esta esa solução e outra fora e t [ B se( t) B os( t)] (.44) oe B ( + ( e B ( (.45).0.5 FATOR AMORT t Figura.4 - Vibração livre e sisteas sobreaorteios. A Figura.4 ilustra este ovieto para ois valores o fator e aorteieto, o eteriaas oições iiiais. Poe-se observar que este ovieto orrespoe a u ovieto ão osilatório o eaieto epoeial. A assa se ovieta a partir a posição iiial e ireção à posição e equilíbrio se realizar osilações.

14 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE DECREMENTO LOGARÍTMICO Os sisteas subaorteios, aqueles para os quais o oefiiete e aorteieto é ao por, o que orrespoe a u fator e aorteieto <, possue ua araterístia uito iportate: a quea a aplitue epee elusivaete o fator e aorteieto. Neste aso, o esloaeto a vibração livre u eteriao istate e tepo t, obtio e (.8), é igual a e ( t t A se t A os ) (.46) e, u istate t =t +T, oe T é o períoo o ovieto aorteio, é ao por e T ( t T ) [ A se ( t T ) A os ( t )] (.47) 4 3 u u (t) FATOR AMOR T t t Figura.5 Dereeto logarítio. Substituio o períoo o ovieto aorteio, ao por T (.48)

15 VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 7 e (.47), obté-se ( t T ) e [ A se( t ) A os( t )] (.49) Diviio (.46) por (.49), obté-se e T (.5 Substituio (.5) e (.5, o resultao é igual a T e e (.5) Apliao o logarito atural e abos os laos e (.5), te-se l (.5) oe o parâetro é aao ereeto logarítio. Etão, rapiaete obté-se o fator e aorteieto e fução o ereeto logarítio, através e 4 (.53) Poe-se tabé toar o esloaeto + a vibração livre, u istate t + =t +T, e ostrar e fora aáloga que l (.54) Logo, o ereeto logarítio poe ser obtio através e l (.55)

[Ano] Vibração livre com amortecimento viscoso. Campus Virtual Cruzeiro do Sul

[Ano] Vibração livre com amortecimento viscoso. Campus Virtual Cruzeiro do Sul [Ao] Vibração livre o aorteieto visoso Capus Virtual Cruzeiro o Sul www.ruzeiroovirtual.o.br Uiae: Vibração Uiae: livre Coloar o aorteieto o oe a uiae visoso aqui Uiae - Vibração livre o aorteieto visoso

Leia mais

MOVIMENTO DE TRANSLAÇÃO: A PARTÍCULA EM UMA CAIXA

MOVIMENTO DE TRANSLAÇÃO: A PARTÍCULA EM UMA CAIXA MOVIMNTO D TRANSAÇÃO: A PARTÍCUA M UMA CAIA Prof. Harle P. Martis Filo Partícula livre oveo-se e ua iesão Ae ik Be ik k Não á restrições às soluções a equação e Scröiger A e B poe assuir qualquer valor

Leia mais

UNIDADE 2 - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE

UNIDADE 2 - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE Uiae - Vibrações Livres e Sisteas e U Grau e Liberae UNIDADE - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE. - Itroução A oção e vibração coeça co a iéia o uilíbrio. U sistea está e uilíbrio quao

Leia mais

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico 1 MECÂNICA CLÁSSICA AULA N o 5 Aplicações o Lagrangeano Trajetória no Espaço e Fases para o Pênulo Harônico Vaos ver três eeplos, para ostrar a aior faciliae a aplicação o Lagrangeano, quano coparaa ao

Leia mais

Resposta ao Impulso, ao Degrau e à Excitação Arbitrária

Resposta ao Impulso, ao Degrau e à Excitação Arbitrária 9 Resposta ao Impulso, ao Degrau e à Excitação Arbitrária INTRODUÇÃO Estuamos, até agora, a resposta e sistemas iâmicos às excitações harmôicas e perióicas, seo que essas últimas foram trasformaas, através

Leia mais

MÉTODOS DE DERIVAÇÃO

MÉTODOS DE DERIVAÇÃO MÉTODOS DE DERIVAÇÃO TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADA DE UMA FUNÇÃO CONSTANTE Uma ução costate ão apreseta variação, portato sua erivaa é ula ( c) 5 4 Por eemplo:

Leia mais

Modelagem Matemática de Sistemas Mecânicos Híbridos pela Mecânica Newtoniana

Modelagem Matemática de Sistemas Mecânicos Híbridos pela Mecânica Newtoniana Modelage Mateátia de isteas Meânios Híbridos pela Meânia Newtoniana 1 7 Modelage Mateátia de isteas Meânios Híbridos pela Meânia Newtoniana 1 INTRODUÇÃO Nesta apostila aprendereos oo obter o odelo ateátio

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

Universidade de Aveiro Departamento de Matemática ELIANA CATARINA VIEIRA MARQUES SISTEMAS COMPARTIMENTAIS

Universidade de Aveiro Departamento de Matemática ELIANA CATARINA VIEIRA MARQUES SISTEMAS COMPARTIMENTAIS Uiversiae e Aveiro Departameto e Matemátia 28 ELIANA CATARINA VIEIRA MARQUES SISTEMAS COMPARTIMENTAIS Uiversiae e Aveiro Departameto e Matemátia 28 ELIANA CATARINA VIEIRA MARQUES SISTEMAS COMPARTIMENTAIS

Leia mais

Laboratório de Dinâmica

Laboratório de Dinâmica UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório e Diâmica SEM 54 DINÂMICA ESTRUTURAL Ala # Resp.: Moelo Matemático Moelo e GDL com amortecimeto

Leia mais

Problema de transporte

Problema de transporte Departaeto de Egeharia de Produção UFPR 38 Problea de trasporte Visa iiizar o custo total do trasporte ecessário para abastecer cetros cosuidores (destios) a partir de cetros forecedores (origes) a1, a2,...,

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Diferecial Uma equação iferecial é uma epressão que relacioa uma fução escohecia (icógita) com suas erivaas É útil classificar os iferetes tipos e equações para um esevolvimeto sistemático a Teoria

Leia mais

Representação De Modelos de Sistemas Dinâmicos:

Representação De Modelos de Sistemas Dinâmicos: Representação de Modelos de Sisteas Dinâios: Espaço de Estados Representação De Modelos de Sisteas Dinâios: - Espaço de Estados INTRODUÇÃO Confore já foi enionado, o odelo ateátio de u sistea dinâio é

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos.

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR CAPÍTUO DEPENDÊNCIA INEAR Comiação iear Defiição: Seja V um espaço etorial sore um orpo K Um etor omiação liear os etores que u a a a De forma areiaa poe-se esreer: u a i i i u V é ito uma V se existem

Leia mais

ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves

ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves Nível Avaçao ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves Cotiuao com as iéias o artigo Itegrais iscretas (e Euaro Poço a Eurea úmero 7), vamos tetar escobrir fórmulas fechaas para algus somatórios

Leia mais

Biofísica II FFCLRP USP Prof. Antônio Roque Aula 3

Biofísica II FFCLRP USP Prof. Antônio Roque Aula 3 5910187 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Proessos de Difusão Vamos agora disutir algus proessos de difusão que são diretamete relevates para a difusão em élulas e através de membraas elulares.

Leia mais

UNIDADE 2 - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE

UNIDADE 2 - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE Uiae - Vibrações Livres e Sisteas e U Grau e Liberae UNIDADE - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE. - Itroução A oção e vibração coeça co a iéia o uilíbrio. U sistea está e uilíbrio quao

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas Resolução das Questões Objetivas Questão : Seja f : R R dada por f ( x) = µ x + 0x + 5, ode µ 0 Teos que f ( x ) > 0 para todo x R, se e soete se, i) µ > 0 ; ii) A equação µ x + 0x + 5 = 0 ão possui solução

Leia mais

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Física D Extensivo V. 8

Física D Extensivo V. 8 Físia D Extensivo V. esolva Aula 9 Aula 1 9.01) C 9.0) B 1.01) E 1.0) C Aula 0 0.01) B 0.0) 5 01. Correta. Frequênia a luz violeta (lâpaa e 15 W): f violeta f violeta. 7 9,. f violeta 7,7. 14 Hz Coo a

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) A ) C ) B ) A ) E ) C ) E ) D ) E ) D ) A ) E ) B ) D ) B ) A ) E ) E ) B ) Aulada ) A 0) D ) A 0) B )

Leia mais

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3.

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3. BM&F Câara de Ativos s de Referêcia e Seus Liites de Variação Para a Deteriação do Túel de s do Sisbex - Versão 3.0-1 Itrodução. Neste docueto apresetaos u procedieto pelo qual as taxas de referêcia da

Leia mais

Sumário. 2 Índice Remissivo 21

Sumário. 2 Índice Remissivo 21 i Suário 1 Pricipais Distribuições Discretas 1 1.1 A Distribuição Beroulli................................ 1 1.2 A Distribuição Bioial................................ 2 1.3 A Distribuição Geoétrica...............................

Leia mais

peso de cada esfera: P; comprimento do fio: L; ângulo entre o fio e a vertical: θ; constante eletrostática do meio: k.

peso de cada esfera: P; comprimento do fio: L; ângulo entre o fio e a vertical: θ; constante eletrostática do meio: k. www.fisiaexe.om.br rês esferas, aa uma elas e peso P e eletrizaa om arga, estão suspensas por fios isolantes e omprimento presos a um mesmo ponto. Na posição e equilíbrio os fios formam um ângulo om a

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Faculdade de Egeharia epartaeto de Egeharia Saitária e Abietal Hidráulica Geral (ESA04A) Prof Hoero Soares º seestre 0 Terças de 0 às h Quitas de 08 às 0 h Uiversidade Federal de Juiz de Fora - UFJF Faculdade

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Faculdade de Egeharia epartaeto de Egeharia Saitária e Abietal Hidráulica Geral (ESA04A) Prof Hoero Soares o seestre 04 Terças de 0 às h uitas de 08 às 0 h Uiversidade Federal de Juiz de Fora - UFJF Faculdade

Leia mais

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural,

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural, 3 Cosidere as matrizes A 3 alule o determiate da matriz A e 0 B, e seja P uma matriz ivisível tal que B P - AP Sedo um úmero atural, 0 det A det A, tem-se: Como ( ) ( ) ( ) det A 3 3 Cosidere uma seqüêia

Leia mais

Capítulo 3 Teoria Cinética dos Gases.

Capítulo 3 Teoria Cinética dos Gases. Capítulo 3 Teoria Cinética os Gases. Tópicos o Capítulo 3. Moelo Molecular e u Gás Ieal 3. Capaciae Calorífica Molar e u Gás Ieal 3.3 Processos Aiabáticos para u Gás Ieal 3.4 O Princípio a Equipartição

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

OSCILAÇÕES. 9.1 O movimento harmônico simples

OSCILAÇÕES. 9.1 O movimento harmônico simples Oscilações 75 OSCILAÇÕES 9 9. O oviento harônico siples De u oo geral, chaaos e oscilações aquela classe e oviento que se repete no tepo, quer seja e ua aneira orenaa ou não. O oviento que se repete regularente

Leia mais

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc Diâica Estocástica Aula 11 Setebro de 2015 âia - Di Estoc - 2015 1 1 rocesso arkoviao e atriz estocástica 2 âia - Di Estoc - 2015 2 rocesso Markoviao 1 1 obtida a últia aula 1 robabilidade do estado o

Leia mais

Instituto de Física da USP Física Experimental B Difração e Interferência - Guia de Estudos

Instituto de Física da USP Física Experimental B Difração e Interferência - Guia de Estudos Instituto e Física a USP 4330 Física Experiental B ifração e Interferência - Guia e Estuos I F USP Ojetivos: Co u feixe e luz laser estuar fenôenos e ifração e interferência. 1) ifração e Fraunhofer co

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Aplicações de Equações Diferenciais de Segunda Ordem

Aplicações de Equações Diferenciais de Segunda Ordem Aplicações de Equações Diferenciais de Segunda Orde Fernanda de Menezes Ulgui Filipi Daasceno Vianna Cálculo Diferencial e Integral B Professor Luiz Eduardo Ourique Porto Alegre, outubro de 2003. Escolha

Leia mais

Álgebra Linear I - Aula 1. Roteiro

Álgebra Linear I - Aula 1. Roteiro Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação

Leia mais

propriedade _ elástica _ do _ meio propriedade _ inercial

propriedade _ elástica _ do _ meio propriedade _ inercial Cap 17 (8 a edição) Odas Sooras II Odas ecâicas: ecessita de u eio de propagação. Elas pode ser trasersais e logitudiais. Oda soora: Logitudial (so, soar, radar) Neste capítulo: odas se propaga o ar e

Leia mais

Aula 11. Separação de Variáveis em Coordenadas Esféricas. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira

Aula 11. Separação de Variáveis em Coordenadas Esféricas. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira Eletromagetismo I Prof. Ricaro Galvão - Semestre 05 Preparo: Diego Oliveira Aula Separação e Variáveis em Cooreaas Esféricas Em cooreaas esféricas, a Equação e Laplace é aa por φr,θ,ϕ) = 0 r r ) r φ r

Leia mais

Extensões do Modelo Entidade-Relacionamento. Modelo Entidade Relacionamento Estendido. Herança. Subclasse/Superclasse. Discussão Exemplo Hospital

Extensões do Modelo Entidade-Relacionamento. Modelo Entidade Relacionamento Estendido. Herança. Subclasse/Superclasse. Discussão Exemplo Hospital Ciêcia a Coputação GBC043 Sisteas e Baco e Daos Extesões o oelo Etiae-Relacioaeto Profa. aria Caila arii Barioi caila.barioi@ufu.br Bloco B - sala B37 seestre e 208 Discussão Exeplo Hospital U hospital

Leia mais

Modelagem Matemática de Sistemas Mecânicos Translacionais pela Mecânica Newtoniana

Modelagem Matemática de Sistemas Mecânicos Translacionais pela Mecânica Newtoniana Modelage Mateátia de Sisteas Meânios Translaionais pela Meânia Newtoniana 5 Modelage Mateátia de Sisteas Meânios Translaionais pela Meânia Newtoniana INTRODUÇÃO Nesta apostila aprendereos oo obter o odelo

Leia mais

Física D Extensivo V. 6

Física D Extensivo V. 6 GAAIO Etensivo V 6 Eercícios 0) E 0) D Nu H quano 0 v á a ín quano ±A v ín a á 06) E I Falsa π k II Veraeira istea conservativo III Veraeira Na posição e equilíbrio a v á 07) D istea assa-ola nos etreos

Leia mais

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil Ciêcia e Natura ISSN: 000-807 cieciaeaturarevista@gailco Uiversidade Federal de Sata Maria Brasil Dattori da Silva, Paulo Leadro; Gálio Spolaor, Silvaa de Lourdes U irracioal: oúero de Euler Ciêcia e Natura,

Leia mais

Elasticidade aplicada à Infraestrutura de Transportes

Elasticidade aplicada à Infraestrutura de Transportes SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pós-graduação e Engenharia de Transportes Elasticidade aplicada à Infraestrutura de Transportes MAJ MONIZ DE ARAGÃO PROBLEMAS PLANOS EM COORDENADAS

Leia mais

1) Oscilador harmonico e oscilações em geral. 2) forças conservativas

1) Oscilador harmonico e oscilações em geral. 2) forças conservativas ) Oscilaor haronico e oscilações e geral ) forças conservativas Na posição e equilíbrio, a força gravitacional g já é cancelaa pela ola A força necessária para eslocar ua istância x é proporcional à x

Leia mais

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS C/007/MATEMATICA/ITAIME/MAT599ita(res)/ Cleo 5607 o Esio Médio Prova de Mateática (SIMULADO ITA/007) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Coo e y são iteiros, só podeos ter ( ) é u

Leia mais

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS 2017-2018, NÚMERO 1 VOLUME 5 ISSN 2319-023X A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS Roald Siões de Mattos Pito Colégio Pedro II Liliaa Mauela G. C. da Costa Colégio

Leia mais

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T.

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T. Capítulo 4 CONDUÇÃO BI-DIMENSIONAL REGIME PERMANENE ρc p t =! # x k " x $ &! # % y k " y $ &! % z k $ # &!q " z % < q Equação de calor (k cte e se geração coordeadas cartesiaas): x y = 4.- Método de separação

Leia mais

Intervalos de confiança

Intervalos de confiança 0 Itervalo de cofiaça 6.. A etiação por itervalo Noralete o proceo de ivetigação de u parâetro eceitao ir alé da ua etiativa potual ˆ. O fato de ão e cohecer o valor de pode cauar ua ieguraça e levar a

Leia mais

MATEMÁTICA QUESTÃO 1. Resolução. Resolução Primeira solução:

MATEMÁTICA QUESTÃO 1. Resolução. Resolução Primeira solução: (9) 35-0 www.eliteampias.om.br O ELITE RESOLVE IME 007 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 3 0 Cosidere as matrizes A= e B =, e seja P uma matriz 3 0 iversível tal que B = P - AP. Sedo um úmero

Leia mais

Introdução ao cálculo de curto-circuito em. sistemas elétricos de potência

Introdução ao cálculo de curto-circuito em. sistemas elétricos de potência Uiversidade Federal de Goiás Escola de Egeharia Elétrica, Mecâica e de Coputação trodução ao cálculo de curto-circuito e sisteas elétricos de potêcia O que é u curto-circuito As perturbações ais cous e

Leia mais

Prática VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESFERAS

Prática VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESFERAS Pátca VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESERAS OBJETIVO: Vefca expeetalete a cosevação a quatae e oveto lea e u sstea solao. INTRODUÇÃO TEÓRICA A segua le e Newto às vezes

Leia mais

Movimentos oscilatórios

Movimentos oscilatórios 30--00 Movientos oscilatórios Prof. Luís C. Perna Moviento Periódico U oviento periódico é u oviento e que u corpo: Percorre repetidaente a esa trajectória. Passa pela esa posição, co a esa velocidade

Leia mais

FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES

FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES Suário Moviento Moviento Harônico Siples (MHS) Velocidade e Aceleração MHS Energia MHS Moviento Circular Moviento Quando o oviento varia apenas nas proxiidades

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Secção 3. Aplicações das equações diferenciais de primeira ordem

Secção 3. Aplicações das equações diferenciais de primeira ordem 3 Aplicações das equações diferenciais de prieira orde Secção 3 Aplicações das equações diferenciais de prieira orde (Farlow: Sec 23 a 26) hegou a altura de ilustrar a utilidade prática das equações diferenciais

Leia mais

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita?

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita? Cálculo A fução iplícita Abril 9 O que é ua fução a fora iplícita e geral desigada por fução iplícita? Cálculo A fução iplícita Abril 9 Coeceos ao cotrário. Ua fução real de variável real coo 4se está

Leia mais

Física C Extensivo V. 2

Física C Extensivo V. 2 Física C xtensivo V. xercícios 0) 06) C O vetor cao elétrico é tangente às linhas e força. 0) Caa onto e u cao elétrico é caracterizao or u único vetor. Se or u eterinao onto assasse uas linhas e força

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

Modelo vetorial: análise de redes. Análise de redes. Algoritmos de análise de redes. Análise de redes. Análise de redes

Modelo vetorial: análise de redes. Análise de redes. Algoritmos de análise de redes. Análise de redes. Análise de redes Sisteas de Iforação Geográfica II ula lexadre Goçalves DECivil - IST alexg@civil.ist.utl.pt Modelo vetorial: aálise de redes 1. : probleas 1. Caihos de eor custo. Árvores. lgoritos. valiação da rede 1.

Leia mais

Revisão COVEST, UPE, FACAPE e UNEB

Revisão COVEST, UPE, FACAPE e UNEB I. (OVEST.) Em uma reveeora e automóveis, a razão etre o úmero e automóveis ovos e o e automóveis usaos é e três quitos. Qual o percetual e automóveis ovos a reveeora? ) % B),% ) % D) % E) 7,% N U Portato

Leia mais

Dispersão de um pacote de ondas livres

Dispersão de um pacote de ondas livres Dispersão de u pacote de ondas livres Nos cursos introdutórios de ecânica quântica há sepre o problea da dispersão do pacote de ondas gaussiano para partícula livre, quando evolui segundo a equação de

Leia mais

EXERCÍCIO: ONDAS INTERMITENTES

EXERCÍCIO: ONDAS INTERMITENTES EXERCÍCIO: ONDAS INTERMITENTES Egeharia de Tráfego 1 Cosidere ua aproxiação de u ruzaeto seaforizado o apaidade igual a 1750/h, e adita ua situação e ue a deada a hora-pio as aproxiações da ia priipal

Leia mais

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6. 6. EDO DE ORDEM SUPERIOR SÉRIES & EDO - 2017.2 Ua EDO Linear de orde n se apresenta sob a fora: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.1) onde os coe

Leia mais

Vibrações em Sistemas Mecânicos

Vibrações em Sistemas Mecânicos Notas de aulas Vibrações e Sisteas Mecâicos. 0......... Deslocaeto () 0 0 0-0 - 0-3 0 50 500 750 000 50 500 750 000 Node() E C /E F 0.005 Node() E C /E F 0.05 Node() E C /E F 0.5 Freq (Hz) Deslocaeto []

Leia mais

GRÁFICOS DE CONTROLE PARA X e S

GRÁFICOS DE CONTROLE PARA X e S Setor de Tecologia Departaeto de Egeharia de Produção Prof. Dr. Marcos Augusto Medes Marques GRÁFICOS DE CONTROLE PARA X e S E duas situações os gráficos de cotrole X e S são preferíveis e relação aos

Leia mais

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados Gabarto a sta e Iterpolação e Métoo os Mímos Quaraos ercíco : a cos Prmera orma: Iterpolação e agrage 8 5 P cos5 P - 89765 6 5 85 5 5 5 P 5 : : rro Portato 6 cos9 9 ; -5 6 9-9 - 6 5 5 5 85 cos6 6 ; 5 9

Leia mais

m v M Usando a conservação da energia mecânica para a primeira etapa do movimento, 2gl = 3,74m/s.

m v M Usando a conservação da energia mecânica para a primeira etapa do movimento, 2gl = 3,74m/s. FÍSICA BÁSICA I - LISTA 4 1. U disco gira co velocidade angular 5 rad/s. Ua oeda de 5 g encontrase sobre o disco, a 10 c do centro. Calcule a força de atrito estático entre a oeda e o disco. O coeficiente

Leia mais

Física I REVISÃO DE IMPULSO, QUANTIDADE DE MOVIMENTO E COLISÃO

Física I REVISÃO DE IMPULSO, QUANTIDADE DE MOVIMENTO E COLISÃO nual VOLUE 6 Física I ULS 9 e 3: REVISÃO DE IPULSO, QUNTIDDE DE OVIENTO E COLISÃO EXERCÍCIOS PROPOSTOS 1. Daos: V 1 8 /s V,6 /s Proprieae o gráfico fxt, o ipulso a força resultante é nuericaente igual

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são:

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são: MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 018/019 EIC0010 FÍSICA I 1º ANO, º SEMESTRE 18 de junho de 019 Noe: Duração horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Física C Extensivo V. 2

Física C Extensivo V. 2 Física C xtensivo V. xercícios 0) 05) D ara ue a aceleração seja nula, a força resultante sobre a nova carga eve ser nula. O vetor cao elétrico é tangente às linhas e força. + 4 + + F F + 0) Caa onto e

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

ESTIMAÇÃO INTERVALAR. O intervalo aleatório [T 1,T 2 ] é chamado um intervalo de 100(1 α)% de confiança para

ESTIMAÇÃO INTERVALAR. O intervalo aleatório [T 1,T 2 ] é chamado um intervalo de 100(1 α)% de confiança para SUMÁRIO Estiação Itervalar. Quatidade ivotal................................... Método da Quatidade ivotal....................... 3.. Itervalos para opulações Norais - ua aostra............ 4..3 Itervalos

Leia mais

Representação De Modelos de Sistemas Dinâmicos:

Representação De Modelos de Sistemas Dinâmicos: Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos,

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8 59117 Física II Ondas, Fluidos e Terodinâica USP Prof. Antônio Roque Oscilações Forçadas e Ressonância Nas aulas precedentes estudaos oscilações livres de diferentes tipos de sisteas físicos. E ua oscilação

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x MATEMATICA APLICADA A NEGÓCIOS 4,?? 200) Cálculo Cálculo Diferencial e Integral I TEOREMA DO SANDUICHE LIMITES FUNDAMENTAL Jair Silvério dos Santos * Teorea 0 Dadas f, g, h : A R funções e 0 ponto de acuulação

Leia mais

( 2.3) 2. Optimização

( 2.3) 2. Optimização Sistea para verificação Lógica do Cotrolo Dezebro 3. Optiização A teoria de optiização, é costituída por u couto de resultados e étodos uéricos co o obectivo de ecotrar e idetificar a elhor solução de

Leia mais

Implementação de Geometria Epipolar: Normalização

Implementação de Geometria Epipolar: Normalização 1 Ipleentação de Geoetria pipolar: oralização eplo adaptado de IKHAIL, ; THL, J S; CGLO, J C Introdution to odern Photograetr John Wile & Sons, In ew ork, 21 uas fotos apresenta os seguintes parâetros

Leia mais

Análise de Sistemas no Domínio do Tempo

Análise de Sistemas no Domínio do Tempo CAPÍTULO 4 Aálise de Sisteas o Doíio do Tepo 4. Itrodução A resposta o tepo de u sistea de cotrolo é iportate dado que é este doíio que os sisteas opera. O étodo clássico da aálise da resposta o tepo ivestiga

Leia mais

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8 Estatístca Quâtca Sstea físco co utos copoetes trataeto etalhao copleo aborae estatístca. Usaa co sucesso a físca clássca para escreer ssteas teroâcos. Relação etre propreaes obseraas e o coportaeto proáel

Leia mais

Mecânica Newtoniana: Trabalho e Energia

Mecânica Newtoniana: Trabalho e Energia Mecânica Newtoniana: Trabalho e Energia 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-ail: walter@azevedolab.net 1 Trabalho Realizado por Ua Força Constante Considereos o sistea

Leia mais

J L. PDF created with pdffactory Pro trial version

J L. PDF created with pdffactory Pro trial version ª Questão) No sistea ostrao na figura, a relação e transissão n L /n, J L 0 kg. e J,5 kg.. O atrito poe ser esprezao e poe-se assuir u acoplaento se peras. esenhe a curva e torque e função o tepo o oto,

Leia mais

Verificação e Validação

Verificação e Validação Verificação e Validação Verificação correto do poto de vista de ateático Verificação do código: verificar se o código respode corretaete a orde de precisão dos odelos ipleetados Verificação dos cálculos:

Leia mais

Quantidade de movimento ou momento linear Sistemas materiais

Quantidade de movimento ou momento linear Sistemas materiais Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas

Leia mais

Capítulo III TRANSFORMAÇÕES LINEARES

Capítulo III TRANSFORMAÇÕES LINEARES Capítlo III RANSFORAÇÕES LINEARES Capítlo III rasforações Lieares Capítlo III rasforações o Aplicações Seja dois cojtos A e B Se a cada eleeto a A for associado e só eleeto b B dir-se-á qe foi defiida

Leia mais

INFERÊNCIA ESTATÍSTICA: TESTE DE HIPÓTESES

INFERÊNCIA ESTATÍSTICA: TESTE DE HIPÓTESES INFERÊNCIA ESTATÍSTICA: TESTE DE IPÓTESES 2 Teste de hipóteses Exemplo. Uma idústria adquire de um erto fabriate pios uja resistêia média à ruptura é espeifiada em 6 uid. (valor omial da espeifiação).

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

Séries de Fourier AM3D. Generalidades sobre funções periódicas

Séries de Fourier AM3D. Generalidades sobre funções periódicas 11 1 Séries de Fourier AM3D Geeralidades sobre fuções periódicas Defiição 1 Seja f uma fução da variável real. Diz-se que f é periódica de período T > se x D f, f(x+t = f(x. Exemplo As fuções seo e co-seo

Leia mais

Questão 1) Substituindo valores: 1,0 ponto. Φ = 7,21 x J ou 4,5 ev. Questão 2) (a) 0,25 ponto. 0,25 ponto 0,25 ponto. (b) 0,25 ponto.

Questão 1) Substituindo valores: 1,0 ponto. Φ = 7,21 x J ou 4,5 ev. Questão 2) (a) 0,25 ponto. 0,25 ponto 0,25 ponto. (b) 0,25 ponto. Questão 1) A partir do euciado do problea ota-se a equação do efeito fotoelétrico: E = hv - Φ, ode E é a eergia ciética do elétro ejetado, h a cotate de Plac, v a frequêcia do fóto icidete e Φ a fução

Leia mais

UFSC ( ) Física (Amarela) 21) Resposta: 19. Comentário

UFSC ( ) Física (Amarela) 21) Resposta: 19. Comentário UFSC Física (Aarela) 1) Resposta: 19 Coetário No Everest o valor da aceleração da gravidade é eor, e portato o período de oscilação ficará aior, provocado u atraso o horário do relógio B. 0. Correta. Devido

Leia mais