Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Tamanho: px
Começar a partir da página:

Download "Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros"

Transcrição

1 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas a x i i, i =,...,, termos do poliômio. Cada termo é deomiado moômio. Exemplos: 4 3 P(x)=5x + 3x x + ; P( x) = 8x + π ; 5 P( x) = x + 3x + Cotra-exemplos (expressões que ão represetam poliômios): f ( x) = x 3x + 5; f ( x) = x 4 + x Valor umérico de um poliômio Seja P(x) um poliômio. Cosidere x=α (α IR) um valor fixo atribuído a x. Calcule P(α)=a α + a α +... aα + aα + a0. P(α) é o valor umérico do poliômio para x=α. OBS:. O valor umérico do poliômio P para x=0 é: P(0)=a 0 + a a 0 + a0 + a0 = a0. Isto é, P(0) é igual ao termo idepedete de x.. O valor umérico do poliômio P para x= é: P()= a a +... a + a + a0 = a + a +... a + a a a k k= 0 Assim, P()=, isto é, P() é igual a soma dos coeficietes do poliômio. 3. Quado P(α)=0, dizemos que α é raiz do poliômio P(x). 3.. Poliômio ulo É aquele em que todos os seus coeficietes são iguais a zero (P(x)=0) Grau de um poliômio O grau de um poliômio P(x), ão ulo, é o maior expoete da variável x, com coeficiete ão ulo, que aparece a expressão que defie P(x).

2 Exemplo: 4 6 P(x)=5x x gr(p)=6 P(x)= 3x 5x + gr(p)= P(x)=5 gr(p)=0 OBS: Não se defie o grau de poliômio ulo Igualdade de poliômios Dois poliômios P(x) e Q(x) são iguais, P(x)=Q(x), quado todos os seus coeficietes são ordeadamete iguais. Sejam P(x)= a x + a x +... a x + ax + a0 e Q(x)= b x + b x +... b x + b x + b0 a a P(x)=Q(x) a 3.5. Operações 0 = b = b... = b 0 Coeficietes de mesmo grau são iguais Sejam P(x) e Q(x) tais que P(x)= a x + a x +... a x + ax + a0 e Q(x)= b x + b x +... b x + b x + b0, IN Adição e subtração de poliômios A adição e subtração de poliômios é feita a partir da adição e subtração dos coeficietes correspodetes a um mesmo grau. P(x)+Q(x)=( a + b x + ( a + b ) x +...( a + b ) x + ( a + b ) x + ( a ) ) 0 + b0 P(x)-Q(x)=( a b x + ( a b ) x +...( a b ) x + ( a b ) x + ( a ) ) 0 b0 Exemplo: P(x)= 3x 3 x + e Q(x)=3x 4 7x 3 + x P(x)+Q(x)= (0+3)x + (3 7) x + ( + 0) x + (0 + ) x + ( + ) = 3x 4x x + x P(x)-Q(x) = (0-3)x + (3 ( 7)) x + ( 0) x + (0 ) x + ( ) = 3x + 0x x x +

3 3.5.. Multiplicação de poliômios A multiplicação é feita pela propriedade distributiva da multiplicação em relação à adição e multiplicação. OBS: Se o grau do poliômio P é e o grau do poliômio Q é, etão o grau do poliômio P.Q será +m. Exemplo: P(x)=x- e Q(x)=5x + x P(x).Q(x)=( x-)( 5x + x ) 3 P(x).Q(x)= 0x + 4x 4x 5x x + 3 P(x).Q(x)= 0x x 6x Divisão de poliômios Dividir um poliômio P(x) por um poliômio D(x), ão ulo, é achar um par de poliômios Q(x) e R(x), de tal maeira que: Ou seja, dividir o poliômio P(x) pelo poliômio D(x) é obter os poliômios Q(x) e R(x) tais que: Quado o resto da divisão de P(x) por D(x) é ulo, dizemos que o poliômio P(x) é divisível por D(x). Método de divisão de poliômios. Método da chave 3 Vamos dividir x + 3x por x + x + 5 3

4 . Dispositivo prático de Briott-Ruffii Este dispositivo é utilizado para dividir um poliômio P(x) por um poliômio do º grau da forma x-a. Neste método, trabalha-se apeas com os coeficietes do poliômio e com o valor de a. Dispositivo: Seja P(x)=a 3 x 3 +a x +a x+a 0 por D(x)=x-a Exemplo: OBS: Se o resto da divisão é zero, etão o poliômio é divisível pelo biômio divisor. 4

5 Teorema do resto O resto da divisão de um poliômio P(x) por um biômio do ºgrau do tipo x-a é igual ao valor umérico do poliômio P(x) para x=a, ou seja, P(a)=R. Como o divisor é do o grau, o resto é ulo ou tem grau zero. De qualquer modo, R é uma costate, isto é, idepedete de x. Para calcular o valor de R basta substituir a idetidade x por a. Note que a é raiz do biômio. Teorema de D Alembert Um poliômio P(x) é divisível pelo biômio x-a se, e somete se, P(a)=0. Note que a além de ser raiz do biômio x-a é também raiz do poliômio P(x). OBS: Cohecida uma raiz r do poliômio P(x), podemos obter as demais raízes de P(x) da seguite maeira: Dividimos P(x) por x-r, usado o algoritmo de Briott-Ruffii. As raízes do quociete Q(x) dessa divisão são as demais raízes de P(x). Divisão por (x-a)(x-b) Se um poliômio P(x) é divisível separadamete pelos biômios (x-a) e (x-b), com a b, etão P(x) é divisível pelo produto (x-a)(x-b). (A recíproca é verdadeira) Geeralizado, se P(x) é divisível por fatores distitos (x-a ), (x-a ),..., (x-a ) etão P(x) é divisível pelo produto (x-a ).(x-a )... (x-a ). Exercício proposto: 5

6 3.6 Equações poliomiais Defiição: Se P(x) é um poliômio de grau >0, chama-se equação algébrica ou poliomial à igualdade P(x)=0. Assim, equação algébrica de grau é uma equação do tipo: P(x)=a x + a x +... a x + ax + a0 =0, a 0 0. Raiz de uma equação algébrica Dada uma equação algébrica P(x)=0, o úmero r é uma raiz dessa equação se, e somete se, P(r)=0. Cojuto-solução Cojuto-solução de uma equação algébrica é o cojuto formado por todas as raízes (e somete por elas) da equação. Resolver uma equação é obter seu cojuto solução. Equação do o grau Uma equação é classificada como equação do o grau quado puder ser escrita sob a forma ax+b=0, ode a e b são reais com a 0. Uma equação do o grau tem apeas uma raiz que pode ser obtida isolado-se x. Equação do o grau Uma equação é classificada como equação do o grau quado puder ser escrita sob a forma ax + bx + c = 0, ode a,b e c são reais, com a 0. Uma equação do o grau tem o máximo duas raízes, que podem ser obtidas pela fórmula: b ± b 4ac b ± x= = a a OBS: Se >0 etão a equação admite duas raízes reais e distitas Se =0 etão a equação admite duas raízes reais e iguais. Se <0 etão a equação admite duas raízes complexas. Equação do 3 o e 4 o grau Uma equação é classificada como equação do 3 o e 4 o grau, quado puder ser escrita sob a forma ax + bx + cx + d = 0 ou ax + bx + cx + dx + e = 0 6

7 As raízes das equações do terceiro e quarto graus podem ser obtidas através de fórmulas gerais que são extremamete trabalhosas. OBS: As equações de grau superior a 4 ão apresetam fórmulas resolutivas. Desta forma, apresetam-se teoremas válidos para quaisquer equações algébricas que possibilitam a resolução ou, ao meos, iformações úteis a obteção das raízes de uma equação. Teorema Fudametal da Álgebra O teorema da Álgebra sobre equações algébricas de coeficietes reais diz: Toda equação algébrica de grau admite o cojuto dos úmeros complexos raízes complexas. O teorema garate a existêcia de raízes complexas, ão diz como obtê-las. O teorema tem validade o cojuto dos úmeros complexos, ou seja, pode ou ão ter raiz real. Teorema da decomposição Seja P(x)=a x + a x +... a x + ax + a0 um poliômio de grau >0. Demostra-se que P(x) pode ser decomposto, ou seja, fatorado, a forma seguite: OBS: Esta forma fatorada mostra que a equação tem o máximo raízes distitas, e ão exatamete, pois ão sabemos se os úmeros Multiplicidade de uma raiz são todos distitos dois a dois. Dizemos que r é uma raiz de multiplicidade m (m ), da equação P(x)=0 se, e somete se, a equação puder ser escrita sob a forma, (x-r) m. Q(x)=0 Isto é, r é raiz de multiplicidade m de P(x)=0 quado o poliômio P é divisível por (x-r) m, ou seja, a decomposição de P apreseta exatamete m fatores iguais a (x-r). 5 Exemplo: A equação x.( + 7) multiplicidade 3). 3 x admite as raízes x=0 (com multiplicidade 5) e x=-8 (com 7

8 Pesquisa de raízes Quado se cohece uma raiz r de uma equação algébrica P(x)=0, divide-se P(x) por x-r, recaido-se uma de grau meor. Exemplo: Se x=-3 é uma raiz da equação x 3 + 3x + x + 6 = 0, determie as outras raízes. Teorema das raízes iteiras OBS: Este teorema permite descobrir se a equação tem ou ão raízes iteiras; basta para tato, verificar um por um os divisores do termo idepedete de x, a 0. Teorema das raízes racioais 8

9 Teorema das raízes complexas Exercícios ) 3) 4) Dado os poliômios P(x)=0x 4 3x + 3x + 0 e Q(x)=x 5x, determie o que se pede: a) (P+Q)(x) c)(-5).p(x) b) (P-Q)(x) d) (P.Q)(x) 5) 9

10 6) 7) 8) 9) 0

11 0) ) Exercícios propostos: ) )

12 7) (x e x -) Respostas dos exercícios propostos ) a,c,d, f ) a) 37, a primeira hora mota 84 e a seguda 88; b) Crescete, porque aumetado-se o úmero de horas de trabalho, aumeta-se o úmero de peças motada; c)[0,] 3) -4 4)m= e = 5) 6) a=0,b= e c=/ 7) a=3 e b= 8)a=b=c=3 9)a=- e b=6 0)b,c

13 3.7 Produtos otáveis Os produtos otáveis são multiplicações etre poliômios, muito cohecidas em virtude de seu uso exteso. Igualdade Exemplo (a+b) = a +ab+b (x+) = x + x + 4 (a+b) = a -ab+b (4x-) = 6x 6x + 4 a b = (a+b)(a-b) x 5 = ( x 5)( x + 5) (x-a)(x-b)=x x ( a + b) x + ab (x-5)(x-)=x 7x + 0 a = ( x a)( x + a ) x 4 = ( x )( x + ) x a = ( x a)( x + ax + a ) x 8 = ( x )( x + x + 4) x a = ( x a)( x + ax + a x + a ) x 6 = ( x )( x + x + 4x + 8) x a = ( x a)( x + ax + a x + a x + a ) x 3 = ( x )( x + x + 4x + 8x + 6) 3 x a = ( x a)( x + ax + a x a x + a ) 3.8. Fatoração Fatorar um poliômio sigifica reescrevê-lo como produto de outros poliômios. Exemplos: 3 a) x x = b) x 4 5x = 3

14 4 c) x = 3 d) x +8 = 6 e) x 7 = ) Exercícios: ) 3) Simplifique 4) Fatore o poliômio do o grau 4

15 Exercícios propostos ) Verifique as idetidades: ) Simplifique a) e) b) f) c) g) d) h) 3) Fatore o poliômio do o grau a) b) c) d) 4) Fatore os poliômios dados 5

16 5) Determie, caso existam, as raízes iteiras da equação: 3.9. Completar quadrados O processo de completar quadrados tem base as fórmulas de produtos otáveis (a+b) e (a-b), fazedo-se uma comparação direta etre os termos. É uma operação muito utilizada em poliômios de grau. Exemplos: Completar quadrados: a) x +6x Temos que comparar com (a+b) (a+b) = a + ab + b = x + 6x Comparado, diretamete, temos a=x e que ab=6x b=6 b=3. Logo b =9. (a+b) = a + ab + b (x+3) = x + 6x + 9 Assim: x + 6x = x + 6x + (9-9) = (x + 6x + 9) 9 = ( x + 3) - 9 b) x x + = (x x ) + Iicialmete, vamos descosiderar a costate. Podemos comparar essa expressão com (a-b), pois o coeficiete do termo de grau é egativo. Assim: (a-b) = a - ab + b x - x Comparado, diretamete, temos que a=x e que ab=x. Daí, b= b=/. Logo, b =/4 (a-b) = a ab + b x = x x + 4 c) Assim, (x x) + = (x x) = x x + + = x

17 Exercício: Completar quadrados a) x -4x b) x +8x+3 c) x 4 -x + Exercício proposto Completar quadrados: a) x +x+7 b) x-9x c) x 4-3x + 7

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Miistério da Educação Uiversidade Tecológica Federal do Paraá Campus Curitiba Gerêcia de Esio e Pesquisa Departameto Acadêmico de Matemática Dispositivo Prático de Briot-Ruffii: Poliômios O Dispositivo

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo.

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo. Matemática Prof.: Joaquim Rodrigues ESTUDO DOS POLINÔMIOS Questão 0 Dê o grau de P em cada caso: a) P() = 7 + b) P () = + + 7 c) P () = + d) P () = + e) P () = 0 f) P () = 0 Questão 0 Dado o poliômio P()

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Matemática. Binômio de Newton. Professor Dudan.

Matemática. Binômio de Newton. Professor Dudan. Matemática Biômio de Newto Professor Duda www.acasadococurseiro.com.br Matemática BINÔMIO DE NEWTON Defiição O biômio de Newto é uma expressão que permite calcular o desevolvimeto de (a + b), sedo a +

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Apostila adaptada e editada da intenert pelo Professor Luiz

Apostila adaptada e editada da intenert pelo Professor Luiz Definição POLINÔMIOS Uma função polinomial ou simplesmente polinômio, é toda função definida pela relação P(=a n x n + a n-1.x n-1 + a n-.x n- +... + a x + a 1 x + a 0. Onde: a n, a n-1, a n-,..., a, a

Leia mais

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações.

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações. 4 ÁLGEBRA ELEMENTAR 4.1 Monômios e polinômios: valor numérico e operações. 4.1.1 - Introdução: As expressões algébricas que equacionam os problemas conduzem logicamente à sua solução são denominados polinômios

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada:

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada: MATEMÁTICA 0000 Questão 0 Determie o cojuto-solução da equação se x + cos x = se x cos x Fatorado a equação dada: se x + cos x= se x cos x ( sex + cos x)( se x sexcos x+ cos x) = ( sexcos x) ( x x)( x

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 ARITMÉTICA E EXPRESSÕES ALGÉBRICAS

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 ARITMÉTICA E EXPRESSÕES ALGÉBRICAS E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 ARITMÉTICA E EXPRESSÕES ALGÉBRICAS 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 SUMÁRIO Apresetação ------------------------------------------------- Capítulo 1

Leia mais

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012 DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Erivaldo. Polinômios

Erivaldo. Polinômios Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

ASSOCIANDO UM POLINÔMIO A EXPRESSÕES ALGÉBRICAS E TRIGONOMÉTRICAS Marcílio Miranda, IFRN (Caicó RN)

ASSOCIANDO UM POLINÔMIO A EXPRESSÕES ALGÉBRICAS E TRIGONOMÉTRICAS Marcílio Miranda, IFRN (Caicó RN) ASSOCIANDO UM POLINÔMIO A EXPRESSÕES ALGÉBRICAS E TRIGONOMÉTRICAS Marcílio Mirada, IFRN (Caicó RN) Nível Itermediário O objetivo deste artigo é mostrar uma técica que pode ser bastate útil a hora de resolver

Leia mais

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20 CONJUNTOS NUMÉRICOS - Números Naturais (IN ) Foram os primeiros úmeros a surgir devido à ecessidade dos homes em cotar objetos. IN = { 0,,,,,, 6,... } - Números Iteiros ( Z ) Se jutarmos os úmeros aturais

Leia mais

Séries e Equações Diferenciais Lista 02 Séries Numéricas

Séries e Equações Diferenciais Lista 02 Séries Numéricas Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.

Leia mais

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Álgebra. Polinômios.

Álgebra. Polinômios. Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio.

05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio. BINÔMIO DE NEWTON 0 - (UNIFOR CE) No desevolvimeto do biômio 4 ( ) 4 8 4, o termo idepedete de é 0 - (PUC RJ) O coeficiete de o desevolvimeto 7 0 5 5 0 0 - (PUC RJ) No desevolvimeto do biômio 4 8 ( ),

Leia mais

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b)

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b) Matemática 5 aula 11 REVISÃO 1. Seja L a capacidade, em litros, do taque. Por regra de três simples, temos: I. Toreira 1: II. Toreira : 1 L 18 L x 1 x + xl ( x+ ) 1 = = L 1 18 xl ( x+ ) Sabedo que R 1

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

O Teorema Fundamental da Aritm etica

O Teorema Fundamental da Aritm etica 8 O Teorema Fudametal da Aritm etica Vimos, o cap ³tulo 5, o teorema 5.1, que estabelece que os primos positivos s~ao os blocos usados para costruir, atrav es de produtos, todos os iteiros positivos maiores

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

Polinômios. Acadêmica: Vanessa da Silva Pires

Polinômios. Acadêmica: Vanessa da Silva Pires Polinômios Acadêmica: Vanessa da Silva Pires Situação 01: Se você somar 1 ao produto de quatro inteiros consecutivos, o resultado sempre será um quadrado perfeito. Situação 02: Na resolução de problemas,

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

POLINÔMIOS AVALIAÇÃO DO PLANO DE TRABALHO 1

POLINÔMIOS AVALIAÇÃO DO PLANO DE TRABALHO 1 FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA COLÉGIO: CIEP BRIZOLÃO 998 SÃO JOSÉ DE SUMIDOURO PROFESSOR: RAFAEL SANCHES BORGES MATRÍCULA: 09154410 SÉRIE: 3º ANO GRUPO : 2 TUTOR : PAULO ROBERTO CASTOR

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12. AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos

Leia mais

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que: Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

Polinômios e Equações Polinomiais

Polinômios e Equações Polinomiais Formação Continuada em MATEMÁTICA Fundação Cecierj/Consórcio CEDERJ Matemática 3 ano - 4 Bimestre/ 2012 Avaliação da Implementação do Plano de Trabalho I Polinômios e Equações Polinomiais Tarefa 3: Avaliação

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

QUESTÕES DE VESTIBULARES

QUESTÕES DE VESTIBULARES QUESTÕES DE VESTIBULARES 01- (ACAFE) Dados os polinômios: p(x) = 5-2x + 3x 2, q(x) = 7 + x + x 2 - x 3 e r(x) = 1-3x + x 4. O valor de p(x) + r (x) - q(x) para x = 2 é: A) 5 B) 13 C) 11 D) 24 E) 19 02-

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011 Campus Pato Braco Prova Parcial Matemática Discreta para Computação 20 Aluo(a): Data: 08/04/20. (,5p) Explicar o Paradoxo de Cator. Use como base o seguite: Teorema de Cator: Para qualquer cojuto A, a

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA

POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL PADRE MANUEL DA NÓBREGA

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018 Lista de Exercícios de Cálculo Módulo - Primeira Lista - 0/08. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 6 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 6 000 } { 4

Leia mais