= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

Tamanho: px
Começar a partir da página:

Download "= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02"

Transcrição

1 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos Números Naturais (N) O conjunto dos números naturais é constituído por números inteiros positivos, inclusive o zero Números Inteiros (Z) N = {0,1,2,3, } Os números inteiros são formados por números naturais e seus opostos (negativos). Z = {, 3, 2, 1,0,1,2,3, } Números Racionais(Q) Números racionais são aqueles que podem ser escritos na forma razão(ou fração) de dois números inteiros. Eles se dividem em inteiros ou fracionários. Os números 1 3, 7 6, 4, 0, e -3 5 são alguns exemplos de números racionais. No caso dos números fracionários, é possível que tenham infinitas casas decimais, desde que a parte fracionária seja repetida indefinidamente. Exemplos: 1 3 = 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 Números com essa característica de repetição são denominados dízimas periódicas Números Irracionais (I) O conjunto dos números irracionais é formado por números que não podem ser escritos na forma de fração. Exemplos: 2 = 1, π = 3,14159 Números com essa característica são denominados dízimas nãoperiódicas Números Reais (R) É o conjunto que engloba os conjuntos já citados nessa apostila: N,Z,Q e I Valor absoluto ou módulo (R) O módulo, ou valor absoluto (representado matematicamente como x ) de um número real x é o valor numérico de x desconsiderando seu sinal. 1

2 Do mesmo modo, o módulo de -1 é 1: 1 = Operações Fundamentais Adição Adição é a operação que representa uma junção de quantidades, e para representá-la será utilizado o sinal + (mais). 5+4 = 9 Figura 1: Diagrama com os conjuntos numéricos estudados O valor do módulo está associado à ideia de distância de um ponto até sua origem (o zero), ou seja, a sua magnitude. Tomando como exemplo o número 1 e seu oposto -1. Percebe-se que a distância entre 1 e 0 é 1 unidade. E a distância entre -1 e 0 também é 1 unidade (ver figura 2). Os números 5 e 4 são chamados de parcelas e o número 9 é a soma. Importante: As operações de adição que envolvem números com casas decimais devem ser feitas com vírgula sobre vírgula. 1. Exemplos: Figura 2: Módulo Nessecaso, sedizqueomódulo(ouvalorabsoluto)de1é1: 1 = 1. (a) 2,3+4,6+7,9+3,5 = 18,3 (b) = 5 3 2

3 1.2.2 Subtração A subtração é a operação contrária a adição, e para representá-la será utilizado o sinal - (menos). 7 5 = 2 Na operação 7 5 = 2 o número 7 é chamado minuendo, o 5 é subtraendo e o número 2 é a diferença. Importante: As regras para subtração são iguais as de adição. Portanto, quando a operação envolve números com casas decimais, todo o procedimento também deve ser feito com vírgula sobre vírgula. 1. Exemplos: (a) +9+2 = +11 (b) 7 5 = 12 (c) +4+6 = +10 (d) 7 8 = 15 (e) 9 10 = 19 Segundo Caso: Quando os sinais são diferentes, deve-se subtrair os números mantendo o sinal do número de maior módulo. 2. Exemplos: (a) 10+5 = 5 (b) 1+3 = +2 (c) = +16 (d) = +20 (e) 21+5 = Adição e Subtração de números inteiros A adição e a subtração de números inteiros envolvem algumas regras básicas, essenciais para a obtenção do resultado correto. Para uma melhor fixação dessas regras e como utilizá-las, vamos demonstrar os cálculos seguidos da respectiva regra matemática. Primeiro Caso: se os sinais dos números são iguais, a operação deve ser feita adicionando os números e mantendo o sinal. Terceiro Caso: Quando na expressão houver a presença de parênteses, colchetes ou chaves deve-se resolver primeiro as operações que estão dentro deles. Deve-se eliminar primeiro os parênteses ( ), seguidos pelos colchetes [ ] e por último as chaves { }. O último passo é realizar o jogo de sinais para então efetuar as demais operações. 3

4 Importante: Nessa apostila utilizaremos o sinal para indicar a multiplicação = 20 ou 5 4 = 20 Figura 3: Jogo de sinais utilizado nas operações que envolvem parênteses, colchetes e chaves. Na multiplicação 5 4 = 20 os números 5 e 4 são chamados fatores e o 20 é denominado produto. 3. Exemplos: (a) (+81)+( 12) (+7) = +62 (b) { [(2+3) (7 8)+( 6 4)]} { [(5) ( 1)+( 10)]} { [5+1 10]} { [ 4]} = Multiplicação É a operação que determina a soma de parcelas iguais. Para indicar a multiplicação é possível utilizar o sinal x, ou *. Importante: Quando a multiplicação envolve números com casas decimais, soma-se a quantidade de casas após a vírgula. 1. Exemplos: 4

5 (a) = = 24 (b) 5,37 11,2 = 60,144 (c) = = 2 21 Atenção: Quando na expressão não houver sinal antes dos parênteses, colchetes ou chaves, deve-se assumir que é uma operação de multiplicação. 1. Exemplos: (a) 3(4+5) 7 3(9) (b) 4[6 : 3 2(4 5 15)]+3 4[6 : 3 2(20 15)] 4[2 2(5)] 4[2 10] 4[ 8] Divisão É a operação inversa da multiplicação, e está ligada ao ato de repartir em partes iguais. 100 : 4 = 25 Nessa operação, o número 100 é o dividendo, 4 é o divisor e 25 é o quociente. Uma fração é simplesmente uma divisão entre dois números. 1 2 = 1 : 2 = 0,5 Quando a divisão de um número inteiro por outro é exata, dizemos que o primeiro é múltiplo do segundo ou que um número é divisível pelo outro. Caso a divisão entre números inteiros não seja exata, irá sobrar um determinado valor denominado resto da divisão Casos Particulares da Multipicação e Divisão Multiplicação N 1 = N N 0 = 0 Divisão N/1 = N N/N = 1 0/N = 0 (N 0) N/0 Não existe! 5

6 1.2.7 Os sinais na multiplicação e divisão Sinais iguais sinal positivo Sinais diferentes sinal negativo Máximo Divisor Comum (m.d.c) O máximo divisor comum (m.d.c) a vários números é o maior número que os divide. 1. Exemplo: Calcular o m.d.c. (12, 18, 36) Figura 4: Comportamento dos sinais na multiplicação e divisão Decomposição de um número A decomposição de um número é feita com o objetivo de reescrevêlo por meio de uma multiplicação de números primos. Decompondo cada um dos números em fatores primos: 12 = = = A multiplicação das menores potências dos fatores em comum entre os números 12, 18 e 36 é o m.d.c. m.d.c.(12,18,36) = 2 3 = Mínimo Múltiplo Comum (m.m.c) Omínimomúltiplocomumentreumconjuntodenúmeroséomenor número divisível por todos eles. Para o cálculo do m.m.c. utiliza-se o processo de decomposição simultânea, como pode ser visto no exemplo a seguir: 1. Exemplo: Calcular o m.m.c. (12, 16, 45) Importante: Número primo é aquele divisível somente por ele mesmo e pelo número 1. 6

7 (j) 35 : 7 = (k) 26 : 5 = (l) 120 : 32 = (m) [ (6) ( 17)] = (n) [ (2+4) ( 4 13)] = (o) {2 [3 4 : 2 2(3 1)]}+1 = (p) 2,5+3{3,8 4 : 2 [3+5,1(3+2,3 8)] 1} = 2. Substitua o? pelos números adequados: Exercícios 1. Calcule o valor das expressões: (a) (24+3)+8+(2+6) = (b) = (c) 61+9+(4+1) = (d) 9,3+(4,25+1,7) = (e) (10,6+7,35)+2,2+1,3 = (f) (140+20)+(53 12) 63 = (g) (320,7 70,35)+17,3+11,3 = (h) = (i) = (a) 9+? = 11 (b) 7+? = 12 (c)?+10 = 19 (d) 26? = 1 (e)? 5 = 2 3. Cálcule o m.m.c e o m.d.c entre os seguintes números: (a) (4,3) (b) (3,5,8) (c) (60, 15, 20, 12) (d) (18, 20, 30) (e) (12, 18, 32) 4. A oferta abaixo estava em uma loja. Qual é a diferença entre os preços do plano à vista e do plano a prazo? PROMOÇÃO: R$ 703,00 à vista ou 5 prestações de R$ 259,00 7

8 1.3 Frações Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. frações são denominadas frações equivalentes. Para obtermos uma fração equivalente a outra, basta multiplicar ou dividir o numerador e o denominador pelo mesmo número (diferente de zero). Numa fração o numerador indica em quantas partes são tomadas do inteiro (partes coloridas), enquanto o denominador indica em quantas partes o inteiro foi dividido Frações Equivalentes Para efetuarmos operações com frações é mais cômodo deixar os números que representam a fração(numerador e denominador) primos entre si, isto é, simplificá-los até torná-los irredutíveis. Para fazer a simplificação (em algumas frações, isto não é possível), devemos, primeiramente, procurar um número que divida ao mesmo tempo o numerador e o denominador. Observe a figura: As frações 2 3, 2 3, e 8 12 representam o mesmo valor, porém seus termos são números diferentes. Por causa dessa característica, estas Frações Próprias Quando o numerador da fração é menor do que o denominador ela é denominada própria Frações Impróprias 5 6, 1 2, 3 5, 23 31, etc A fração é imprópria quando o numerador é maior que o denominador, sendo possível representá-la por um número misto. 1. Exemplos: 8

9 (a) 4 3 = = (b) 5 2 = = (c) 11 3 = = (d) 11 4 = = (e) = = (f) = = = 5 3 = Exemplo: (a) = (b) = 10+3 (c) = (d) = = 4 2 = 2 1 = 2 = = = = Multiplicação de frações A multiplicação entre frações tem como resultado uma outra fração, cujo numerador é o produto entre os numeradores das frações envolvidas. De forma semelhante o denominador da fração resultante é o produto dos denominadores dos fatores. Em algumas situações é possível simplificar o cálculo da multiplicação entre frações realizando a simplificação dos fatores: Adição e Subtração de Frações Se as frações possuírem o mesmo denominador, basta somar ou subtrair os numeradores e repetir o denominador comum entre as frações. Caso as frações não tenham o mesmo denominador, é preciso encontrar o mínimo múltiplo comum (mmc) entre os denominadores, para então encontrar as frações equivalentes Divisão de frações Para fazer a divisão entre frações deve-se fazer a multiplicação da primeira fração pelo inverso da segunda. 9

10 (e) 2 5 : 5 9 = Comparação de Frações Para comparar as frações devemos reduzi-las ao mesmo denominador e comparar os numeradores. A fração que tiver o maior numerador maior será a maior fração. (f) : 2 7 = 2. Você encheu o tanque do seu carro. Gastou 2/5 da gasolina para trabalhar e 1/5 para passear no final de semana. Quanto sobrou de gasolina no tanque? 1. Exemplo: Comparar 2 3 e 5 7 mmc(3,7) = = = Logo: < 15 21, e portanto 2 3 < Exercícios 1. Efetue as operações e simplifique o resultado quando possível. (a) = (b) = (c) = (d) = 10

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10. DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro. MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

Matemática Básica Introdução / Operações matemáticas básicas

Matemática Básica Introdução / Operações matemáticas básicas Matemática Básica Introdução / Operações matemáticas básicas 0. Softwares que podem ser úteis no estudo da disciplina: Geogebra gratuito, possui versões para windows e linux disponível em http://www.geogebra.org

Leia mais

Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas.

Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas. FRAÇÕES ALGÉBRICAS DEFINIÇÃO: Uma fração é algébrica se seu numerador e seu denominador forem epressões algébricas. a Como eemplos de tais frações podemos ter onde o numerador é a e o denominador é b 1

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro Números Racionais MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro O que são números racionais? Alguma definição? Como surgiram? Relacionados a quais ideias ou situações? Representação

Leia mais

Técnico Judiciário TJ / RS

Técnico Judiciário TJ / RS CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las

Leia mais

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:

Leia mais

SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO

SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO Concurso Público 2016 Conteúdo - Operações com números reais. Mínimo múltiplo comum e Máximo divisor comum. - Razão e proporção. - Porcentagem. -

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

Fração. Parte ou pedaço de um inteiro.

Fração. Parte ou pedaço de um inteiro. Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS E TECNOLOGIAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 5 ºANO 1º Período 2º Período 3º

Leia mais

Concurso Público 2017

Concurso Público 2017 Concurso Público 017 Conteúdo I Frações frações equivalentes, simplificação de frações, comparação de frações, números fracionários, operações com frações (adição, subtração, multiplicação, divisão e potenciação).

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano EXPRESSÃO NUMÉRICA Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços

Leia mais

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e de Avaliação Números e Operações Números Sistema de decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até ao milhão Conhecer a romana Descodificar o sistema de decimal Adicionar

Leia mais

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número

Leia mais

Dos inteiros aos reais

Dos inteiros aos reais Dos inteiros aos reais Ordenação de números inteiros relativos Para além dos números positivos, na vida real utilizam-se outros números para representar situações, tal como temperatura negativas, saldos

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y. SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras

Leia mais

Matemática Básica para ENEM

Matemática Básica para ENEM Matemática Básica para ENEM Júlio Sousa I - Frações Fração também pode ser chamada de razão e é escrita da seguinte forma: a b onde a é o numerador e b o denominador, e devemos ter a Є N e b Є N* Obs:

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas Números e Operações Adição e subtração de números racionais não negativos DEPARTAMENTO DE MATEMÀTICA DISCIPLINA: Matemática PLANIFICAÇÃO 1ºperíodo - 5º ANO - Efetuar operações com números racionais não

Leia mais

Escola Adventista Thiago White

Escola Adventista Thiago White Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

I-EXPRESSÕES NUMÉRICAS

I-EXPRESSÕES NUMÉRICAS I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 4 5 + 7 2-1 + 7 2 + 6 2 = + 4 = 4 Nas expressões e sentenças matemáticas, os

Leia mais

Concurso Público 2016

Concurso Público 2016 Concurso Público 2016 Conteúdo Operações no conjunto dos números Naturais; Operações no conjunto dos números Inteiros; Operações no conjunto dos números racionais; Operações no conjunto dos números reais;

Leia mais

3º Ano e Curso Matemática Básica 02 Página 1

3º Ano e Curso Matemática Básica 02 Página 1 º Modo: O MMC é o produto de todos os fatores primos dos números, considerados uma única vez e de maior expoente. = MMC {;} = = =. NÚMEROS PRIMOS Um número natural maior que é chamado de número primo,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Planejamento Anual OBJETIVO GERAL

Planejamento Anual OBJETIVO GERAL Planejamento Anual Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2017 Professor(a): Eni OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese, relação

Leia mais

CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO 3º ANO (1º CICLO) MATEMÁTICA

CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO 3º ANO (1º CICLO) MATEMÁTICA CRTÉRO EPECÍCO DE AVALAÇÃO 3º ANO (1º CCLO) MATEMÁTCA DOMÍNO/ UDOMÍNO Números e Operações Números naturais OJETVO DECRTORE DE DEEMPENHO MENÇÕE 1. Conhecer os numerais ordinais 2. Contar até um milhão 3.

Leia mais

Conjuntos e sua Representação

Conjuntos e sua Representação Conjuntos e sua Representação Professor: Nuno Rocha nuno.ahcor@gmail.com Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.

Leia mais

AGENTE ADMINISTRATIVO FEDERAL

AGENTE ADMINISTRATIVO FEDERAL FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor

Leia mais

Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan

Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática NÚMEROS PRIMOS Por definição, os números primos são números pertencentes ao conjunto dos números naturais não nulos, que possuem

Leia mais

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2011/2012 Planificação Global 5º Ano 2011-2012 1/7 NÚMEROS

Leia mais

AGRUPAMENTO DE ESCOLAS MARTIM DE FREITAS 1º CICLO DO ENSINO BÁSICO

AGRUPAMENTO DE ESCOLAS MARTIM DE FREITAS 1º CICLO DO ENSINO BÁSICO AGRUPAMENTO DE ESCOLAS MARTIM DE FREITAS 1º CICLO DO ENSINO BÁSICO PLANO DE TRABALHO ANUAL MATEMÁTICA* 3º Ano de escolaridade Domínios/Subdomínios Objetivos/Descritores de desempenho Meses GEOMERIA E MEDIDA

Leia mais

Planejamento de Curso de Matemática para a 5º serie.

Planejamento de Curso de Matemática para a 5º serie. Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:

Leia mais

Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF

Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF Universidade Federal do Rio Grande - FURG Instituto de Matemática Estatística e Física - IMEF Apostila de Pré-Cálculo- Parte 1 Alessandro da Silva Saadi Felipe Morais da Silva 2017 2 3 Sobre os autores:

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos.

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2012-2013 Matemática METAS CURRICULARES

Leia mais

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367 Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito

Leia mais

Objetivos Gerais Descritores Conteúdos. 1.Utilizar corretamente os números ordinais até "centésimo

Objetivos Gerais Descritores Conteúdos. 1.Utilizar corretamente os números ordinais até centésimo AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 3.º ANO DE ESCOLARIDADE - 2016-2017 Domínio/ Números naturais Objetivos Gerais Descritores Conteúdos 1.Conhecer os números ordinais

Leia mais

Universidade Federal de Uberlândia Faculdade de Computação. Representação e aritmética binária

Universidade Federal de Uberlândia Faculdade de Computação. Representação e aritmética binária Universidade Federal de Uberlândia Faculdade de Computação Representação e aritmética binária Prof. Renato Pimentel 1 Tipos de informação Representação por meio de sequências binárias: 8 bits (byte) Também

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 3º ano Ano Letivo 2015/2016

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 3º ano Ano Letivo 2015/2016 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 3º ano Ano Letivo 2015/2016 1º Trimestre Domínios Números e Operações Números naturais Numerais ordinais até centésimo;

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

CONHECIMENTOS CAPACIDADES OBJETIVOS / METAS CURRICULARES

CONHECIMENTOS CAPACIDADES OBJETIVOS / METAS CURRICULARES Escola Secundária 2-3 de Clara de Resende COD. 346 779 Critérios de Avaliação Perfil de Aprendizagens Específicas (Aprovado em Conselho Pedagógico de 18 julho de 2016) AGRU P A M E N T O DE No caso específico

Leia mais

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 5º ano do Ensino Fundamental 1º BIMESTRE Compor e decompor números naturais e racionais na forma decimal. Reconhecer ordens e classes numa escrita numérica. Arredondar números na precisão desejada. Ordenar

Leia mais