Capítulo 1: Fração e Potenciação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 1: Fração e Potenciação"

Transcrição

1 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes. A fração é representada por m em que n indica em quantas partes o n todo foi dividido e m indica quantas são as partes de interesse. Exemplo: 1 = 0,25 Neste caso, temos 1 parte de interesse nas partes disponíveis, o que equivale a 0,25. Tipos de fração: Fração própria: É a fração cujo numerador é menor que o denominador. 2, 7, 9 11 Fração imprópria: É a fração em que o numerador é maior que o denominador. 2, 9, 7 Fração equivalente: São frações que representam a mesma quantidade. 1 2, 2, 8, 8 16 Operações com frações: Soma e subtração: Frações que têm os mesmos denominadores, basta somar ou subtrair os numeradores. 1) 1 + = = 1 2) = 7 8

2 2 Frações em que os denominadores são diferentes reduzem-se as frações a um mesmo denominador, utilizando mínimo múltiplo comum (M.M.C.). Produto: 1) = ( 5)+(2 ) 20 2) 8 + = ( )+( 8) 2 = 2 20 = = 0 2 Na multiplicação de frações, o numerador é o produto dos numeradores e o denominador é o produto dos denominadores. 1) 5 = ) 7 2 = 1 9 Divisão: Já na divisão de duas frações, obtém-se outra fração multiplicando a primeira fração pelo inverso da segunda. 1) 1.2. Potenciação 2) = 2 5 = = 5 8 = 10 Potenciação significa multiplicar fatores iguais (números envolvidos em uma multiplicação). Ou seja, elevar um número ou expressão a um expoente. Como exemplo: Expoente a n = a.a.a.a... a. Potência Base Em que a será multiplicado n vezes. O expoente (n) é a quantidade de vezes que a base (a) se repete e a potência é o resultado do produto.

3 1) =.. = 6 2) (5) 2 = -25 ) 5 2 = 25 ) 1 = = 1 5) = 1 Propriedades da potenciação: 1. a m + a n = a m+n 2. am a n = am n = = = = 2 = = 2 = = 210 = 108.(a m ) n = a m n 1. ( x ) 7 = 7 x 2. ( ) 2 = 2 = 6. (2 2 ) 2 = 2 = 16

4 m. a n = a n m 2 1. x = x = 6 = 2 = 9 = 2 6 = = 2 5. ( m n )a = ma n a 1. ( 2 )2 = 22 2 = 9 2. ( 1 2 )10 = = ( 9 ) = = (m n) a = m a n a 7. a 1 = 1 a com a 0 1. (2 5) 2 = = 25 = ( 7) = 7 = 27 = (25 16) 1 2 = = 5 = = = 1 2. = 1 = = = 1 108

5 5 Capítulo 2: Radiciação e Fatoração 2.1. Radiciação Radiciação é o processo inverso da potenciação, uma vez que elevar um número a um expoente, e o resultado dessa operação for elevado ao inverso do mesmo expoente, voltará ao número inicial, como mostrado no exemplo abaixo. Exemplo: 2 = 8 8 n Na raiz a = x, tem-se: = 2 O número n chamado de índice; O número a chamado radicando; O número x chamado de raiz; O símbolo chamado de radical Propriedades da radiciação: n 1. a m = a m n (Obs.: já foi vista em Potenciação) n 2. a n = a n n = a 1 = 1 1) = = 2) y = y = y x ) x = x x =

6 6 n. a b n = a n b 1) x y = x y 2 2) 9 2 = 2 = 2 9 ) = 81 = 16 2 n. ( a) m = (an) 1 m = a 1 n.m 1 = a m n n = a m 2 1) ( 2) 2 = 2 2) ( 7) = 7 2 ) ( ) 6 = 6 = 2 m n 5. a m. n = a 2 1) 6 6 = 6 = 2 2) x 12 = x

7 7 2 2 ) 81 = 81 = Operação com radicais Adição e subtração: Quando há radicais iguais, pode-se reduzir os radicais a um único radical somando, ou subtraindo, os fatores externos dos mesmos, pode-se dizer que estamos colocando em evidencia os radicais que aparecem em todos os termos da soma. 1) = ( + ) 2 = 7 2 2) x y + z y = (x + z) y ) 1 2 = (1 2) = 11 ) = (1 7) 5 = 7 5 Multiplicação: A multiplicação de radicais envolve casos básicos, abaixo será mostrado cada um deles: 1º caso: Radicais tem raízes exatas. Quando isso ocorrer, basta extrair as raízes e multiplicar os resultados. 1) 25 6 = 5 = 20 2) 81 8 = 2 = 6

8 8 2º caso: Raiz tem o mesmo índice. Deve-se conservar o índice e multiplicar os radicais. 1) 2 7 = 1 2) 20 = 20 = 20 º caso: Radicais tem índices diferentes. Nesse caso, o melhor a se fazer é transformar os radicais em potencias fracionarias. Feito isso transformar os expoentes. 2 1) a b = a 1 2 b 1 = a 6 b = a 6 b 2 6 = a b 2 2) 10 = = = Divisão: Assim como a multiplicação, a divisão de radicais envolve casos básicos. 1º caso: Radicais tem raízes exatas. Do mesmo jeito da multiplicação, basta extrair a raiz e dividimos os resultados. 1) 81 = ) 27 = 16 2

9 9 2º caso: Radicais tem o mesmo índice. Deve-se conservar os indicies e dividir os radicais. 1) 12 = 12 = 2) x y x = x y x = yx = x y º caso: Radicais com índices diferentes O modo mais fácil de resolver, assim como em multiplicação é transformar em potencias fracionarias, efetuar as operações com fração e volta para forma radical. 1) 2 2 = = = = 2 2) x x 5 = x x 1 5 = x 1 5 = x = x Racionalização de denominadores Racionalizar uma fração cujo denominador é um número irracional, significa achar uma fração equivalente à ela com denominador racional. Para realizar está operação, basta multiplicar os dois termos da fração por um número conveniente. Há três casos para realização dessa operação. 1º caso: Denominador com índice quadrático 1) = = = ( ) 2 2) 5 = 5 x = 5 x = 5 x x x x ( x) 2 x

10 10 2º caso: Denominador com índice maior que dois. 1) y = y x x x2 x 2 = y x2 = x 1 x 2 y x2 = x y x2 x 2) = = 2 = 2 = = 2 2 º caso: Tem-se no denominador soma ou subtração de radicais. 1) = + 5 = ( + 5) = ( + 5) = ( + 5) ( ) 2 ( 5) ) Fatoração 8 = 8 6 = ( 6 ) ( 6) 2 ( ) 2 = 8( 6 ) = 8( 6 ) 6 Fatorar é transformar equações algébricas em produtos de duas ou mais expressões, chamadas fatores. Em outras palavras, isto significa escrevê-las na forma de um produto de expressões mais simples. Exemplo: ax + ay = a(x + y) Tipos de fatoração: 1. Fator Comum: Quando o termo apresenta fatores em comum. Exemplo: 1) x + xy + x = x( + y + ) 2) ax + bx = x(a + b) 2. Agrupamento: Consiste em aplicar duas vezes o fator comum em alguns polinômio. Exemplo: 1) ax + bx + ay + by = x(a + b) + y(a + b) Posteriormente, aplicar fator comum novamente, logo:

11 11 x(a + b) + y(a + b) = (x + y) (a + b) 2) x + y 2 + yx + y = x( + y) + y( + y) x( + y) + y( + y) = (x + y) ( + y). Diferença de quadrados: transformam-se as expressões em produtos da soma pela diferença, simplesmente extraindo a raiz quadrada de cada quadrado. Exemplo: 1) x 2 y 2 = (x + y) (x y) 2) 2 a 2 = ( a) ( + a). Trinômio quadrado perfeito: Se diz trinômio quadrado perfeito quando: Dois dos seus termos são quadrados perfeitos e o outro termo é igual ao dobro do produto das raízes dos quadrados perfeitos. Exemplo: que é igual ao segundo termo da equação inicial. 5. Trinômio do 2º grau: Acha-se as raízes do trinômio para poder fatorar. Exemplo: Suponha-se que a e b são raízes do trinômio x 2 + cx + d; logo a forma fatorada se da por (x + a) (x + b) 6. Soma e diferença de Cubos: A soma de dois cubos é igual ao produto do fator a + b pelo fator a 2 ab + b 2. Exemplo: a + b = (a + b) (a 2 ab + b 2 ) A diferença entre dois cubos é igual ao produto do fator a b pelo fator a 2 + ab + b 2. Exemplo: a b = (a b) (a 2 ab + b 2 )

12 12 Capítulo : Produtos notáveis e Frações Algébricas.1. Produtos notáveis.1.1. Quadrado da soma de dois termos: O quadrado da soma de dois termos é igual ao quadrado do primeiro, mais duas vezes o produto do primeiro pelo segundo, mais o quadrado do segundo termo. Exemplo: (a + b) 2 = (a + b) (a + b) (a + b) 2 = a 2 + ab + ab + b 2 (a + b) 2 = a 2 + 2ab + b Quadrado da diferença de dois termos: O quadrado da diferença entre dois termos é igual ao quadrado do primeiro, menos duas vezes o produto do primeiro pelo segundo, mais o quadrado do segundo termo. (a b) 2 = (a b) (a b) (a b) 2 = a 2 ab ab + b 2 (a b) 2 = a 2 2ab + b Produto da soma pela diferença de dois termos: O produto da soma pela diferença de dois termos é igual ao quadrado do primeiro menos o quadrado do segundo termo. Exemplo: (a b) (a + b) = a 2 b Cubo da soma de dois termos: O cubo do primeiro termo mais três vezes o quadrado do primeiro termo vezes o segundo termo mais três vezes o primeiro termo vezes o quadrado do segundo termo mais o cubo do segundo termo. (a + b) = a + a 2 b + ab 2 + b.1.5. Cubo da diferença de dois termos: O cubo do primeiro termo menos três vezes o quadrado do primeiro termo vezes o segundo termo mais três vezes o primeiro termo vezes o quadrado do segundo termo menos o cubo do segundo termo. (a b) = a a 2 b + ab 2 b

13 1.2. Frações Algébricas O cálculo de frações algébricas utiliza o mesmo processo do cálculo das frações numéricas, admitindo-se que no denominador haja, pelo menos, uma incógnita e sempre o denominador seja diferente de zero. Para realizar a adição e subtração, precisamos encontrar o mínimo múltiplo comum entre os denominadores. Mas para realizar a multiplicação e a divisão de frações algébricas, o processo é mais simples. 1) a 1 + b a 2 = a a2 +b a 2 = a +b a 2 2) a + 2a = a x+2a = ax+2a = a(x+2) x x 2 x 2 x 2 x

14 1 Lista de Exercícios - Frações 1. Efetue as seguintes operações com frações: a) b) 2 c) d) e) g) e) h) + 1 i) j) k) 15 l) m) 2 7 n)

15 15 Lista de Exercícios - Exponenciação 1. Resolva os exercícios seguintes com base nas propriedades da exponenciação. a) 6 2 j) 2 2 b) 2 k) c) (7 ) l) ( ) 2 d) 66 m) e) 5 5 n) 1 66 f) o) 1 17 g) 0 17 p) ( ) h) 88 0 q) 5 1/ i) r) Simplifique as expressões abaixo: a) b) c) d) x.x 16.y x 12.y (..5 2 ) 2. 2 a 10.b 5 a 9.b

16 16. Se x = ( 2)2 16 ( +7) 0 2 qual o valor de x 1?. Qual a metade de ? 5. Qual o resultado de ? 6. Qual o resultado do quociente de por 25 25? 7. Simplifique as expressões abaixo: a) b) c) (2 n.) 8.2 n+1 n. 2 n 1 n+1 25 n n +1

17 17 Lista de Exercícios - Fatoração 1. Fatore: a) x 2 + 9x + 15x b) x 2 + 2x 2 x c) 1x + 26x d) 1x a 2 c + 7a c 2 e) 2a + b 2 + a 2 + 2b f) 5a + ca + 5c + ac g) x 2 16 h) x 2 81 i) 9x 2 9 j) 1 6x 2 h) 16x 9x 2 k) x 2 10x + 25 l) 16x 2 + 2x + 9xy 2 m) 1000x 1500x x 125 n) k 6 tk + k 2 t 2 t o) a 2 + b 2 + a + b p) a 2 ab + b 2 + a 6b 2. Se x + y = 8 e x y = 15, qual é o valor de x 2 + 6xy + y 2?. Fatore as expressões algébricas: a) a a a + a 2 c) a x b) a 8 b 8 d) x 2 + 8x 2 y 2 + 9y

18 18. Fatore as expressões algébricas abaixo: a) (x2 x) (x+1) (x 2 2x) (x+2) b) x2 8x+16 x 2 16 c) d) a +2x x+2 e) (a + b) 2 (a b) 2 f) x 6 y 6 x 2 +xy+y 2 g) ( 2 + )

19 19 Lista de Exercícios Radiciação 1. Resolva os seguintes exercícios com base nas propriedades da radiciação: a) 6 j) b) 10 k) c) l) 15 2 d) m) 9b 2 5 e) 0,01 n) 102 b 5 a 10 f) 0,81 06 o) 1 9 g) t 6 h) 8 p) 2x8 y z 12 q) 25x z i) 20 o) Simplifique as expressões abaixo: a) b) c) d) e)

20 20. Considerando a = 9m, b = 100m e c = 8 6m, determine: a) a + b + c = b) a (b + c) = c) a b + c = d) (a + b) c =. Calcule: 6 a) k) a 6 a b) 1 9 l) ( a) a 2 c) d) m) a n) a 5 a 5 a 6 a e) a b + ab 2 + a a 5 a f) 6b a + 1 b 2 a 6a a 2 a g) x x o) x2 8 a 6 h) x x p) x2 y xy i) x 7 x 8 q) (6 125) j) xx 7 r) 1 x 5 25

21 21 Lista de Exercícios Produtos Notáveis 1. Desenvolva o seguintes produtos notáveis: a) (x + 1 )2 b) ( a + b 2 2 )2 c) (a 5 m ) d) (p + ) (p ) e) (5x 2 + 1) 2 f) (a 5 + b ) 2 g) (2 x ) 2 h) (x ) i) (2a a) j) (2a + 12) k) (6a 8). Desenvolva os seguintes produtos notáveis: a) m b) ax 10ax ax c) 2m 18m d) a 2 + b 2. Simplifique as expressões abaixo: a) b) c) (x+y)2 xy (x y) 2 +xy

22 22 d) a 2 b 2 a 2 +2ab+b 2 e) (x y) 2 (x + y) 2 f) (x + y) (x 2 + y 2 ) (x y) h) x2 +5x+6 x 2 +7x+10 i) (x + ) 2 (x) 2 j) [(x) 2 x (x 2) 1] 2

23 2 Lista de Exercícios Frações algébricas 1.Simplifique as expressões abaixo: a) 12a a 2 b) 20x5 y 6 10x 10 y c) 6x 0 12b d) a+b 6xa+6xb e) 9a2 +2ab+b 2 9a 2 +16b 2 f) x2 +2x 15 x 2 2x+ g) m 1 m 6 1 h) a m + 7a m i) 1 a a 1 j) x 5y x+y + 5y2 xy+y 2 k) 5 a 2 + a l) (x + ) 5 x m) x 2 x +y + 1 x 2 +y 2 2 x 2 y 2 n) 2x 15y y2 10x o) 6a2 b 2 mp 2 p) (a 1)(a 2) a 2 m 2a p 9b 2 q) 28x y 5x2 y 2 5a 2 b 0ab 2 r) x x2 x 2 1 ( a a+1 a) a2 +a 2 (a 1)(a 2)

24 2 s) x x2 ax a x x 2 a 2 t) a 2 9 b 2 5b+6 + b b2 2b 2 6b+ 2. Sabendo que x + y = 1 e xy = 1 2, qual o resultado da adição y x + x y?. Simplifique as expressões abaixo: a) 2ab+a2 +b 2 c 2 2bc b 2 c 2 +a 2 b) a2x+2 1 a x+1 1 c) x+ y x 1+xy 1 xy x2 1+y e) a + b + c (a b) (a c) (b c) (b a) (c b) (c a) f) a+b ab+b2 a b a 2 b 2 g) x 2 y 2 y2 x 2 1 x 2+ 2 xy + 1 y 2

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: Prof. Dr. Daniel Cordeiro de Morais Filho BOLSISTA: Tiago Alves

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

=...= 1,0 = 1,00 = 1,000...

=...= 1,0 = 1,00 = 1,000... OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira

Leia mais

Considere as situações:

Considere as situações: Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja: MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada

Leia mais

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores.

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores. 8º ANO LISTA 1 de fatoração AV 1 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens.

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens. Atividade de fixação(2º semestre) 1-O retângulo abaixo tem a medida de um dos lados e a área representada por polinômio. Determine o polinômio que representa a medida do outro lado. A=4x +12x +4x² x 4x

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

FRAÇÃO Definição e Operações

FRAÇÃO Definição e Operações FRAÇÃO Definição e Operações DEFINIÇÃO: Fração é uma forma de se representar uma quantidade a partir de um valor, que é dividido por um determinado número de partes iguais. Como é que você representaria

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

Actividade de enriquecimento. Algoritmo da raiz quadrada

Actividade de enriquecimento. Algoritmo da raiz quadrada Actividade de enriquecimento Algoritmo da raiz quadrada Nota: Apresenta-se uma actividade de enriquecimento e de um possível trabalho conjunto com as disciplinas da área de informática: os alunos poderão

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo:

Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo: FRAÇÕES Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo: Adição e subtração de frações Para adicionar ou subtrair frações, é preciso que

Leia mais

Nesta aula vamos rever operações com frações,

Nesta aula vamos rever operações com frações, A UA UL LA Operações com frações Introdução Nesta aula vamos rever operações com frações, verificando a validade das propriedades operatórias dos números racionais. Veremos também o cálculo de expressões

Leia mais

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 = 1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. Questão 1. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. (1,0) (b) Mostre que 2 + 5 é irracional. (a) Seja n N. Se p q Q é tal

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

LISTA DE EXERCÍCIOS MATEMÁTICA

LISTA DE EXERCÍCIOS MATEMÁTICA LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

FRACÇÕES DEFINIÇÃO & OPERAÇÕES. Frações. onde a é o numerador; e b o denominador. O significado de uma fração

FRACÇÕES DEFINIÇÃO & OPERAÇÕES. Frações. onde a é o numerador; e b o denominador. O significado de uma fração Frações O símbolo a significa a b, sendo a e b números naturais e b diferente de zero. b Chamamos: a b fracção; onde a é o numerador; e b o denominador. Se a é múltiplo de b, então a é um número natural.

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016 Roteiro da aula MA09 Matemática básica Aula 8 Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 22 Francisco A. M. Gomes

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par. Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número

Leia mais

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Matemática I PROFESSOR(A) Steve ANO SEMESTRE DATA 8º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Considere que x é a fração geratriz da

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03.

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03. SÉRIE 8º ANO OLÍMPICO ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) SEDE ALUNO(A) Nº RESOLUÇÃO TURMA TURNO DATA / / ÁLGEBRA CAPÍTULO POTENCIAÇÃO Exercícios orientados para a sua aprendizagem (Pág. 6 e 7) 0. A)

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: ELIZABETH E JOSIMAR Ano: 8º Data: / 07 / 01 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA ÁLGEBRA 1) Classifique em verdadeiro (V)

Leia mais

Unidade 1: O Computador

Unidade 1: O Computador Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos

Leia mais

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação.

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação. Apostila de Cálculo Zero Este material visa auxiliar os estudos em Matemática promovendo a revisão de seu conteúdo básico, de forma a facilitar o aprendizado nas disciplinas de cálculo e também melhorar

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média.

2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média. 1) Inicializar um vetor de inteiros com números de 0 a 99 2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média 3)

Leia mais

(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1.

(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1. Questão 1. (1,5) Sejam a e b dois números naturais tais que (a, b) = pq, em que p e q são dois números primos distintos. Quais são os possíveis valores de (a) (a 2, b)? (b) (a 3, b)? (c) (a 2, b 3 )? Suponhamos

Leia mais

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto

Leia mais

MATEMÁTICA. Aula 01. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA. Aula 01. Revisão _ Produtos Notáveis Professor Luciano Nóbrega MATEMÁTICA Felizes aqueles que se divertem com problemas matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês ) 1 Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Raiz Quadrada e Raiz Cúbica de um Número Racional

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Raiz Quadrada e Raiz Cúbica de um Número Racional Agrupamento de Escolas de Almeirim Matemática 7.º Ano Raiz Quadrada e Raiz Cúbica de um Número Racional Raiz Quadrada Existem números naturais que se podem dispor em quadrados. 1 2 =1 2 2 =4 3 2 =9 4 2

Leia mais

Uma expressão matemática que apresenta números e letras ou somente letras, é denominada expressão algébrica

Uma expressão matemática que apresenta números e letras ou somente letras, é denominada expressão algébrica Trabalho de Reforço Matemática 8º ano A, 8º ano B e 8º ano C Ensino Fundamental Professor André Data de entrega: 05 de agosto de 2013. Exercícios de revisão de conteúdo Objetivo: fazer com que o aluno

Leia mais

Resumos para a Prova de Aferição. Matemática

Resumos para a Prova de Aferição. Matemática Resumos para a Prova de Aferição de Matemática Números e operações 1.Leitura e escrita de números inteiros 1.1. Conjunto de números naturais Os números 1,, 3, 4, são números naturais. O conjunto dos números

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

caderno Matemática Matemática e suas Tecnologias ELABORAÇÃO DE ORIGINAIS

caderno Matemática Matemática e suas Tecnologias ELABORAÇÃO DE ORIGINAIS Matemática Matemática e suas Tecnologias caderno de ELABORAÇÃO DE ORIGINAIS BETO PAIVA Professor e coordenador pedagógico em escolas de ensino médio e cursos pré-vestibulares há mais de 35 anos. LEO PAULO

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu

Leia mais

Aplicações de integração. Cálculo 2 Prof. Aline Paliga

Aplicações de integração. Cálculo 2 Prof. Aline Paliga Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

Projeto Jovem Nota 10 Conjuntos Numéricos Lista 3 Professor Marco Costa 1. Represente geometricamente os números racionais:

Projeto Jovem Nota 10 Conjuntos Numéricos Lista 3 Professor Marco Costa 1. Represente geometricamente os números racionais: 1 Projeto Jovem Nota 10 1. Represente geometricamente os números racionais: 2/3, -4/5, 5/4, -7/4 e -12/4 2. A fração irredutível 7/64 pode ser transformada em um decimal exato? Justifique sua resposta.

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Construção na orla marítima

Construção na orla marítima Reforço escolar M ate mática Construção na orla marítima Dinâmica 4 9º Ano 2º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1) Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais