Biofísica II FFCLRP USP Prof. Antônio Roque Aula 3

Tamanho: px
Começar a partir da página:

Download "Biofísica II FFCLRP USP Prof. Antônio Roque Aula 3"

Transcrição

1 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Proessos de Difusão Vamos agora disutir algus proessos de difusão que são diretamete relevates para a difusão em élulas e através de membraas elulares. Proessos de Difusão Ivariates o Tempo Equilíbrio Por defiição, o equilíbrio o fluxo é zero e a oetração é idepedete do tempo: φ = 0 e (x,t) = (x). Neste aso, a lei de Fik os dá que: φ = D d ( x ) dx = 0 d ( x ) dt = 0 = ostate. (1) No equilíbrio a oetração é ostate, idepedete do tempo e do espaço. Note que dizer que o fluxo é zero ão implia que ão haja movimeto de partíulas. O importate aqui é que o fluxo total ou líquido seja zero. 1

2 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Estado Estaioário Em um regime estaioário, tato o fluxo omo a oetração são idepedetes do tempo, mas o fluxo (o fluxo líquido) ão é ulo. Nesta situação, a equação da otiuidade, dá: φ x = t, os φ x = 0 φ = ostate. (2) O fluxo líquido é ostate, idepedete do espaço e do tempo (mas ote que ão é ulo omo o aso do item aterior!). Neste aso, a lei de Fik pode ser esrita troado-se a derivada parial de em relação a x por uma derivada total, φ = D x = D d dx. (3) Esta equação pode ser itegrada e sua solução geral é φ ( x) = ( x0 ) ( x x0 ), D (4) 2

3 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 ode x 0 é uma ostate de itegração que dá o valor da oetração em algum poto de referêia defiido pelas odições de otoro do problema. Portato, em um regime estaioário o fluxo é ostate e a oetração é uma fução liear da distâia x, omo mostrado a figura abaixo. Um regime estaioário de difusão pode oorrer quado houver um grade reservatório de partíulas iteragido difusivamete om um sistema otedo pouas partíulas. 3

4 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Porém, um aso mais realista, tato o fluxo omo a oetração depedem do tempo e do espaço e somete a solução da equação de difusão pode os revelar omo eles se omportam. Proessos de Difusão Depedetes do Tempo O estudo das soluções da equação de difusão para situações depedetes do tempo está além do esopo deste urso. Porém, vamos apresetar a solução para um aso importate, a saber, o de uma fote potual de partíulas. Este aso orrespode a uma situação físia em que se oloam 0 moles/m 2 de partíulas a posição x = 0 em t = 0 (pese um pigo de tita aido sobre uma tigela om água). A solução da equação de difusão (equação 9 da aula 1) para este aso partiular e para t > 0 pode ser obtida pelo método de separação de variáveis (isto ão será feito aqui) dado: ( x, t) = 0 4πDt e x 2 4Dt, para t > 0. (5) Esta solução tem a forma espaial de uma distribuição gaussiaa etrada a origem (ompare om a equação 8 da aula 2). À medida 4

5 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 que o tempo aumeta, a distribuição fia mais e mais espalhada e a sua altura dimiui. A largura (medida pelo desvio padrão) da distribuição aumeta o tempo omo 2 Dt, mas a área abaixo da urva permaee ostate (pois o úmero de partíulas se oserva). Isto está ilustrado a figura abaixo à esquerda. Na figura da direita, vemos omo o valor de (x,t) se omporta o tempo para três posições fixas (diferetes da origem). Para ada posição o omportameto é qualitativamete o mesmo: a oetração omeça omo (x,0) = 0, aumeta para um valor máximo e etão deai se aproximado assitotiamete de um valor de equilíbrio (este deaimeto vai om t -1/2 ). 5

6 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Difusão através de Membraas Membraas Homogêeas Estado Estaioário Vamos omeçar estudado o regime estaioário de difusão de um soluto através de uma membraa homogêea. Vamos osiderar uma membraa que separa duas regiões, hamadas de iterior e exterior. A membraa tem espessura d e separa duas soluções que otém o soluto as oetrações i o iterior e e o exterior (veja a figura aima). 6

7 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 A oetração do soluto detro da membraa é (x) (ote que estamos supodo estado estaioário, portato ão há depedêia om t). Vamos supor que a membraa é homogêea e que o oefiiete de difusão do soluto através da membraa é D. O fluxo por difusão das partíulas do soluto através da membraa será idiado por φ. Como estamos supodo um regime estaioário, o fluxo φ das partíulas do soluto através da membraa é ostate e (x) obedee à equação (4), φ ( x) = ( x0 ) ( x x0 ). D (6) Fazedo x 0 = 0, temos: Apliado esta equação para x = d, φ ( x) = (0) x. D φ D ( d) (0) = d φ = d D d ( (0) ( )) (7). (8) Substituido este valor de φ em (7) obtemos, 7

8 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 ( x) x = (0) [ (0) ( d) ]. (9) d Esta equação expressa o omportameto da oetração de soluto o iterior da membraa em fução de dois parâmetros, (0) e (d). Estes são os valores da oetração as iterfaes etre a membraa e as soluções do lado iterior e do lado exterior, respetivamete (iterfaes membraa-solução). Numa iterfae membraa-solução, o soluto está distribuído de aordo om a sua solubilidade a membraa e o solvete. Vamos supor que o solvete é o mesmo dos dois lados da membraa, por exemplo, água. Neste aso, defie-se o oefiiete de partição membraa-solução para o soluto omo: (0) k = = i ( d). e (10) Este oefiiete mede a razão etre a oetração do soluto a membraa e a solução, uma situação de equilíbrio. Se k > 1, o soluto é mais solúvel a membraa do que a solução; se k < 1, o soluto é mais solúvel a solução do que a membraa. 8

9 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Por exemplo, omo se mede o oefiiete de partição para um dado soluto a iterfae água-óleo? Joga-se água, óleo e o soluto em um reipiete e agita-se. Depois de algum tempo, omo a água e o óleo são imisíveis, o óleo estará flutuado sobre a água (figura abaixo). O soluto estará distribuído pelos dois meios oforme seu oefiiete de partição água-óleo k. Se ele for mais solúvel o óleo, sua oetração o óleo será maior do que a água (figura da esquerda abaixo). Se ele for mais solúvel a água, sua oetração a água será maior do que o óleo (figura da direita abaixo). Em termos de k, a equação (9) pode ser reesrita omo ( x) [ ] i i e x = k k. (11) d Note que esta equação só exige o oheimeto das oetrações do soluto as soluções exterior e iterior ( i e e ) e do oefiiete de partição k. 9

10 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 A equação (11) permite uma aálise gráfia do omportameto de (x) através da membraa. O gráfio da figura abaixo foi ostruído i supodo que > e, de maeira que a oetração dimiui liearmete à medida que ruzamos a membraa do iterior para o exterior (se i < e, a oetração aumetaria liearmete). Se k = 1, a oetração é uma fução otíua de x para qualquer poto. Se k 1, a oetração é uma fução desotíua as iterfaes etre a membraa e a solução. Em termos do oefiiete de partição k, o fluxo (equação 8) pode ser esrito omo: φ = D k d i e ( ). (12) 10

11 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Defie-se a permeabilidade da membraa ao soluto, P, omo: P D d k =. (13) A permeabilidade é proporioal ao oefiiete de difusão e ao oefiiete de partição e iversamete proporioal à espessura da membraa. As dimesões de P são: [ P ] = [ D] [ d] = [ área] [ tempo] [ omprimeto ] = [ omprimeto ] [ tempo] ou seja, P tem dimesões de veloidade (por exemplo, m/s)., Em termos da permeabilidade P o fluxo estaioário através de uma membraa homogêea é desrito pela equação φ = P ( i e ). (14) Segudo esta equação, a direção do fluxo de soluto é para fora da membraa (φ > 0) se a oetração do soluto o iterior for maior do que a oetração o exterior. Na situação oposta, o fluxo é para detro da membraa (φ < 0). A equação (14) é algumas vezes hamada de lei de Fik para membraas, pois mostra que o fluxo por difusão através da 11

12 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 membraa oorre o setido otrário ao do gradiete de oetração. Um tipo de trasporte de partíulas ujo setido de movimeto é otrário ao do gradiete de oetração das partíulas é hamado de trasporte passivo. Portato, o fluxo por difusão através de uma membraa é passivo. Note que o fluxo de soluto é proporioal ao produto da difereça de oetração pela permeabilidade. Se P for grade, dizemos que a membraa é altamete permeável ao soluto. Se P for pequea, dizemos que a membraa é pouo permeável ao soluto. Já se P = 0, dizemos que a membraa é impermeável ao soluto. O aso P = 0 é possível quado k = 0 (o soluto ão é solúvel a membraa), ou quado D = 0 (o soluto ão pode se difudir pela membraa), ou quado ambos são ulos. 12

13 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Trasiete 1 Em geral, quado um soluto se difude através de uma membraa existe um período trasiete ates que o regime estaioário se estabeleça. No regime estaioário, sabemos que a oetração varia liearmete através da membraa, mas omo é o seu omportameto durate o período trasiete? Nesta seção, vamos prourar estimar o tempo de duração do período trasiete até que o estado estaioário seja atigido. Vamos supor que os valores da oetração o iterior e o exterior da membraa, i e e, permaeem ostates durate todo o proesso e que a forma iiial da fução (x,t) é arbitrária omo mostrado a figura abaixo. 1 Esta seção pode ser omitida uma primeira leitura. 13

14 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 O valor iiial de (x,t) é (x,0) e o valor estaioário, atigido após um logo tempo, é (x, ). As odições de otoro são: ( 0, t) = k em x = 0 e i ( d, t) = k em x = d (para t > 0). e Para obter a solução geral (x,t) para este problema, devemos resolver a equação de difusão sujeita às odições iiiais e de otoro impostas. Como a solução estaioária é uma fução liear em x, podemos esrever a solução geral a forma: t ( x, t) = ( x, ) ( x, t), + ode (x, ) é a ompoete estaioária, dada por (11), e t (x,t) é a ompoete trasiete da solução. Note que a solução estaioária já satisfaz as odições de otoro para x = 0 e x = d. Isto implia que a solução trasiete deve satisfazer as seguites odições de otoro: t t ( 0, t) = ( d, t) = 0 para t > 0. Portato, para resolver o problema preisamos eotrar uma fução t (x,t) que satisfaça: (i) a equação de difusão; (ii) as odições de otoro aima; e (iii) teha um valor iiial arbitrário dado por t (x,0) = (x) - (x, ). 14

15 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 Os métodos de solução da equação de difusão estão além dos propósitos deste urso (eles serão tratados os ursos de Físia Matemátia). Para ossos objetivos aqui, basta saber que uma solução da equação de difusão que satisfaça as odições de otoro impostas sobre t (x,t) é dada pelo produto de uma fução do tipo se px, p = lπ/d (l iteiro) om uma fução do tipo p D e 2 t. Isto é, uma solução geral da equação de difusão para este aso é dada por uma superposição de termos do tipo se 2 p Dt ( l x d) e π : ode t ( x, t) t τ l = al se( lπx d ) e, (15) l= d τ l = = p D l π D (16) Os oefiietes a l podem ser obtidos pela odição iiial t (,0) = x al se( lπ x d ), (17) l =1 15

16 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 que é a expasão em série de Fourier de t (x,0). A ompoete trasiete da oetração ao logo da membraa é dada por uma superposição de termos seoidais om amplitudes deaido expoeialmete o tempo (equação 15). As ompoetes om valores grades de l orrespodem a osilações om grades frequêias espaiais e ostates temporais τ l pequeas (que deaem rapidamete). Já as ompoetes om valores pequeos de l orrespodem a osilações de baixa frequêia espaial e deaimeto temporal leto (τ l grade). A ompoete de deaimeto mais leto é a de maior τ l, que oorre para l = 1. Ela é defiida omo, τ ee = d 2. π 2 D (18) Esta ompoete é hamada de ostate temporal (ou ostate de tempo) do estado estaioário, pois é ela que limita o tempo que a oetração leva para atigir o regime estaioário. Para uma membraa de espessura d = 10 m (típia de uma membraa elular) e para uma difusão om D = 10-5 m 2 /s (difusão de uma moléula pequea a água), τ ee 10 s. Este é um tempo muito urto, idiado que o trasiete que preede o regime de 16

17 Biofísia II FFCLRP USP Prof. Atôio Roque Aula 3 difusão de estado estaioário em uma membraa eleular é muito rápido, podedo ser desprezado a maioria das vezes. Mesmo que o valor de D fosse várias ordes de gradeza maior, aida assim o valor de τ ee seria pequeo para uma membraa de espessura da ordem de gradeza da membraa elular. 17

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

ANÁLISE DE ONDAS ESTÁTICAS SOBRE UMA MOLA ESPIRAL TENSIONADA E UMA CORDA TENSIONADA.

ANÁLISE DE ONDAS ESTÁTICAS SOBRE UMA MOLA ESPIRAL TENSIONADA E UMA CORDA TENSIONADA. Meâia Osilações e odas Odas meâias ANÁLISE DE ONDAS ESTÁTICAS SOBRE UMA MOLA ESPIRAL TENSIONADA E UMA CORDA TENSIONADA. Geração de odas logitudiais estátias em uma mola espiral e de odas trasversais estátias

Leia mais

MATEMÁTICA QUESTÃO 1. Resolução. Resolução Primeira solução:

MATEMÁTICA QUESTÃO 1. Resolução. Resolução Primeira solução: (9) 35-0 www.eliteampias.om.br O ELITE RESOLVE IME 007 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 3 0 Cosidere as matrizes A= e B =, e seja P uma matriz 3 0 iversível tal que B = P - AP. Sedo um úmero

Leia mais

Guiamento da luz Guias de ondas metálicos

Guiamento da luz Guias de ondas metálicos Guiameto de luz 81 Guiameto da luz 15 15.1 Guias de odas metálios Neste apítulo vamos abordar, de maeira bastate breve, um dos mais importates ompoetes óptios existetes, o guia de odas eletromagétias.

Leia mais

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS 4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS Muitas vezes os experimetos requerem medidas de gradezas físicas que variam com o tempo. Para a correta medição destas gradezas, é ecessário cohecer as propriedades

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

Análise da Resposta de Sistemas à Excitação Harmônica. Resposta em Freqüência

Análise da Resposta de Sistemas à Excitação Harmônica. Resposta em Freqüência Aálise da Resposta de Sistemas à Exitação Harmôia. Resposta em Freqüêia 6 Aálise da Resposta de Sistemas à Exitação Harmôia. Resposta em Freqüêia INTRODUÇÃO Estudamos, até agora (Apostilas 4 e 5), a resposta

Leia mais

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural,

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural, 3 Cosidere as matrizes A 3 alule o determiate da matriz A e 0 B, e seja P uma matriz ivisível tal que B P - AP Sedo um úmero atural, 0 det A det A, tem-se: Como ( ) ( ) ( ) det A 3 3 Cosidere uma seqüêia

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A JANEIRO 2010

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A JANEIRO 2010 FICHA DE TRABALHO DE FÍSICA E QUÍMICA A JANEIRO 00 APSA Nº4 º Ao de Esolaridade. Na figura está represetado o omportameto de um feixe lumioso ao iidir sobre três superfíies distitas, A, B e C... Idetifique

Leia mais

PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 3º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 3º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 0) Aalise o esquema abaio e assiale V pa a(s) verdadeira(s) e F pa a(s) falsa(s) as afirmativas que o seguem. (V) O âgulo de iidêia é 45 ; o de refração,

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

1ª Lista de Exercícios. 1. São dados 2n números distintos distribuídos em dois vetores com n elementos A e B ordenados de maneira tal que

1ª Lista de Exercícios. 1. São dados 2n números distintos distribuídos em dois vetores com n elementos A e B ordenados de maneira tal que Uiversidade Federal de Mias Gerais Departameto de Ciêia da Computação Algoritmos e Estruturas de Dados II (Turmas M, N, W, F) 1º Semestre de 01 Profs. Camilo Oliveira, Gisele Pappa, Ítalo Cuha, Loï Cerf,

Leia mais

Transporte Iônico e o Potencial de Membrana

Transporte Iônico e o Potencial de Membrana Trasporte Iôico e o Potecial de Membraa Até o mometo, cosideramos apeas o trasporte de solutos eutros (sem carga elétrica) através da membraa celular. A partir de agora, vamos passar a estudar o trasporte

Leia mais

Medidas, integração, Teorema da Convergência Monótona e o teorema de Riesz-Markov

Medidas, integração, Teorema da Convergência Monótona e o teorema de Riesz-Markov Medidas, itegração, Teorema da Covergêcia Moótoa e o teorema de Riesz-Markov 28 de Agosto de 2012 1 Defiições de Teoria da Medida Seja (Ω, F, ν) um espaço de medida: isto é, F é σ-álgebra sobre o cojuto

Leia mais

2 ESPECIFICAÇÃO DE MOTORES ELÉTRICOS 2.1 POTÊNCIA NOMINAL

2 ESPECIFICAÇÃO DE MOTORES ELÉTRICOS 2.1 POTÊNCIA NOMINAL Módulo omado e roteção ESEIFIAÇÃO DE MOTORES ELÉTRIOS. OTÊIA OMIAL Quado deseja-se esolher um motor para aioar uma determiada arga, é preiso oheer o ojugado requerido pela arga e a rotação que esta arga

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição;

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição; CÁLCULO I Prof Edilso Neri Júior Prof Adré Almeida Aula o 9: A Itegral de Riema Objetivos da Aula Deir a itegral de Riema; Exibir o cálculo de algumas itegrais utilizado a deição; Apresetar fuções que

Leia mais

Aula 5 Teorema central do limite & Aplicações

Aula 5 Teorema central do limite & Aplicações Diâmica Estocástica Aula 5 Teorema cetral do limite & Aplicações Teorema cetral do limite Se x é tal que: x 0 e ( xv é fiita,,..., x x, x,...,, 3 x variáveis aleatórias idepedetes com a mesma distribuição

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Universidade do Estado do Amazonas

Universidade do Estado do Amazonas Uiversidade do Estado do Amazoas Professor Alessadro Moteiro 6 de Julho de 08 PROJETO DE EXTENSÃO Resoluções de Problemas de Aálise Real I 5º Ecotro/Parte I: Limites de Fuções 5. O Limite de uma Fução

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

INFERÊNCIA ESTATÍSTICA: TESTE DE HIPÓTESES

INFERÊNCIA ESTATÍSTICA: TESTE DE HIPÓTESES INFERÊNCIA ESTATÍSTICA: TESTE DE IPÓTESES 2 Teste de hipóteses Exemplo. Uma idústria adquire de um erto fabriate pios uja resistêia média à ruptura é espeifiada em 6 uid. (valor omial da espeifiação).

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

CCI-22 CCI-22. 5) Interpolação. Matemática Computacional

CCI-22 CCI-22. 5) Interpolação. Matemática Computacional CCI- CCI- atemátia Computaioal 5 Iterpolação Carlos Alerto Aloso Saes Poliômios iterpoladores, Formas de Lagrage, de Newto e de Newto-Gregory Itrodução Forma de Lagrage Forma de Newto CCI- Forma de Newto-Gregory

Leia mais

Estacionariedade e correlação temporal em dados financeiros

Estacionariedade e correlação temporal em dados financeiros Estacioariedade e correlação temporal em dados fiaceiros Hoje em dia há uma quatidade imesa de dados fiaceiros sedo armazeados, egócio a egócio, pelo mudo afora. Gratuitamete, é possível coseguir facilmete

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e CAPÍTULO 3 Eercícios 3 3 Seja a equação y y 0 B Como o Eercício ( item (e, yabl B y( Bl A 0 B B B B y(! y(! B 4 4 4 l A0! A( l A solução procurada é y ( l 4 l $ % 4 Pela ª Lei de Newto, m dv dt dv v dt

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

UMA INTRODUÇÃO À TEORIA DE PONTOS CRÍTICOS

UMA INTRODUÇÃO À TEORIA DE PONTOS CRÍTICOS UMA INTRODUÇÃO À TEORIA DE PONTOS CRÍTICOS INTRODUÇÃO Carlos Herique Togo e Atôio Carlos Nogueira Hoje em dia, um dos mais produtivos e atraetes ramos da Matemática é a Teoria de Sigularidades A Teoria

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletromagetismo 1 o Semestre de 7 Noturo - Prof. Alvaro Vaucci 1 a aula 7/fev/7 ivros-texto: eitz-milford Griffiths Vamos relembrar as 4 equações básicas do Eletromagetismo 1 a ) ei de Gauss: O Fluxo do

Leia mais

. Dessa forma, quanto menor o MSE, mais a imagem

. Dessa forma, quanto menor o MSE, mais a imagem Uiversidade Federal de Perambuco CI / CCEN - Área II 1 o Exercício de Cálculo Numérico ( 18 / 06 / 2014 ) Aluo(a) 1- Questão 1 (2,5 potos) Cosidere uma imagem digital como uma matriz bidimesioal de dimesões

Leia mais

Dentro, a/2 < x < a/2: com: Ondas com a mesma amplitude nos 2 sentidos. Elas se combinam formando uma onda estacionária. Então podemos fazer A = B:

Dentro, a/2 < x < a/2: com: Ondas com a mesma amplitude nos 2 sentidos. Elas se combinam formando uma onda estacionária. Então podemos fazer A = B: Poços de potecial: E < V Detro a/ < < a/: ψ com: i i Ae + Be me p Odas com a mesma amplitude os setidos. Elas se combiam formado uma oda estacioária. Etão podemos fazer A B: ψ ψ i i + e B e Bʹ cos e Bʹ

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k Notas do Curso Iferêcia em Processos Estocásticos Prof. Atoio Galves Trascrita por Karia Yuriko Yagiuma 1 Estimação de máxima verossimilhaça para cadeias de Markov de ordem k Seja (X ) =0,1,,... uma cadeia

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

TRANSPORTES. Sessão Prática 4 Amostragem de escalares

TRANSPORTES. Sessão Prática 4 Amostragem de escalares Mestrado Itegrado em Egeharia Civil TRNPORTE Prof. Resposável: Luis Picado atos essão Prática 4 mostragem de escalares Istituto uperior Técico / Mestrado Itegrado Egeharia Civil Trasportes ulas Práticas

Leia mais

Avaliação da Rotação de Constelações 4-QAM e 16-QAM em Canais com Desvanecimento Rice 1

Avaliação da Rotação de Constelações 4-QAM e 16-QAM em Canais com Desvanecimento Rice 1 Avaliação da Rotação de Costelações 4-QAM e 16-QAM em Caais om Desvaeimeto Rie 1 Mariaa F. Mota, Carlos D. M. Regis 3, Rafael F. Lopes 4 e Marelo. Alear 5 1 Parte do projeto de pesquisa PIBICT. Istituto

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

AULA 24 FATORES DE FORMA DE RADIAÇÃO TÉRMICA- cont...

AULA 24 FATORES DE FORMA DE RADIAÇÃO TÉRMICA- cont... Notas de aula de PM 6 Processos de Trasferêcia de Calor e Massa 08 UL FTOS D FOM D DIÇÃO TÉMIC- cot... Na aula aterior estudamos o caso de fatores de forma e como se pode calcular a troca líquida de calor

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

EXERCÍCIO: ONDAS INTERMITENTES

EXERCÍCIO: ONDAS INTERMITENTES EXERCÍCIO: ONDAS INTERMITENTES Egeharia de Tráfego 1 Cosidere ua aproxiação de u ruzaeto seaforizado o apaidade igual a 1750/h, e adita ua situação e ue a deada a hora-pio as aproxiações da ia priipal

Leia mais

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo:

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo: PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ COQ 897- OIIZAÇÃO DE PROCESSOS- II/ FORAS QUADRÁICAS Em a epressão geral das formas quadráticas é: a a f (, ) cbb a, cujas derivadas parciais são: f(, ) b a a f(,

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Raízes de equações. O Problema. Equações. Algébricas Transcendentes

Raízes de equações. O Problema. Equações. Algébricas Transcendentes Raízes de equações Algébrias Trasedetes O roblema É frequete em problemas ietífios e de egeharia a eessidade de se determiar o valor para que satisfaça uma dada fução f isto é f. O úmero é hamado de zero

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Cifra Aleatória P. Quaresma. Cifra Aleatorizada P. Quaresma

Cifra Aleatória P. Quaresma. Cifra Aleatorizada P. Quaresma às Cifra Aleatória Fieiras Defiição ( ) Uma -bit ifra por bloos é uma fução : V K V, tal que para ada -bit K K, (P, K) é uma fução ivertível (a fução de eriptação para K) de V para V, deotada por K (P).

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

2 Modelo Log-periódico

2 Modelo Log-periódico 2 Modelo Log-periódio Neste apítulo serão apresetados o desevolvimeto feomeológio do modelo log-periódio e a dedução da equação fudametal que desreve o resimeto dos preços o tempo a fase pré-rash. 2.1.

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1 ANALYTICAL METHODS IN VIBRATION Leonard Meirovith Capitulo Comportamento de sistemas Um sistema é definido omo uma montagem de omponentes atuando omo um todo. Os omponentes são lassifiados e definidos

Leia mais

Testes de Hipóteses sobre uma Proporção Populacional

Testes de Hipóteses sobre uma Proporção Populacional Estatística II Atoio Roque Aula Testes de Hipóteses sobre uma Proporção Populacioal Seja o seguite problema: Estamos iteressados em saber que proporção de motoristas da população usa cito de seguraça regularmete.

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

SINAIS E SISTEMAS DE TEMPO DISCRETO

SINAIS E SISTEMAS DE TEMPO DISCRETO SINAIS E SISTEMAS DE TEMPO DISCRETO SINAIS DE TEMPO DISCRETO Fução de uma variável idepedete iteira. Não é defiido em istates etre duas amostras sucessivas. É icorreto pesar que é igual a zero se ão é

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

CONCEITOS DE VIBRAÇÃO

CONCEITOS DE VIBRAÇÃO CONCEITOS DE VIBRAÇÃO Paulo S. Varoto 55 3.1 - Itrodução O objetivo pricipal desta secção é o de apresetar coceitos básicos da teoria de vibrações bem como iterpretá-los sob o poto de vista dos esaios

Leia mais

Inicialmente consideremos um controlador PID analógico ideal (contínuo). de t τ. d 1

Inicialmente consideremos um controlador PID analógico ideal (contínuo). de t τ. d 1 CONROLAOR P GAL P EAL iialmete oideremo um otrolador P aalógio ideal (otíuo). 1 t de t ut () = u0 + k et () + et ( ) dt + d 0 1 dt u(t) - Ação de otrole o itate atual u 0 (t) - Bia ou valor da variável

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

O Princípio da Substituição e o Teorema Central do Limite

O Princípio da Substituição e o Teorema Central do Limite O Pricípio da Substituição e o Teorema Cetral do Limite Roberto Imbuzeiro M. F. de Oliveira 6 de Maio de 009 Resumo 1 Prelimiares são variáveis aleatórias idepedetes sat- No que segue {X i } {Y i} isfazedo

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

5. O algoritmo dos mínimos quadrados

5. O algoritmo dos mínimos quadrados Apotametos de Processameto Adaptativo de Siais 5. O algoritmo dos míimos quadrados Método dos míimos quadrados Os algoritmos de míimos quadrados são uma alterativa aos algoritmos de gradiete. Estrutura

Leia mais

Instituto de Física USP. Física Moderna. Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 25. Professora: Mazé Bechara Istituto de Física USP Física Modera Aula 5 Professora: Mazé Bechara Aula 5 A equação de Schroediger para estados estacioários ligados. Aplicação o movimeto uidimesioal. 1. Aplicação : os auto estados

Leia mais

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012 Bases e dimesão Roberto Imbuzeiro Oliveira 22 de Março de 2012 1 Defiições básicas Nestas otas X é espaço vetorial com mais de um elemeto sobre o corpo F {R, C}. Uma base (ão ecessariamete LI) de X é um

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR CAPÍTUO DEPENDÊNCIA INEAR Comiação iear Defiição: Seja V um espaço etorial sore um orpo K Um etor omiação liear os etores que u a a a De forma areiaa poe-se esreer: u a i i i u V é ito uma V se existem

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando RADICIAÇÃO CONTEÚDOS Radiciação Propriedades dos radicais Extração de fatores do radicado AMPLIANDO SEUS CONHECIMENTOS Radiciação A radiciação é defiida como a operação em que dado um úmero a e um úmero,

Leia mais

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos MÉTODO DOS MOMETOS - MOM Prof. Erivelto Geraldo epomuceo PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA ELÉTRICA UIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CETRO FEDERAL DE EDUCAÇÃO TECOLÓGICA

Leia mais

Sociedade Portuguesa de Física, Divisão de Educação, 17 de Julho de 2008.

Sociedade Portuguesa de Física, Divisão de Educação, 17 de Julho de 2008. Resolução da prova Físia e Químia 11.º/1.º ao (715), Fase ersão I, 008. Soiedade Portuguesa de Físia, Divisão de Eduação, 17 de Julho de 008. 1. 1.1. O silêio é total pois as odas sooras, que são odas

Leia mais

Conversores Analógico/Digital (A/D)

Conversores Analógico/Digital (A/D) Coversores Aalógico/Digital (A/D) Um coversor A/D é um circuito ue coverte um ível de tesão (ou correte) em um valor umérico (digital) correspodete. São a base de ualuer istrumeto de medição digital. Existem

Leia mais