Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
|
|
- Jonathan Sintra Antas
- 9 Há meses
- Visualizações:
Transcrição
1 FRAÇÕES
2 Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria a representação numérica que esse pedaço e o resto do bolo representaria? Foi a necessidade de criar uma representação numérica para as partes de um inteiro que proporcionou o surgimento dos números fracionários.
3 Fração é a representação da parte de um todo (de um ou mais inteiros), assim, podemos considerá-la como sendo mais uma representação de quantidade, ou seja, uma representação numérica, com ela podemos efetuar todas as operações como: adição, subtração, multiplicação, divisão, potenciação, radiciação.
4 Dessa forma, toda fração pode ser representada em uma reta numerada, por exemplo, 1/2 (um meio) significa que de um inteiro foi considerada apenas a sua metade, portanto, podemos dizer que em uma reta numerada a fração 1/2 estará entre os números inteiros 0 e 1. Por ser uma forma diferente de representação numérica, a fração irá possui uma nomenclatura específica e poderá ser escrita em forma de porcentagem, números decimais (números com vírgula) e números mistos.
5 NOMENCLATURA As frações possuem dois tipos de representação, uma geométrica (desenho) e outra na forma de expressão matemática. É importante lembrar que fração é uma representação da parte de um todo. Para termos uma representação fracionária devemos primeiramente constituir todo o inteiro. Sabendo que uma fração deve ser representada por um numerador e um denominador, fica fácil compreendermos a sua nomenclatura. A leitura de uma fração irá depender do seu denominador.
6 A nomenclatura de uma fração pode ser dividida em dois grupos: o primeiro compreende os denominadores iguais a 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, o segundo compreende os denominadores que não pertencem ao primeiro grupo, como 12, 20, 51. Para denominadores iguais a 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000, a leitura das frações fica da seguinte forma:
7
8 Segundo grupo: considerando que o denominador seja qualquer outro número, acrescentamos na sua leitura a palavra avos.
9 Fração própria Tipos de Fração Toda fração que for considerada própria deverá ser menor que um inteiro, ou seja, seu numerador é menor que seu denominador. Ex: 5 8 Fração imprópria As frações impróprias são maiores que um inteiro, ou seja, o seu numerador é maior que o denominador. Ex: 11 8
10 Fração aparente Fração aparente é um tipo de fração imprópria, sendo que os numeradores são múltiplos dos denominadores, ou seja, ao dividirmos o numerador pelo denominador iremos obter valor inteiro como resposta. Ex: 16 8 Fração misto Toda fração imprópria pode ser escrita na forma de número misto. Esse tipo de número é formado por uma ou mais partes inteiras mais uma parte fracionária. Ex: 19 8 = 2 3 8
11 Fração irredutível Fração irredutível é a fração onde o numerador e o denominador são primos entre si, não permitindo simplificação. Ex: 7 3 Fração Unitária É a fração cujo numerador é igual a 1 e o denominador é um inteiro positivo. Ex: 1 3 Fração Composta É a fração cujo numerador e o denominador são frações. Ex: 1 3 / 2 5
12 Fração Algébrica É a fração onde no denominador há uma incógnita. Ex: 3 x 1 Fração Equivalentes Dizemos que uma fração é uma parte de um inteiro que pode ser representada geometricamente ou numericamente. Podemos dividir o inteiro em diversas partes, as quais representarão quantidades diferentes e outras que representarão uma mesma quantidade.
13 No caso de frações diferentes que representam a mesma quantidade, damos o nome de frações equivalentes. A única condição para que existam frações equivalentes é que elas pertençam ao mesmo inteiro. Ex:
14 Para identificarmos se duas ou mais frações são equivalentes, basta aplicarmos os princípios de simplificação conhecidos, isto é, dividir o numerador e o denominador pelo mesmo número, reduzindo a fração à forma irredutível. Se as formas irredutíveis forem idênticas, dizemos que as frações são equivalentes.
15 SIMPLIFICAÇÃO Simplificar uma fração consiste em reduzir o numerador e o denominador através da divisão pelo máximo divisor comum aos dois números. Uma fração está totalmente simplificada quando verificamos que seus termos estão totalmente reduzidos a números que não possuem termos divisíveis entre si. Uma fração simplificada sofre alteração do numerador e do denominador, mas seu valor matemático não é alterado, pois a fração quando tem seus termos reduzidos se torna uma fração equivalente.
16 Exemplos: Ou você pode simplificar a fração uma única vez. Para isso, você deve identificar o máximo divisor comum aos dois termos. Portanto, para que uma fração se torne irredutível, devemos dividir o numerador e o denominador pelo maior divisor comum ou realizar a simplificação por partes. Lembre-se de que toda fração irredutível possui inúmeras frações equivalentes.
17 REDUÇÃO DE FRAÇÃO AO MESMO DENOMINADOR Podemos transformar duas frações que representam quantidades diferentes de um mesmo inteiro, por exemplo, 1 e 2 em frações com 2 5 denominadores iguais. Esse processo é conhecido como redução de fração ao mesmo denominador. Para reduzir as frações 1 2 e 2 5 ao mesmo denominador devemos encontrar as frações equivalentes a cada uma delas, ou seja, frações diferentes, mas que representam a mesma quantidade.
18 Para 1 2 temos: 1 2 = 2 4 = 3 6 = 4 8 = 5 10 Para 2 5 temos: 2 5 = 4 10 = 6 15 Como as frações equivalentes a 1 2 e 2 5 foram encontradas levando em consideração o mesmo inteiro, podemos dizer que as frações 1 e 2 transformadas em um mesmo 2 5 denominador ficariam respectivamente iguais a 5 10 e 4 10.
19 Uma maneira mais prática de reduzir as frações ao mesmo denominador é encontrar o mínimo múltiplo comum (menor múltiplo comum) dos números que representam os denominadores, por exemplo: As frações 3 e 5 possuem os números e 6 como denominadores e o menor múltiplo comum (mmc) entre eles é 60. Assim, o denominador comum das frações 3 e 5 será Depois de encontrar o novo denominador temos que dividi-lo pelo antigo e multiplicar o resultado pelo numerador, devemos fazer sempre esse processo, pois se mudamos o denominador temos que encontrar um numerador proporcional.
20 Depois de encontrar o novo denominador temos que dividi-lo pelo antigo e multiplicar o resultado pelo numerador, devemos fazer sempre esse processo, pois se mudamos o denominador temos que encontrar um numerador proporcional.
21 Comparação de frações Podemos comparar frações utilizando a representação numérica através de algumas técnicas e propriedades. Comparar significa analisar qual representa a maior (>) ou menor (<) quantidade ou se elas são iguais (=). 1ª Situação Quando os denominadores são iguais, basta compararmos somente o valor dos numeradores. 1 2 < 3 2 ou 3 5 > 2 5
22 2ª Situação Quando os denominadores são diferentes, devemos realizar operações no intuito dos denominadores se tornarem iguais. Quando eles se tornam iguais aplicamos as definições da 1ª situação. O processo que irá transformar os denominadores em valores iguais é o de redução, visto anteriormente. Por exemplo: 5 6 e 8 3
23 As frações dadas possuem denominador 6 e 3, respectivamente. Vamos multiplicar os membros da 1ª equação por 3 e multiplicar os membros da 2ª equação por 6. Veja: = e 8 6 3:6 = Note que: > ou seja, 8 3 > 5 6 Observe que multiplicamos os membros da 1ª equação pelo denominador da 2ª equação e os membros da 2ª equação pelo denominador da 1ª equação.
24 ADIÇÃO E SUBTRAÇÃO As operações de adição e subtração com fração dependem unicamente do denominador, ou seja, dependem da quantidade de partes que um inteiro foi dividido. Podendo ser iguais ou diferentes, assim diferenciando a resolução. Quando os denominadores forem iguais devemos somar ou subtrair as partes consideradas dos numeradores e conservar as partes dos denominadores = 4 5 ou = 1 4
25 Quando os denominadores forem diferentes é preciso torná-los iguais antes de resolver a operação de adição ou subtração, utilizando as técnicas que a redução de uma fração ao mesmo denominador. É preciso que encontremos o mmc de 5 e 7 que é o 35. logo encontraremos as respectivas frações equivalentes com as quais efetuamos a soma: = 35: : = = Na operação de subtração o processo é o mesmo, só irá diferenciar-se ao operar.
26 MULTIPLICAÇÃO A multiplicação é uma operação básica que surge para simplificar a soma de parcelas iguais. A operação da multiplicação é aplicada a qualquer conjunto numérico, dos Naturais aos Reais. No caso dos racionais, principalmente os números fracionários, a multiplicação deve ser utilizada respeitando algumas regras básicas: multiplicar numerador por numerador e denominador por denominador.
27 Na multiplicação de números fracionários, é valido o jogo de sinal entre os fatores. Observe tabela de jogo de sinais: (+). (+) ou (-). (-) resulta em valor (+) (+). (-) ou (-). (-) resulta em valor (-) Observe que multiplicação de sinais iguais dá positivo e multiplicação de sinais diferentes dá negativo! Você também pode simplificar a fração antes de iniciar as contas ou mesmo após terminá-las.
28 Exemplos: = 2.3 = 6 = ( 1) = ( 1).4 = = = 4.11 = = 7.4 = ( 2) = ( 2).8 = 16 = ( 3) 15.( 3) 45 45
29 DIVISÃO A resolução da operação de divisão envolvendo frações pode ser resolvida de forma simples. Basta lembrar que o quociente de duas frações é o produto da primeira pelo inverso da segunda. Exemplos: 1. 2 : 11 = 2. 5 = 2.5 = 10 = ( 3) : 7 = ( 3). 2 = = 6 = ( 12) 3 : ( 5) = ( 12) = ( 5) 3.( 5) = = = 44 5
30 POTENCIAÇÃO A potenciação de frações algébricas utiliza o mesmo processo das frações numéricas, o expoente precisa ser aplicado ao numerador e ao denominador, considerando o valor do denominador diferente de zero. Após o desenvolvimento da potenciação, se for o caso, simplifique a fração. Ex: ( 2 3 )2 = = = 4 9
31 O exemplo anterior trata-se de uma fração numérica. No entanto para frações algébricas o raciocínio é o mesmo. Ex: 1. ( 2a 5b )2 = 2a 2 = 22.a a.a 5b b2 = = 4a b.b 25b 2 2. ( a+b 3a ) 2 = ( 3a a+b )2 = 3a 2 a+b 2 = 3 2.a 2 a+b. a+b = 9a 2 a 2 +2.a.b+b 2
32 FRAÇÃO E PORCENTAGEM A palavra porcentagem apresenta ligações estreitas com a ideia de fração, uma vez que significa partes de 100. Ora, se é parte de um todo então é uma fração. Vamos compreender melhor a relação entre porcentagem e as frações. Definição de porcentagem: Se x é um número real, então x% representa a fração x 100.
33 Ou seja: 5% = ; 32% = ; 78% = e assim por diante. Como a porcentagem pode ser escrita na forma de fração, podemos realizar facilmente cálculos que envolvam essas ideias. Veremos alguns exemplos de como isso pode ser feito.
34 Exemplo 1: Sabe-se que 55% dos estudantes de uma sala são do sexo feminino. Como na classe há 40 estudantes, quantas meninas há nessa sala? Solução: 55% = = = = 22 Logo, há 22 meninas na sala.
35
36 Além disso, podemos escrever a porcentagem na forma decimal, também a fim de facilitar os cálculos na resolução de problemas. Exemplos: E assim por diante. 25% = 0,25 30% = 0,3 16% = 0,16 217% = 2, % = 11,54
37 PROBLEMAS ENVOLVENDO NÚMEROS FRACIONÁRIOS A maneira como resolvemos uma situação problema é sempre a mesma, o que pode ser diferente é a estratégia de resolução, pois cada uma delas envolve um conteúdo diferente. Levando em consideração os problemas matemáticos que envolvem números fracionários, podemos utilizar como estratégia na sua resolução a construção de figuras que representem os inteiros ou partes deles (fração).
38 Veja o exemplo de situação problema envolvendo números fracionários. Uma piscina retangular ocupa 2 15 de uma área de lazer de 300m 2. A parte restante da área de lazer equivale a quantos metros quadrados? Resolução: Considere o retângulo abaixo como sendo a área de lazer completa.
39 Para representarmos 2/15 (área ocupada pela piscina) na região retangular que está representando a área de lazer, basta dividir esse retângulo em 15 partes iguais e considerar apenas duas como sendo ocupadas pela piscina.
40 Observando a figura acima percebemos que a fração que irá corresponder à parte restante da área de lazer é 13/15, dessa forma: = = = 260 Logo, a área de lazer restante é de 260m 2.
41 E UM ÓTIMO DOMINGO!
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES
PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como
FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.
FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
Matéria: Matemática Assunto: Frações Prof. Dudan
Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus
PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02
1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação
COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos
25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que
RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração
Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor
Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande
Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática
NÚMEROS RACIONAIS OPERAÇÕES
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número
SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS
SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
Concurso Público Conteúdo
Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;
Planejamento Anual OBJETIVO GERAL
Planejamento Anual Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2017 Professor(a): Eni OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese, relação
MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.
MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa
Definimos como conjunto uma coleção qualquer de elementos.
Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos
MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º
NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo
NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número
AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.
I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador
MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes
MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado
MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS
NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE TEMA I: INTERAGINDO COM OS NÚMEROS E FUNÇÕES N DESCRITOR
Fração. Parte ou pedaço de um inteiro.
Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia
Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações
5. Frações Há 5000 anos, os geômetras dos faraós do Egito realizavam a marcação das terras que ficavam às margens do rio Nilo, para a sua população. No período de junho a setembro, o rio inundava essas
Concurso Público 2017
Concurso Público 017 Conteúdo I Frações frações equivalentes, simplificação de frações, comparação de frações, números fracionários, operações com frações (adição, subtração, multiplicação, divisão e potenciação).
2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar
Deixando de odiar Matemática Parte 5
Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA
TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,
PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:
Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação
5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES
5º ano do Ensino Fundamental 1º BIMESTRE Compor e decompor números naturais e racionais na forma decimal. Reconhecer ordens e classes numa escrita numérica. Arredondar números na precisão desejada. Ordenar
Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas.
FRAÇÕES ALGÉBRICAS DEFINIÇÃO: Uma fração é algébrica se seu numerador e seu denominador forem epressões algébricas. a Como eemplos de tais frações podemos ter onde o numerador é a e o denominador é b 1
MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração
MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)
1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números.
1º período Os números naturais: Sistema de Numeração Decimal. (SND). Pág.30 a 32. Um pouco de história: sistema de numeração dos romanos. Pág. 33 a 35 Os números naturais. Pág. 36 e 37 Sistema de Numeração
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens
Pró-letramento Matemática Estado de Minas Gerais
Pró-letramento Matemática Estado de Minas Gerais Diferentes significados de um mesmo conceito: o caso das frações. 1 Cleiton Batista Vasconcelos e Elizabeth Belfort Muitos conceitos matemáticos podem ser
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo
ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem
MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º
ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)
(2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra
Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer
Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo
Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor
Frações e porcentagens. Prof. Marcelo Freitas
Frações e porcentagens Prof. Marcelo Freitas FRAÇÃO A fração representa a idéia da divisão de um inteiro (objeto, figura, número, etc) em partes iguais e destas partes pegamos uma ou mais, conforme o nosso
Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia
Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,
MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2
MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,
Planejamento de Curso de Matemática para a 5º serie.
Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:
Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25
Sumário CAPÍTULO 1 Números 1. Os números registram o mundo em que vivemos 11 2. Sistemas de numeração 12 3. O sistema de numeração indo-arábico 16 Leitura e escrita de um número no sistema de numeração
MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES
MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção
- Plano Anual 4º Ano de Escolaridade -
Números e Operações TEM A - Plano Anual 4º Ano de Escolaridade - Matemática Domínios de Referência Contar 1.Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de construção
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações
Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos
Datas de Avaliações 2016
ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:
Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade
Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade
AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE
Domínio/ NO4/ Números naturais NO4/ Números racionais não negativos AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE - 2016-2017 1. Contar 1. Reconhecer
Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.
DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.
OPERAÇÕES COM NÚMEROS RACIONAIS
Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição
O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}
07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z
PLANIFICAÇÃO MENSAL/ANUAL Matemática 4.ºano
PLANIFICAÇÃO MENSAL/ANUAL Matemática 4.ºano MATEMÁTICA 4.º ANO DE ESCOLARIDADE Domínio/ Subdomínio Números Naturais Operações com números naturais Números racionais não negativos Metas a atingir Contar
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05
RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim
CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e
de Avaliação Números e Operações Números Sistema de decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até ao milhão Conhecer a romana Descodificar o sistema de decimal Adicionar
Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL
ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas
Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.
Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas
MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6
1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc
3º Ano e Curso Matemática Básica 02 Página 1
º Modo: O MMC é o produto de todos os fatores primos dos números, considerados uma única vez e de maior expoente. = MMC {;} = = =. NÚMEROS PRIMOS Um número natural maior que é chamado de número primo,
Matemática Básica Introdução / Operações matemáticas básicas
Matemática Básica Introdução / Operações matemáticas básicas 0. Softwares que podem ser úteis no estudo da disciplina: Geogebra gratuito, possui versões para windows e linux disponível em http://www.geogebra.org
TEMA I: Interagindo com os números e funções
31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução
Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática
Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52
Oficina de Matemática
Oficina do Programa Integrar Eixo Educação 2012 Como usar bem o resultado da avaliação Oficina de Matemática Paracatu, 22 de junho de 2012 Eliane Scheid Gazire egazire@terra.com.br Quadro resumo do desempenho
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras
AGENTE ADMINISTRATIVO FEDERAL
FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a
AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE
Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo
TUTORIAL DE OPERAÇÕES BÁSICAS
TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a
Professor conteudista: Renato Zanini
Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO
1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS E TECNOLOGIAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 5 ºANO 1º Período 2º Período 3º
OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.
ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:
SISTEMA ANGLO DE ENSINO G A B A R I T O
Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
PLANIFICAÇÃO ANUAL DE MATEMÁTICA
AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA- Cantanhede DEPARTAMENTO CURRICULAR DO 1.º CICLO 4.º ANO DE ESCOLARIDADE PLANIFICAÇÃO ANUAL DE MATEMÁTICA Domínios Subdomínios / Conteúdos programáticos METAS
MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER
CONTEÚDOS MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER UNIDADE 1 1. Números, problemas e soluções Sistema de numeração - Uso e função dos números grandes; - Os milhões e os bilhões; - Classes e ordens;
PLANO CURRICULAR DISCIPLINAR. Matemática 5º Ano
PLANO CURRICULAR DISCIPLINAR Matemática 5º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUB-TÓPICOS METAS DE APRENDIZAGEM 1º Período Compreender as propriedades das operações e usá-las no cálculo. Interpretar uma
PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA
PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,
1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.
Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos
AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL
AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares de Matemática 1º CICLO MATEMÁTICA 4º ANO TEMAS/DOMÍNIOS
II.4 - Técnicas de Integração Integração de funções racionais:
Nesta aula, em complemento ao da aula anterior iremos resolver integrais de funções racionais utilizando expandindo estas funções em frações parciais. O uso deste procedimento é útil para resolução de
Matriz de Referência de matemática 9º ano do ensino fundamental
Matriz de Referência de matemática 9º ano do ensino fundamental D01 D02 D03 Identificar a localização/movimentação de objeto em mapas, croquis e outras representações gráficas. Identificar propriedades
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
Roteiro de Recuperação do 3º Bimestre - Matemática
Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
Operações Fundamentais com Números
Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números