Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano"

Transcrição

1 Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens Síntese Fração O quociente exato a b de dois números naturais a e b pode ser representado pela fração a. b Exemplo: Não é possível determinar o valor exato do quociente 1 pois, neste caso, a divisão 3 exata de 1 por 3 não é numeral decimal , Termos da fração 3 O numerador indica o número de partes consideradas do todo. 5 O denominador indica o número de partes iguais em que o todo está dividido. Numeral misto Qualquer fração cujo numerador é maior que o denominador pode escrever-se sob a forma de numeral misto. Exemplo: Conjunto dos números naturais IN {1,, 3, 4, } Conjunto dos números inteiros (não negativos) IN o {0, 1,, 3, 4, } Número fracionário Um número fracionário é um número que pode ser representado por uma fração mas que não é um número inteiro. Conjunto dos números racionais Se juntares ao conjunto IN 0 os números fracionários, obténs o conjunto dos números racionais. Pág. 1

2 Frações equivalentes Frações que representam o mesmo número denominam-se frações equivalentes. Exemplo: Considera as imagens ao lado. Na imagem (1) está sombreada da figura. 10 Na imagem () está sombreada 3 da figura. 5 Repara que a quantidade de sombreado nas duas figuras é igual. Assim, pode-se afirmar que Como estas frações representam o mesmo número dizem-se equivalentes. Princípio de equivalência de frações Se se multiplicar, ou dividir, os dois termos de uma fração pelo mesmo número natural, obtém-se uma fração equivalente à dada. Exemplo: (1) () Repara também que: se dividirmos ambos os termos de uma fração pelo seu máximo divisor comum, obtemos uma fração irredutível equivalente (fração cujos termos não têm divisores comuns diferentes de 1, isto é, são números primos entre si). m. d. c. (, 1) 1 1 Comparação e ordenação de frações Comparação de números racionais com a unidade: Fração própria (fração cujo numerador é menor do que o denominador) < Unidade (fração cujo numerador é igual ao denominador) < Fração imprópria (fração cujo numerador é maior que o denominador) Pág.

3 Comparação de números racionais com o mesmo denominador: Quando dois ou mais números representados por frações têm o mesmo denominador, o menor deles é representado pela fração que tiver menor numerador. Comparação de números racionais com o mesmo numerador: Quando dois ou mais números representados por frações têm o mesmo numerador, o menor deles é representado pela fração que tiver maior denominador. Comparação de números racionais com numeradores e denominadores diferentes: Pode-se utilizar dois processos para esta comparação. Num dos processos recorre-se a frações equivalentes e no outro ao quociente que a fração representa. Exemplo: Vamos comparar as frações 5 3 e 3. Processo 1: escrever frações equivalentes às dadas com o mesmo denominador. Chama-se a este procedimento "reduzir ao mesmo denominador" Então: 5 3 > 3. Processo : dividir o numerador pelo denominador. 5 1, 3 1,5 3 Então: 5 3 > 3. Adição e subtração de números racionais Para adicionar frações com o mesmo denominador, mantém-se o denominador e somam- -se os numeradores. Para subtrair frações com o mesmo denominador, mantém-se o denominador e subtraem-se os numeradores. Para adicionar (ou subtrair) frações com denominadores diferentes, reduzem-se as frações ao mesmo denominador e de seguida adicionam-se (ou subtraem-se) estas frações. Exemplos: Pág. 3

4 Multiplicação de números racionais (na forma de fração) Multiplicação de um número inteiro por uma fração: a b a b, c 0 c c Multiplicação de uma fração por uma fração: a b c a c, b 0, d 0 d b d Exemplos: Inverso de um número O inverso de um número racional não nulo a b é b a O inverso de um número natural n é 1 n. (a 0, b 0). Divisão de números racionais Divisão de um número inteiro por uma fração: a b c a c a c b b Divisão de uma fração por um número inteiro:, b 0, c 0 a b c a b 1 c a, b 0, c 0 b c Divisão de uma fração por uma fração: a b c d a b d a d, b 0, c 0, d 0 c b c Exemplos: Potência de base racional e expoente natural Para calcular uma potência de um número racional representado na forma de fração elevam-se os termos da fração ao expoente da potência. ( a n b ) an, n IN, b 0 bn Exemplo: ( 7 3 ) 7 3 Pág. 4

5 Valores aproximados Aproximação por defeito e por excesso Exemplo: Sabes que π 3, Para obter um valor aproximado de π podemos proceder de várias formas: π 3, (aproximação às décimas por excesso) π 3,1 (aproximação às décimas por defeito) π 3,15 (aproximação às centésimas por excesso) π 3,14 (aproximação às centésimas por defeito) Método de arredondamento Se o primeiro algarismo a eliminar for igual ou superior a 5, aproxima-se por excesso, adicionando-se uma unidade ao algarismo da última classe a manter. Exemplo: 0,37 0,37 (arredondamento às centésimas) Se o primeiro algarismo a eliminar for inferior a 5, aproxima-se por defeito, mantendose inalterado o algarismo da última classe a manter. Exemplo: 0,349 0,3 (arredondamento às centésimas) Estimativa Exemplo: "Se tiveres um saldo no teu telemóvel de,13 e precisares de enviar algumas mensagens que custam 0,08 cada, quantas mensagens podes enviar?" Proposta de resolução por estimativa: Cada mensagem custa aproximadamente 0,10. Vamos supor que o saldo é de,10.,10 : 0,10 1 Assim se conclui que se pode enviar aproximadamente 1 mensagens (repara que esta estimativa é por defeito, uma vez que se aproximou o valor do saldo por defeito e o valor de cada mensagem por excesso). Percentagem A percentagem representa uma razão cujo consequente é 100. Repara que: 1% ,1 e que para determinar "5% de 100 " efetuas o seguinte cálculo: 0, Regras operatórias Para o cálculo do valor de uma expressão numérica, tens de respeitar algumas regras, efetuando os cálculos pela seguinte ordem: 1.º o valor da expressão que se encontra dentro de parêntesis;.º potências; 3.º produtos e quocientes pela ordem em que aparecem; 4.º somas e diferenças pela ordem em que aparecem. Pág. 5

6 Nas próximas páginas encontrarás questões de provas finais de Matemática do.º Ciclo seguidas de novas propostas semelhantes. Não te esqueças que podes, e deves, consultar a síntese inicial sempre que tiveres alguma dúvida. Bom trabalho! Prova final de Matemática (013) 1. Na figura ao lado está representado um tampo de uma mesa composto por retângulos iguais, uns pintados e outros por pintar Quais dos numerais representam a parte por pintar do tampo da mesa? Assinala com X as opções corretas % Quais dos numerais representam a parte pintada do tampo da mesa? Assinala com X as opções corretas. 0 0% ,. A avó da Joana deu-lhe três chocolates pelo Natal. Desses chocolates a Joana comeu um durante as férias de Natal e metade de outro chocolate até agora. Assinala com X as opções que representam a parte do chocolate que a Joana comeu Pág.

7 3. Considera os seguintes números racionais: 3.1. Escreve-os por ordem crescente. 1 7 ; 7 ; ; 7 ; Indica uma fração de denominador 5 que seja superior a 7 e inferior a 8 5. Prova final de Matemática (013) 4. Na reta numérica representada a seguir, está marcada uma sequência de pontos em que a distância entre dois pontos consecutivos é sempre a mesma. Nesta reta, estão assinalados os números 0, 1 e e os pontos A, B, C e D. Indica qual o número que corresponde a cada um dos pontos A, B, C e D. Pág. 7

8 5. Determina o número em falta de forma a obteres igualdades ? 1 5..? ? ? Prova final de Matemática (013) Pág. 8

9 . A Joana estuda todos os dias h 30 min. Ontem, ela dedicou 5 desse tempo a estudar História e Geografia de Portugal, 1 nos trabalhos de casa de Português, 30 minutos a fazer exercícios de Matemática e o restante tempo esteve a estudar Inglês..1. Escreve a fração que representa o tempo dedicado a Matemática... Determina quanto tempo a Joana dedicou a cada uma das disciplinas. 7. O Carlos tinha ao todo 180 cromos. Deu 5 1 desses cromos à Maria e deu a terça do restante cromos ao Rui. Com quantos cromos ficou o Carlos? A que fração dos cromos corresponde esse número? 8. Num jogo de futebol estavam 130 pessoas a assistir. Dois terços dessas pessoas eram homens, 1 5 eram mulheres e os restantes eram crianças. Quantos homens, mulheres e crianças estavam a assistir ao jogo? Pág. 9

10 Prova final de Matemática (013) Prova final de Matemática (013) 9. Determina: % de 30 ; % de 10 ; % de 500 ; % de 40 ; % de 70. Pág. 10

11 Prova final de Matemática (013) 10. O Paulo comprou um cachecol e um casaco na época de saldos. Antes da época de saldos, o cachecol custava 1 e o casaco 35. Sabendo que foi feito um desconto de 15% no cachecol e 4,90 no casaco Quanto pagou o Paulo pela compra? 10.. Determina a percentagem de desconto efetuado no casaco. 11. O João recebeu no seu aniversário 45. Gastou 1 3 DVD Quanto custou o livro? 11.. Quanto custou o DVD? Quanto sobrou? na compra de um livro e % na compra de um Pág. 11

12 Prova final de Matemática (013) Prova final de Matemática (013) 1. Considera as seguintes rodas da sorte e as expressões numéricas nelas representadas. Quando se roda as setas obtém-se uma expressão numérica e calcula-se o valor que ela representa Sabendo que os irmãos Miguel e a Sofia fizeram rodar as setas, respetivamente, da roda da sorte 1 e da roda da sorte e que ambos obtiveram expressões numéricas equivalentes, qual o número que saiu a cada um dos irmãos? 1.. A Sofia rodou mais uma vez a roda da sorte e obteve um número que é o cubo do primeiro número obtido. Qual foi este número? Pág. 1

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Álgebra Relações e regularidades Sequências e regularidades Proporcionalidade direta Síntese (Nota: As expressões numéricas e as propriedades das operações já foram abordadas na ficha Números naturais

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017 4.º Ano - Ano Letivo 2016/2017 1.º Período - Números naturais Números e operações Contar Estender as regras de construção dos numerais decimais para classes de grandeza indefinida; Conhecer os diferentes

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro. MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e de Avaliação Números e Operações Números Sistema de decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até ao milhão Conhecer a romana Descodificar o sistema de decimal Adicionar

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS E TECNOLOGIAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 5 ºANO 1º Período 2º Período 3º

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2012/2013 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: Set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 5º Ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares de Matemática 1º CICLO MATEMÁTICA 4º ANO TEMAS/DOMÍNIOS

Leia mais

Proposta de teste de avaliação Matemática 6

Proposta de teste de avaliação Matemática 6 Proposta de teste de avaliação Matemática 6 Nome da Escola Ano letivo 0 /0 Matemática 6.º ano Nome do Aluno Turma N.º Data Professor / / 0 PARTE 1 Nesta parte é permitido o uso da calculadora. 1. Na figura

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

Planificação Anual de Matemática 6º Ano. Tópicos Objetivos específicos Notas

Planificação Anual de Matemática 6º Ano. Tópicos Objetivos específicos Notas Blocos (previsão) Grupo Disciplinar 230 Matemática/Ciências da Natureza Ano Letivo 2012/2013 Planificação Anual de Matemática 6º Ano Tópicos Objetivos específicos Notas Preparação do Conhecer a turma.

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

FRAÇÕES. Professora: Gianni Leal 6ºBM

FRAÇÕES. Professora: Gianni Leal 6ºBM FRAÇÕES Professora: Gianni Leal 6ºBM IDEIA INTUITIVA DE INTEIRO E O QUEBRADO Frases comuns no dia a dia: Perdi o ônibus por uma fração de segundos Paguei 7 reais e uns quebrados. São quatro horas e meia.

Leia mais

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas Números e Operações Adição e subtração de números racionais não negativos DEPARTAMENTO DE MATEMÀTICA DISCIPLINA: Matemática PLANIFICAÇÃO 1ºperíodo - 5º ANO - Efetuar operações com números racionais não

Leia mais

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

Planificação Anual (por unidades)

Planificação Anual (por unidades) Planificação Anual (por unidades) Total de tempos letivos planificados: 10 Disciplina: MATEMÁTICA 5º ANO Ano letivo: 01/015 Período Unidade didática Nº DE TEMPOS PREVISTOS Total - Apresentação. - Atividades

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) = PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo)

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Objeto de avaliação Itens/Parâmetros Instrumentos Ponderação Conteúdos da Testes

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

Índice. Triângulos e paralelogramos. Números naturais. Números racionais não negativos. Expressões algébricas. Áreas de figuras planas

Índice. Triângulos e paralelogramos. Números naturais. Números racionais não negativos. Expressões algébricas. Áreas de figuras planas Índice Números naturais. Números naturais: adição e subtração. Números naturais: multiplicação e divisão 6. Expressões numéricas 8. Múltiplos e divisores de um número natural 0. Critérios de divisibilidade

Leia mais

AGENTE ADMINISTRATIVO FEDERAL

AGENTE ADMINISTRATIVO FEDERAL FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA III - NÚMEROS E OPERAÇÕES / ÁLGEBRA E FUNÇÕES Este é o tema de maior prioridade para a Matemática

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/

Leia mais

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO DE MATEMÁTICA - 5.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

ACTIVIDADE Nº II. Fracções. Números racionais

ACTIVIDADE Nº II. Fracções. Números racionais ACTIVIDADE Nº II Nome do Formando: Data: / / Fracções. Números racionais A D. Maria tem um terreno que quer dividir pelos 7 sobrinhos. Cada sobrinho ficou com a sétima parte do terreno ou um sétimo do

Leia mais

Sequência da apresentação

Sequência da apresentação Sequência da apresentação Mal entendidos dos alunos relativos às frações. Os diferentes significados das frações. Diferentes tipos de unidade. Exemplos de tarefas para a reconstrução da unidade e exploração

Leia mais

Período Conteúdos Metas Curriculares Nº de Aulas

Período Conteúdos Metas Curriculares Nº de Aulas AGRUPAMENTO VERTICAL DE ESCOLAS DE MOURA Agrupamento de Escolas de Moura Planificação de Matemática -5ºAno Período Conteúdos Metas Curriculares Nº de Aulas 1.º Números naturais Critérios de divisibilidade

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Oficina de Matemática

Oficina de Matemática Oficina do Programa Integrar Eixo Educação 2012 Como usar bem o resultado da avaliação Oficina de Matemática Paracatu, 22 de junho de 2012 Eliane Scheid Gazire egazire@terra.com.br Quadro resumo do desempenho

Leia mais

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

PLANIFICAÇÃO

PLANIFICAÇÃO PLANIFICAÇÃO 2015-2016 Agrupamento de Escolas Domingos Sequeira Área Disciplinar: Matemática Ano de Escolaridade: 4ºano Mês: setembro/ outubro Números Naturais Contar Reconhecer que se poderia prosseguir

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

Índice. Propriedades geométricas I 3. Propriedades geométricas II 25. Números naturais 47. Números racionais não negativos 63

Índice. Propriedades geométricas I 3. Propriedades geométricas II 25. Números naturais 47. Números racionais não negativos 63 Índice Propriedades geométricas I Propriedades geométricas II Ângulos, paralelismo e perpendicularidade mplitudes de ângulos 7 Exercícios resolvidos 0 Exercícios propostos 6 Teste de avaliação Ângulos

Leia mais

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número. Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

MATEMÁTICA - 2º ANO. Novo programa de matemática Objetivos específicos

MATEMÁTICA - 2º ANO. Novo programa de matemática Objetivos específicos MATEMÁTICA - 2º ANO NÚMEROS E OPERAÇÕES Números naturais Noção de número natural Relações numéricas Sistema de numeração decimal Classificar e ordenar de acordo com um dado critério. Realizar contagens

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

Fração. Parte ou pedaço de um inteiro.

Fração. Parte ou pedaço de um inteiro. Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia

Leia mais

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 5º ano do Ensino Fundamental 1º BIMESTRE Compor e decompor números naturais e racionais na forma decimal. Reconhecer ordens e classes numa escrita numérica. Arredondar números na precisão desejada. Ordenar

Leia mais

Plano Geral de Trabalho da Disciplina de Matemática 2016/ º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas

Plano Geral de Trabalho da Disciplina de Matemática 2016/ º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA Plano Geral de Trabalho da Disciplina de Matemática 2016/ 2017 2º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas Gestão dos

Leia mais

Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação

Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação Escola E.B. 2.3 de Pedro de Santarém PLANIFICAÇÃO ANUAL MATEMÁTICA 5º ANO 2010/2011 Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação Aulas Previstas Preparar e organizar o trabalho a realizar

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Matemática Básica para ENEM

Matemática Básica para ENEM Matemática Básica para ENEM Júlio Sousa I - Frações Fração também pode ser chamada de razão e é escrita da seguinte forma: a b onde a é o numerador e b o denominador, e devemos ter a Є N e b Є N* Obs:

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES

O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES SITUAÇÃO DE APRENDIZAGEM O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES Contando de diferentes maneiras Página 6. Experimentação Se cada grupo receber pedrinhas, o quadro será o seguinte: Observação:

Leia mais

Matemática. 5. o ano CADERNO DE APOIO AO ALUNO. NOVA EDIÇÃO: De acordo com as Metas Curriculares e o Novo Programa de 2013.

Matemática. 5. o ano CADERNO DE APOIO AO ALUNO. NOVA EDIÇÃO: De acordo com as Metas Curriculares e o Novo Programa de 2013. NOVA EDIÇÃO: De acordo com as Metas Curriculares e o Novo Programa de 0. CADERNO DE APOIO AO ALUNO Matemática Elza Gouveia Durão Maria Margarida Baldaque. o ano Índice Capítulo NÚMEROS NATURAIS Saber

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

1ºPeríodo CONTEÚDOS METAS/DESCRITORES RECURSOS

1ºPeríodo CONTEÚDOS METAS/DESCRITORES RECURSOS DOMÍNIOS: NÚMEROS E OPERAÇÕES (NO) e Álgebra (ALG) OBJETIVOS GERAIS: A G R U P A M E N T O D E E S C O L A S D R. V I E I R A D E C A R V A L H O D E P A R T A M E N T O D E M A T E M Á T I C A E C I Ê

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

CONHECIMENTOS CAPACIDADES OBJETIVOS / METAS CURRICULARES

CONHECIMENTOS CAPACIDADES OBJETIVOS / METAS CURRICULARES Escola Secundária 2-3 de Clara de Resende COD. 346 779 Critérios de Avaliação Perfil de Aprendizagens Específicas (Aprovado em Conselho Pedagógico de 18 julho de 2016) AGRU P A M E N T O DE No caso específico

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO EB 2.3 DE SÃO JOÃO DO ESTORIL 2016/17 MATEMÁTICA PERFIL DO ALUNO PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO /DOMÍNIOS NUMEROS E OPERAÇÕES NO5 GEOMETRIA E MEDIDA GM5 ALG5 ORGANIZAÇÃO E TRATAMENTO

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER

MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER CONTEÚDOS MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER UNIDADE 1 1. Números, problemas e soluções Sistema de numeração - Uso e função dos números grandes; - Os milhões e os bilhões; - Classes e ordens;

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

Resolução Ficha de avaliação diagnóstica Matemática 5.º ano Parte 1

Resolução Ficha de avaliação diagnóstica Matemática 5.º ano Parte 1 Resolução Ficha de avaliação diagnóstica Matemática 5.º ano Parte 1 1. Considera o seguinte número e responde, assinalando com X o que te é pedido. 543 076 1.1 O número destacado pode ler-se: Cinco centenas

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais