Testes de Hipóteses sobre uma Proporção Populacional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Testes de Hipóteses sobre uma Proporção Populacional"

Transcrição

1 Estatística II Atoio Roque Aula Testes de Hipóteses sobre uma Proporção Populacioal Seja o seguite problema: Estamos iteressados em saber que proporção de motoristas da população usa cito de seguraça regularmete. Em uma pesquisa com 300 motoristas, 3 deles disseram que usam regularmete o cito de seguraça. Podemos cocluir desses dados que a proporção de motoristas que usa cito de seguraça é iferior a 50%? Para a amostra obtida, pˆ 3/300 0,4. A hipótese ula a ser testada este caso é: H 0 : p 0,5 H : p < 0,5 ode p é a proporção populacioal de motoristas que usam o cito de seguraça regularmete. Portato, o teste é uilateral. Nas aulas sobre distribuições amostrais, vimos que a distribuição amostral de pˆ pode ser aproximada por uma distribuição ormal se tato p como ( forem maiores ou iguais a 5. No osso caso, com p 0,5, p ( 300x0,5 50, o que garate que podemos usar a variável z para fazer o cálculo de P. A distribuição amostral de pˆ é aproximadamete ormal com média µ ˆ p 0,5 e desvio padrão p p( 0,5 0,5 300 pˆ Portato, o valor P é calculado a partir de 0,089.

2 Estatística II Atoio Roque Aula z pˆ p pˆ 0,4 0,50 0,089 0,09 0,089 3,. Cosultado a tabela da distribuição ormal reduzida, vemos que P 0,5 0, , Portato, P < α. Logo, rejeitamos a hipótese ula e cocluímos que os dados sugerem que a proporção de motoristas que usa o cito de seguraça regularmete é meor do que 50%. Testes de Hipóteses sobre a Difereça etre as Proporções de Duas Populações Vamos cosiderar o seguite exemplo: Uma empresa que presta serviços de assessoria ecoômica a empresas está iteressada em comparar a taxa de reclamações sobre os seus serviços em dois dos seus escritórios em duas cidades diferetes. Supoha que a empresa teha selecioado aleatoriamete 00 serviços realizados pelo seu escritório a cidade A e 0 serviços realizados pelo seu escritório a cidade B. Dos 00 serviços da cidade A, em deles houve algum tipo de reclamação feita pelas empresas que receberam os serviços e dos 0 serviços da cidade B, 8 receberam algum tipo de reclamação. Portato, as proporções amostrais de reclamações sobre os serviços dos escritórios das cidades A e B são, respectivamete, p ˆ 0, e pˆ ,5.

3 Estatística II Atoio Roque Aula A empresa deseja saber se estes resultados são suficietes para se cocluir que os dois escritórios apresetam difereças sigificativas as suas taxas de reclamações. A hipótese ula a ser testada este caso é: H 0 : p p 0 H : p p 0. Portato, o teste a ser feito é bilateral. A primeira coisa a fazer é verificar se a distribuição amostral de pˆ ˆ p pode ser aproximada por uma distribuição ormal. Para testar isso, deve-se tomar os produtos p, ( pˆ ), pˆ, ( ˆ ) e verificar se são todos maiores ou ˆ p iguais a 5. No osso caso, eles são. Portato, a distribuição amostral de pˆ ˆ p é aproximadamete ormal com média, µ p p 0 (pela hipótese ula) pˆ pˆ e desvio padrão, pˆ pˆ p( p( p ) p( p(. Como ão cohecemos o valor de p, o que se faz este caso é estimá-lo como uma média poderada de p ˆ ˆ e p : 3

4 Estatística II Atoio Roque Aula p ˆ p ˆ p 00 0, 0 0, ,36. Este é o valor de p que será usado para o cálculo de pˆ pˆ, dado: pˆ pˆ p( p( 0,75 0, ,0464. O valor de z para este caso é: z ( pˆ pˆ ) ˆ ˆ 0 (0, 0,5) 0 0,0464 0,03 0,0464 p p 0,65. Cosultado a tabela para a distribuição ormal padrão, isto os dá o seguite valor P: P x 0,578 0,5 > 0,05. Portato, ão se pode rejeitar a hipótese ula com base os dados amostrais obtidos. As taxas de reclamações sobre os serviços prestados pelos escritórios da empresa as cidades A e B podem ser iguais. Testes de Hipóteses sobre a Variâcia de uma População Quado os dados dispoíveis para estudo cosistem de uma amostra aleatória retirada de uma população ormalmete distribuída, a estatística a ser usada para se testar uma hipótese sobre a variâcia populacioal é a distribuição do qui-quadrado com graus de liberdade, 4

5 Estatística II Atoio Roque Aula χ s ( ). Como a distribuição do qui-quadrado é assimétrica, o cálculo do valor P para um teste bilateral é complicado este caso. Prefere-se, etão, calcular o itervalo que cotém 95% de todos os valores de χ para graus de liberdade e verificar se o valor de χ ( ) ( s ) calculado com os dados do problema (icluido a hipótese ula H 0 ) está detro desse itervalo. Se χ estiver detro do itervalo, a probabilidade de obtê-lo é maior do que 5% e aceita-se H 0. Exemplo: Tomou-se uma amostra de 5 estudates de odotologia, os quais foram submetidos a um teste de habilidade maual. A variâcia das otas do teste foi igual a s,. Pode-se cocluir, com base esse estudo, que a variâcia da distribuição populacioal das otas dos estudates de odotologia é diferete de,5? A hipótese ula e a hipótese alterativa são: H 0 :,5 H :,5. Portato, o teste a ser feito é bilateral. O valor de χ para os dados e a hipótese ula é: χ s ( ) 4,,5 6,7. 5

6 Estatística II Atoio Roque Aula Para 4 graus de liberdade, o itervalo de valores de χ detro do qual estão 95% de todas os valores da distribuição está limitado etre χ 5,69 e 6, 9 0,05 χ (veja abaixo). 0,975 Como 6,7 está detro do itervalo, ão se pode rejeitar a hipótese ula H 0. A variâcia das otas da população de estudates de odotologia pode ser igual a,5. Testes de Hipóteses sobre a Razão etre Duas Variâcias Vamos ilustrar este tipo de teste de hipótese aproveitado o exemplo aterior. Supoha que uma amostra aleatória de estudates de egeharia foi submetida ao mesmo teste de destreza maual ao qual os estudates de odotologia do exemplo aterior foram submetidos. A variâcia das otas o teste dos estudates de egeharia foi igual a,6. Pode-se cocluir que a variâcia das otas da população de estudates de odotologia é diferete da variâcia das otas da população de estudates de egeharia? 6

7 Estatística II Atoio Roque Aula Os dados do problema são (vamos desigar a população dos estudates de egeharia de população e a população dos estudates de odotologia de população ): ; s,6 5; s,. Vamos assumir que as distribuições das otas das duas populações são ormais. Desta forma, as hipóteses ula e alterativa são: H 0 : ; H :. Portato, o teste a ser feito é bilateral. Na aula sobre itervalos de cofiaça para a razão etre duas variâcias, vimos que a variável ( s ) ( s ) é distribuída como a fução F com graus de liberdade do umerador e graus de liberdade do deomiador. No caso do exemplo, como a hipótese ula implica que, esta variável vale s s,6,,3. 7

8 Estatística II Atoio Roque Aula Portato, o teste de hipótese a ser feito este caso cosiste em obter o itervalo de cofiaça de 95% para F e verificar se o valor,3 está detro dele. Este itervalo está etre os valores e F 0,05,, F 0,975,, 0,975, F., Olhado a tabela da fução F para F 0,975 temos que: F 0,975,,4 F0,975,0,4,84 e F 0,975,4, F0,975,5,,53 F0,05,, 4,53 0,39. Portato, 95% dos valores de F estão etre 0,39 e,84 (veja abaixo). Como s s, 3 está detro desse itervalo, ão se pode rejeitar a hipótese ula. As duas variâcias populacioais podem ser iguais. 8

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Exercícios de Intervalos de Confiança para media, variância e proporção

Exercícios de Intervalos de Confiança para media, variância e proporção Exercícios de Itervalos de Cofiaça para media, variâcia e proporção 1. Se uma amostra aleatória =5, tem uma média amostral de 51,3 e uma desvio padrão populacioal de σ=. Costrua o itervalo com 95% de cofiaça

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

Hipótese Estatística. Tipos de Hipóteses

Hipótese Estatística. Tipos de Hipóteses Hipótese Estatística Hipótese, em estatística, é uma suposição formulada a respeito dos parâmetros de uma distribuição de probabilidade de uma ou mais populações. Podemos formular a hipótese que a produtividade

Leia mais

Testes de Comparação Múltipla

Testes de Comparação Múltipla Testes de Comparação Múltipla Quado a aplicação da aálise de variâcia coduz à reeição da hipótese ula, temos evidêcia de que existem difereças etre as médias populacioais. Mas, etre que médias se registam

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Pontual e Estimação intervalar.

Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Pontual e Estimação intervalar. Escola uperior de Tecologia de Viseu ETIMAÇÃO Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Potual e Estimação itervalar. Exemplo: Num dos diversos

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www. ufrgs.br/~viali/ viali@mat.ufrgs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

Intervalos Estatísticos para uma única Amostra - parte II

Intervalos Estatísticos para uma única Amostra - parte II Itervalos Estatísticos para uma úica Amostra - parte II Itervalo de cofiaça para proporção 2012/02 1 Itrodução 2 3 Objetivos Ao fial deste capítulo você deve ser capaz de: Costruir itervalos de cofiaça

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

Inferência Estatística

Inferência Estatística Iferêcia Estatística opulação Amostra Itroduç Itrodução à Iferêcia Estatística Como tirar coclusões tomar decisões a partir de iformação parcial / icompleta (amostra) projectado /geeralizado resultados

Leia mais

6. Testes de Hipóteses Conceitos Gerais

6. Testes de Hipóteses Conceitos Gerais 6. Testes de Hipóteses Coceitos Gerais Este capitulo itrodutório, pretede apresetar todas as defiições e todo o vocabulário utilizado em testes de hipóteses. Em um primeiro mometo, talvez você fique um

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Reato A. Firmio praf6@gmail.com Aulas 19-0 1 Iferêcia Idutiva - Defiições Coceitos importates Parâmetro: fução diretamete associada à população É um valor fixo, mas

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 A Secretaria de Saúde de um muicípio vem realizado um programa educativo etre as gestates mostrado a importâcia da amametação. Para averiguar a eficácia do programa pretede-se realizar uma

Leia mais

Aula 14 Parte 1 RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

Aula 14 Parte 1 RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 14 Parte 1 Amostragem e Estimadores... Itervalo de cofiaça para a média... 9 Itervalo de cofiaça para proporções.... 39 Relação das questões cometadas... 51 Gabaritos... 57 Prof. Guilherme Neves www.potodoscocursos.com.br

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

Lista de exercícios propostos n. o 05: Testes de hipóteses

Lista de exercícios propostos n. o 05: Testes de hipóteses Lista de exercícios propostos. o 5: Testes de hipóteses Exercício 1. Uma pizzaria recebe diariamete ecomedas por telefoe, que se têm comportado segudo uma lei ormal. A empresa está dimesioada para uma

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Aula 10. ANOVA Análise de Variância em SPSS

Aula 10. ANOVA Análise de Variância em SPSS Aula 10. ANOVA Aálise de Variâcia em SPSS Métodos stadísticos 008 Uiversidade de Averio Profª ladys Castillo Jordá Aálise de Variâcia Objectivo: comparar medidas de localização para mais do que dois grupos

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

INTERVALO DE CONFIANÇA

INTERVALO DE CONFIANÇA INTERVALO DE CONFIANÇA Supoha que etejamo itereado um parâmetro populacioal verdadeiro (ma decohecido) θ. Podemo etimar o parâmetro θ uado iformação de oa amotra. Chamamo o úico úmero que repreeta o valor

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

10 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses Introdução Lógica dos Testes de Hipóteses

10 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses Introdução Lógica dos Testes de Hipóteses INE 700 - Iferêcia Estatística Testes de Hipóteses 0 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses 0. - Itrodução Viu-se ateriormete que uma determiada população pode ser descrita através de um modelo probabilístico,

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva Testes de Hipóteses Júlio Osório Os dois campos da Aálise Estatística Métodos Estatísticos Estatística Descritiva Iferêcia Estatística Estimativa Testes de Hipóteses 1 Exemplo Ilustrativo Mediram-se os

Leia mais

Exercícios Estatística Celma Ribeiro e Alberto Ramos

Exercícios Estatística Celma Ribeiro e Alberto Ramos PRO73 Estatística Exercícios Estatística Celma Ribeiro e Alberto Ramos ) Abaixo é apresetada uma pequea parte dos dados que uma empresa matém a respeito de seus fucioários: Nome Idade Sexo Raça Salário

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Caderno de Exercício 3

Caderno de Exercício 3 1 Cadero de Exercício 3 Esaios de Hipóteses e Regressão Liear 1. Exercícios Aulas 1. Exercício 10.11 do livro Statistics for Ecoomics ad Busiess 2. Exercício 10.27 do livro Statistics for Ecoomics ad Busiess

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Aula 11 - Questões Comentadas e Resolvidas

Aula 11 - Questões Comentadas e Resolvidas Curso Olie - Raciocíio Lógico-Quatitativo para Traumatizados em Exercícios, icluido Matemática, Matemática Fiaceira e Estatística Profs. Alexadre Lima e Moraes Juior Aula - Questões Cometadas e Resolvidas

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I J.I.Ribeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem. Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção. É uma

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais