MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6"

Transcrição

1 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: e Operações Fundamentais em Z. 1)Adição e Subtração Regra de sinais: - Sinais iguais das parcelas, somam-se conservando o sinal comum. 4 = = + 4 ( ) ( ) = 7 5 = 1 - Sinais diferentes das parcelas, subtraem-se conservando o sinal do maior número em valor absoluto.

2 + 4 = = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = = = = = 4 9 = = 4 9 = = = + 1 OBS.: sempre que tiver o sinal de subtração (-) na frente de um parêntese, troca o sinal do número dentro do parêntese. Propriedades da Adição a) Fechamento: a soma de dois números inteiros é sempre um número inteiro. Se a Z e b Z então ( a b) + Z ( 8) + ( + ) = 5 então se ( 8) Z e ( ) + Z então 5 Z. b) Comutativa: a ordem das parcelas não altera a soma. Se a Z e b Z, então a + b = b + a ( + 5) + ( 9) = 4 ( 9) + ( + 5) = 4 Então, ( + 5) + ( 9) = ( 9) + ( + 5) c) Associativa: não importa de que forma as parcelas sejam agrupadas ou associadas, a soma é sempre a mesma. Se a Z, b Z e c Z então, ( a + b) + c = a + ( b + c)

3 ( ) ( ) ( ) [ ] ( ) = = + 4 ( ) ( ) ( ) ( ) [ ] = = + 4 Então, ( + ) + ( 7) + ( + 9) = ( + ) + [( 7) + ( + 9) ] d) Elemento Neutro: o zero é o elemento neutro da adição. Se a Z então, a + 0 = 0 + a = a = = 7 e) Elemento oposto ou simétrico: todo o número inteiro admite um oposto ou simétrico e a soma de qualquer número inteiro com o seu oposto ou simétrico é sempre igual a zero. Se a Z ; então existe o elemento oposto ( a) tal que ( + a) + ( a) = 0 Propriedades da subtração em Z a) Fechamento: a diferença de dois números inteiros é sempre um número inteiro. Se a Z e b Z então, ( a b) ( 5) ( 8) = = + Se ( 5) Z e ( 8) Z Z então, + Z

4 4 b) A subtração em Z não possui a propriedade comutativa e associativa e não tem elemento neutro. ) Multiplicação em Z Podemos estabelecer o seguinte resumo dos sinais do produto, que chamamos Regra Prática dos Sinais do Produto. Obs.: - sinais iguais (+); - sinais diferentes (-). Obs: a multiplicação por zero é sempre nula. Exemplos: a) ( 5) 0 = 0 b) ( + 4) ( + ) = 4 = 1 c) ( 4) ( + ) = 1 d) ( 4) ( 4) = + 16

5 5 Propriedades estruturais da multiplicação em Z a) Fechamento: o produto de dois números inteiros é sempre um número inteiro. Se a Z e b Z então, ( a b) Z ( ) ( + 9) = 7 Se ( ) Z e ( 9) + Z então, 7 Z b) Comutativa: a ordem dos fatores não altera o produto. Se a Z e b Z então, a b = b a ( 10) ( + 5) = 50 ( + 5) ( 10) = 50 Então, ( 10) ( + 5) = ( + 5) ( 10) c) Associativa: não importa de que forma sejam agrupados ou associados os fatores, o produto é sempre o mesmo. Se a Z, b Z e c Z então, ( a b) c = a ( b c) d) Elemento Neutro: o número + 1 é o elemento neutro da multiplicação. Se a Z então, a ( 1) + = a ( 10) ( + 1) = ( + 1) ( 10) 10 = 10

6 6 e) Distributiva em relação à adição e à subtração: o produto de um número inteiro por uma soma algébrica pode ser obtido multiplicando-se esse número pelos termos da soma e, em seguida, somando-se os produtos parciais. Se a Z, b Z e c Z então, a ( b + c) = ab + ac ou ( ) Exemplos: a b c = ab ac ( ) ( 7 + 5) =.7 + ( ).5 = 1 15 = 6 ) Divisão de números inteiros (Divisão em Z ) Podemos estabelecer o resumo dos sinais, através da Regra Prática dos Sinais de Quociente. Obs.: na divisão: - sinais iguais (+); - sinais diferentes (-). - - A divisão exata de dois números inteiros só é possível quando o primeiro número é múltiplo do segundo e o segundo é diferente de zero.

7 7 Propriedades da divisão em Z. Observa-se que a divisão nem sempre pode ser realizada no conjunto Z. ( + 7) ( 5) ou ( 1) ( 4) não podem ser realizadas em Z. Então, não valem, em Z, as propriedades do Fechamento, Comutativa, Associativa e Elemento Neutro. A propriedade Distributiva vale só a direita e quando possível. ( 8 + 8) ( ) = 8 ( ) + 8 ( ) 4 = 4 A distributiva à esquerda, em relação à adição e subtração, não é válida. 7 ( + 9) ) Potenciação em Z ( + ) = 9, temos + é a base; é o expoente e 9 é a potência. Observa-se dois casos para os números inteiros: Primeiro caso: o expoente é um número par. Exemplos: a) ( ) ( ) ( ) + = + + = 9 (a potência é um número positivo)

8 8 b) ( ) ( ) ( ) = = + 9 (a potência é um número positivo) Quando o expoente é um número par, a potência é sempre um número positivo. Segundo caso: o expoente é um número ímpar. Exemplos: a) ( ) ( ) ( ) ( ) + = = + 8 (a potência tem o mesmo sinal da base) b) ( ) ( ) ( ) ( ) 4 = = 64 (a potência tem o mesmo sinal da base) Quando o expoente é um número ímpar, a potência tem sempre o mesmo sinal da base. 5 Exemplos: a) ( ) ( ) ( ) ( ) ( ) ( ) + = = b) ( ) ( ) ( ) ( ) ( ) ( ) = = 4 Casos particulares: 0 1 ) A potência com expoente 1 é igual a própria base. Exemplos: a) ( + 5) 1 = + 5 b) ( ) 1 5 = 5 0 ) A potência com expoente zero e base diferente, vale 1. Exemplos: a) ( + 5) 0 = 1 b) ( ) 0 = 1 Observação: a) ( ) ( ) ( ) = = + 9

9 9 Operações com potências em Z (Propriedades) 0 1 ) Produto de potências de mesma base: repete-se a base e somam-se os expoentes. Exemplos: a) ( + ) ( + ) = ( + ) = ( + ) + + b) ( ) ( ) ( ) = ( ) = ( ) ) Quociente de potências de mesma base: repete-se a base e subtraem-se os expoentes. Exemplos: a) ( ) ( ) = ( ) = ( ) ) Potência de potência: repete-se a base e multiplicam-se os expoentes. Exemplos: 6 a) ( + ) = ( + ) = ( + ) b) ( ) = ( ) = ( ) 0 4 ) Potência de um produto ou quociente: repetem-se as bases com as operações indicadas e eleva-se cada termo à potência constante. Exemplos: a) ( ) ( 5) = ( ) ( 5) b) ( 8) ( + ) = ( 8) ( + )

10 10 A PERGUNTA DO ZERO PARA O OITO O que o 0(zero) falou para o 8(oito)? - Cintinho apertado esse! 5. Radiciação de números inteiros Radiciação é a operação inversa da potenciação. a) 64 = 8 pois b) 8 = pois 8 = 64 = 8 Números Racionais Frações O conjunto dos números racionais Q, inclui o conjunto dos números inteiros Z (...,, 1,0,1,,,... ) e também as frações e os decimais. Frações: - A fração surge quando se obtém uma divisão entre dois números. 10 =? numerador - denominador Classificações: Fração decimal: o denominador é uma potência de 10 (10,100,1000, etc.)

11 11 a) b) 100 Fração ordinária: são todas as outras. a) 9 5 b) 8 c) 5 11 Fração própria: o denominador é maior que o numerador. a) 7 b) 10 c) 1 9 Fração imprópria: o numerador é maior que o denominador. a) 1 5 b) 9 c) 8 d) Quando o denominador é igual ao numerador a fração é igual a unidade (1). a) 1 = b) = c) 1 = - Todo número inteiro é igual a uma fração que tem denominador a unidade (1). 4 1 a) 4 = b) 1 = 1 1 Simplificação de frações: - Dividindo ou multiplicando numerador e denominador pelo mesmo número, não se altera a fração :5 = = :5

12 1 - Dizemos, então, que e são frações equivalentes. - Frações que não se pode simplificar diz-se irredutível. a) 4 5 b) 8 7 c) d) Redução de fração ao mesmo denominador: a) 1 b) 5 4 c) 1 d) 7 6 a) Encontra-se o MMC dos denominadores das frações acima: MMC (,4,,6 ) = 1 b) Divide-se o MMC encontrado pelos denominadores das frações e multiplicase pelos numeradores respectivos; coloca-se o MMC como sendo o novo denominador (denominador comum) ; 5 1 ; ; ; 15 1 ; 6 1 ; 14 1 Operações com frações: Adição e subtração: 1) Denominadores iguais: soma-se (adição) ou subtrai-se (subtração) os numeradores: a) + 8 = 11 b) =

13 1 1) Denominadores diferentes: reduzem-se as frações ao mesmo denominador : = + = = MMC ( ) ;5 = 15;1 (número misto) 15 O número misto representa a parte inteira somada com a fracionária = 1+ = + = Para transformar um número misto em fração imprópria basta multiplicar a parte inteira pelo denominador e somar ao numerador (processo rápido). ( ) = = = Na conversão de uma fração imprópria em número misto procede-se como no exemplo: Multiplicação de frações: Regra: multiplica-se numerador por numerador e denominador por denominador. 4 4 = = = =

14 14 Divisão: Regra: multiplicamos a primeira fração pelo inverso da segunda. : 5 = 8 = 4 = Atenção: se estiver multiplicando, dividindo ou subtraindo frações com números mistos, transforme em fração imprópria: - Somente se for adição, pode-se somar as partes inteiras separadamente: = = 7 + = = 8 Fração de fração: - Neste caso multiplica-se as frações envolvidas. 8 de 1 = 1 = de 1 1 = = = Potenciação com fração: - Eleva-se numerador e denominador à potência desejada. 9 = = = = 4 81

15 15 OS IRMÃOS GÊMEOS Dois irmãos gêmeos, na barriga, já na hora de nascer. - Mano tu vai primeiro. O outro respondeu: - Não vai tu primeiro, tu vai ser o mais velho. - Tá bom e então. Quando ele saiu o médico deu duas palmadas no bumbum dele, de repente ele volta com tudo pra dentro da barriga da sua mãe e diz para o irmão: - Não sai aí não mano, que a porrada está comendo solta!!! Fonte: Exercícios Resolvidos: a) b) = = = = = = É possível simplificar antes de efetuar a multiplicação, portanto: = = = c) = = = =

16 16 Operações com números decimais: Adição: 9, 4 + 7, , 5 a) Coloca-se as vírgulas em ordem (colunas): 9,4+7,77+1,5= b) Completa-se com zeros e efetua-se a operação(adição): Subtração: 15,8 4, 687 a) Coloca - se vírgula abaixo de vírgula: 15,800 minuendo - 4,687 subtraendo 11,18 resto Multiplicação: 4,91,987

17 17 a) Efetua-se a multiplicação como se os números fossem inteiros: x 4,91, ,81717 produto b) O número de casas decimais do resultado será a soma do número de casas decimais dos fatores. 4, 91 casas decimais x,987 casas decimais 1, casas decimais Divisão: 4, 0, 4 1,61 6,1 Regra: a) Acrescenta-se zeros para igualar o número de casas decimais do dividendo e do divisor. 4,0 0, 4 1,61 6,1000

18 18 b) Elimina-se as vírgulas: c) Se o dividendo for menor que o divisor, acrescenta-se zeros ao dividendo, compensando no quociente da seguinte maneira: 1 zero no dividendo 0, no quociente zeros no dividendo 0,0 no quociente zeros no dividendo 0,0,0 no quociente, etc. d) Inicia-se a divisão, até que se esgotem os algarismos do dividendo , 1 e) Quando esgotarem-se os algarismos do dividendo, é necessário acrescentar um zero ao resto, do seguinte modo: - Se o quociente já tem parte decimal (vírgula), acrescenta-se um zero ao resto sem acrescentar zero ao quociente , f) Se for necessário acrescentar mais zeros ao resto, coloca-se um zero no quociente para cada zero no resto até que este seja maior ou igual ao divisor.

19 , Se o quociente não têm vírgula, então a colocação de um zero no resto é acompanhada da colocação de vírgula no quociente , Conversão de uma fração em número decimal a) Frações decimais: 1 = 0,1 10 (um décimo) 1 = 0, (um centésimo) 1 = 0, (um milésimo) Neste caso a vírgula se desloca para a esquerda tantas casas quantos forem o número de zeros do denominador , =

20 0 Dízimas periódicas: Observa-se que toda fração sempre produz um número decimal finito ou infinito periódico (dízimas) 1 = 0,5 (decimal finito) 1 = 0, (dízima periódica) 6 Chama-se período a parte que repete (6, no exemplo acima de dízima periódica). Dízimas periódicas simples: o período começa logo após a vírgula. 0, (ou 0, 4 ou 0, ( 4 ) ) Dízima periódica composta: há uma parte não periódica entre a vírgula e o período. 0, ou 0,551 ou 0,5( 51 ) período = 51 parte não periódica = 5 Conversão de um número decimal em fração a) Decimal finita: coloca-se o numerador o número inteiro sem a vírgula e no denominador a unidade seguida de tantos zeros quantos forem os algarismos de parte decimal ,515 = 1000

21 1 15 0,00015 = a) Decimal infinita periódica (dízimas): - Dízimas periódicas simples: escreve-se no numerador o período, e no denominador tantos noves quantos são os algarismos do período. 0, 5 5 = (fração geratriz) 99 - Dízima periódica composta: Numerador: parte não periódica seguida de um período menos a parte não periódica. Denominador: tantos noves quantos são os algarismos do período seguidos de tantos zeros quantos são os algarismos da parte não periódica , = ,14 = + = Observação: Todo número decimal finito ou dízima periódica sempre pode ser convertido na fração correspondente. 41 0,41 = ; , = = = No entanto há decimais infinitos não periódicos e que não podem ser convertidos em frações. Estes números são conhecidos como números irracionais. = 1,

22 5 =, π =, Só para descontrair...quantos cavalos você vê nesta foto????? Números Reais É o conjunto formado pelos números racionais e irracionais. - Soma algébrica (adição e subtração): Sinais iguais: soma-se os valores absolutos e dá-se ao resultado o mesmo sinal.

23 ( + 4) + ( + 5) = + 9 ( + ) + ( + 8) = + 10 ( + 5) + ( + 7) = + 1 ( ) + ( 5) = 7 ( 1) + ( 8) = 9 Sinais diferentes: subtraem-se os valores absolutos. O sinal será igual ao sinal do maior valor absoluto. ( + 7) + ( ) = + 5 ( + ) + ( 9) = 6 ( + 8) + ( 7) = + 1 ( + ) + ( 4) = 1 Observação: valor absoluto é o valor do número sem sinal. Valor absoluto de 5 = 5 Valor absoluto de + 8 = 8 - Nos números negativos quanto maior o seu valor absoluto menor será este número. 8 Para eliminar parênteses: a) Sinal ( + ) antes do parênteses: o número permanece com o mesmo sinal; b) Sinal ( ) antes do parênteses: o número muda de sinal.

24 4 ( 4) + ( + ) = 4 + = = = + = Multiplicação e Divisão: Sinais iguais: resultado positivo ( + ) Sinais diferentes: resultados negativos ( ) ( + ) ( + ) = + 6 ( ) ( 5) = + 15 ( + 8) ( 4) = 9 + = ( ) ( + 4) ( ) ( + 4) ( 7) = 67 ( + 1) ( ) ( + 1) ( ) = + 6 Potenciação: Significa multiplicação repetida. = 81; então podemos escrever 4 = 81 Base 5 expoente = potência

25 5 Observação: Base negativa: Expoente par: potência positiva. ( ) = 4 Expoente ímpar: potência negativa. ( ) = 8 Base positiva: Potência sempre positiva. + = 9 Cuidado: ( ) = + 4 = 4 Propriedades: a) 1 a = a ; 8 1 = 8 b) c) 0 a = 1; a n 1 = ; n a 0 51 = 1-1 = 1 = 8 d) a b a m a = b m m a ; m e) ( ) n m n = ; ( ) = = 4 81 = 10 f) ( ) n n n a b = a b ; ( ) y = y g) m n m n a a = a ; h) 1 a = 1; = 1 a a = a = a Cuidado: ( ) 6 = = 64 9 = = 51

26 6 Radiciação: É a operação inversa da potenciação. = 8 ; logo: 8 = = 9 ; logo: 9 = Índice ց Radical 8 = raiz ց radicando Propriedades: a) n a b = n a n b ; 4 y = 4 y = y b) n a b = n n a b ; 9 16 = 9 16 = 4 c) n m a = n m a ; = 4 d) m a p = p m a ; = Observação: - ausência de expoente: expoente 1. - ausência de índice na raiz: índice. = 1 = 1

27 7 Operações com radicais: Adição e subtração: Só é possível se os radicais forem semelhantes: = 1 = 4 + = = = + 5 As vezes os radicais são iguais, mas torna-se necessário fatorar os radicandos para que se evidencie a igualdade. + 8 = + = + = = = = 5 5 Multiplicação: a) Mesmo índice: multiplica-se os radicandos e conserva-se os índices. 5 = = 8 b) Índices diferentes: para multiplicar é necessário convertê-los para o mesmo índice. 4 5 =

28 8 Regra: - Encontra-se o MMC dos índices. MMC (; ; 4;) = 1 -Divide-se o MMC pelo índice e coloca-se o resultado no expoente do radicando respectivo; o novo índice será o MMC calculado. ( 1 ) ( 1 ) ( 1 4) 5 = = =.. = Divisão: a) índices iguais: conserva-se os índices e divide-se os radicandos: 8 8 = = = = 1 = 1 15 c) índices diferentes: é necessário convertê-los para o mesmo índice, de maneira análoga à multiplicação( MMC do índice) = = Observação: como um número decimal pode ser convertido em fração, extraímos a raiz do seguinte modo:

29 ,15 = = = = = 0, ,0009 = = = = 0,0 Racionalização: - Consiste na simplificação de uma fração que tenha radical no denominador para que este radical desapareça do denominador, = = = HORA DO RECREIO!!!!! Os Caçadores e o Leão Dois caçadores estavam sentados sob uma árvore descansando, quando ouvem um rugido. - Meu Deus, um leão! - gritou um deles. Mais do que depressa o outro começa a calçar as suas botas. - Por que você está calçando as botas? - pergunta o outro. - Você não acha que é capaz de correr mais do que o leão, acha? - Não! Mas acho que sou capaz de correr mais do que você!

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

DECIMAIS. Definições e operações

DECIMAIS. Definições e operações DECIMAIS Definições e operações A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,

Leia mais

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula

Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Aula 1: Conjunto dos Números Inteiros

Aula 1: Conjunto dos Números Inteiros Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}

O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...} 07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z

Leia mais

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010.

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010. Matemática Essencial Números Racionais Conteúdo Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Relacionando

Leia mais

Técnico Judiciário TJ / RS

Técnico Judiciário TJ / RS CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las

Leia mais

Aula Teórica: Potenciação e Potência de dez

Aula Teórica: Potenciação e Potência de dez Aula Teórica: Potenciação e Potência de dez Objetivo Familiarizá-lo com a utilização de expoentes e potências de dez, que são de uso frequente nas práticas de laboratório e também nos trabalhos e atividades

Leia mais

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos

Leia mais

EBS DA GRACIOSA - ENSINO BÁSICO 7.º ANO

EBS DA GRACIOSA - ENSINO BÁSICO 7.º ANO EBS DA GRACIOSA - ENSINO BÁSICO 7.º ANO M A T E M Á T I C A: RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O 1 P R O F E S S O R C A R L O S MI G U E L S A N T O S 1. Escrevendo o número de horas em

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Matemática Básica Introdução / Operações matemáticas básicas

Matemática Básica Introdução / Operações matemáticas básicas Matemática Básica Introdução / Operações matemáticas básicas 0. Softwares que podem ser úteis no estudo da disciplina: Geogebra gratuito, possui versões para windows e linux disponível em http://www.geogebra.org

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS

MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS Multiplicação com números decimais Há duas maneiras de efetuarmos a multiplicação envolvendo números decimais: multiplicação de número natural por decimal e multiplicação

Leia mais

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF

Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF Universidade Federal do Rio Grande - FURG Instituto de Matemática Estatística e Física - IMEF Apostila de Pré-Cálculo- Parte 1 Alessandro da Silva Saadi Felipe Morais da Silva 2017 2 3 Sobre os autores:

Leia mais

SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO

SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO SECRETARIA DA SEGURANÇA PÚBLICA DO ESTADO DE SÃO PAULO Concurso Público 2016 Conteúdo - Operações com números reais. Mínimo múltiplo comum e Máximo divisor comum. - Razão e proporção. - Porcentagem. -

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

Nivelamento de Matemática Centro Universitário Leonardo da Vinci. Organização Cristiane Bonatti. Reitor da UNIASSELVI Prof.

Nivelamento de Matemática Centro Universitário Leonardo da Vinci. Organização Cristiane Bonatti. Reitor da UNIASSELVI Prof. Rodovia BR 470, km 71, n 1.040, Bairro Benedito Caixa postal n 191 - CEP: 89.130-000. lndaial-sc Fone: (0xx47) 3281-9000/3281-9090 Home-page: www.uniasselvi.com.br Nivelamento de Matemática Centro Universitário

Leia mais

QUERIDO(A) ALUNO(A):

QUERIDO(A) ALUNO(A): 1 QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS I. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS DOS TEMAS ABORDADOS PARA USO

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125 A Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) 24 + 25 + 76 = (24 + 76) + 25 = 100 + 25 = 125 2) 192 + 65 = (200 8) + 65 = 200 + 65 8 = 200 + 57

Leia mais

Provão. Matemática 4 o ano

Provão. Matemática 4 o ano Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

AULA 01: RACIOCÍNIO LÓGICO. 1. Tópicos de matemática básica Resolução de questões Questões apresentadas na aula 78 4.

AULA 01: RACIOCÍNIO LÓGICO. 1. Tópicos de matemática básica Resolução de questões Questões apresentadas na aula 78 4. AULA 01: RACIOCÍNIO LÓGICO SUMÁRIO PÁGINA 1. Tópicos de matemática básica 01 2. Resolução de questões 42 3. Questões apresentadas na aula 78 4. Gabarito 94 Olá! Hoje iniciamos o nosso curso de Raciocínio

Leia mais

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte

Leia mais

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro. MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa

Leia mais

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h 1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)

Leia mais

Frações e porcentagens. Prof. Marcelo Freitas

Frações e porcentagens. Prof. Marcelo Freitas Frações e porcentagens Prof. Marcelo Freitas FRAÇÃO A fração representa a idéia da divisão de um inteiro (objeto, figura, número, etc) em partes iguais e destas partes pegamos uma ou mais, conforme o nosso

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

Dos inteiros aos reais

Dos inteiros aos reais Dos inteiros aos reais Ordenação de números inteiros relativos Para além dos números positivos, na vida real utilizam-se outros números para representar situações, tal como temperatura negativas, saldos

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / 98 1ª QUESTÃO MÚLTIPLA ESCOLHA 1 1ª QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES A ESQUERDA. Item 01. Dos conjuntos abaixo especificados, o conjunto unitário é o conjunto a. ( ) dos rios

Leia mais

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro Números Racionais MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro O que são números racionais? Alguma definição? Como surgiram? Relacionados a quais ideias ou situações? Representação

Leia mais

Concurso Público 2016

Concurso Público 2016 Concurso Público 2016 Conteúdo Operações no conjunto dos números Naturais; Operações no conjunto dos números Inteiros; Operações no conjunto dos números racionais; Operações no conjunto dos números reais;

Leia mais

unidade de milhar Centena dezena unidade ordem

unidade de milhar Centena dezena unidade ordem 1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Planejamento de Curso de Matemática para a 5º serie.

Planejamento de Curso de Matemática para a 5º serie. Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Conceituar número primo. Verificar se um número dado é ou não primo. Obter o Máximo Divisor Comum (M.D.C.) de dois ou mais números usando o conjunto

Conceituar número primo. Verificar se um número dado é ou não primo. Obter o Máximo Divisor Comum (M.D.C.) de dois ou mais números usando o conjunto Conceituar número primo. Verificar se um número dado é ou não primo. Obter o Máximo Divisor Comum (M.D.C.) de dois ou mais números usando o conjunto dos divisores, a decomposição em fatores primos e as

Leia mais

Matemática Régis Cortes EQUAÇÕES DE GRAUS

Matemática Régis Cortes EQUAÇÕES DE GRAUS EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a

Leia mais

MATEMÁTICA. Docente: Marina Mariano de Oliveira

MATEMÁTICA. Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira Bacharelado em Meteorologia (incompleto) Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

Multiplicação Divisão

Multiplicação Divisão Multiplicação Divisão 1 Introdução Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Multiplicação; Divisão. 2 MULTIPLICAÇÃO

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

I-EXPRESSÕES NUMÉRICAS

I-EXPRESSÕES NUMÉRICAS I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 4 5 + 7 2-1 + 7 2 + 6 2 = + 4 = 4 Nas expressões e sentenças matemáticas, os

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Propriedades das Operações Aritméticas em Q

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Propriedades das Operações Aritméticas em Q Agrupamento de Escolas de Almeirim Matemática 7.º Ano Propriedades das Operações Aritméticas em Q Potências A definição usual de potência, remetendo para um expoente natural, reporta-se a uma multiplicação.

Leia mais

Aula 01 Raciocínio Lógico-Matemático p/ TRF-4 - Todos os Cargos - Com Videoaulas

Aula 01 Raciocínio Lógico-Matemático p/ TRF-4 - Todos os Cargos - Com Videoaulas Aula 01 Raciocínio Lógico-Matemático p/ TRF-4 - Todos os Cargos - Com Videoaulas Professor: Arthur Lima ! # %& AULA 01: Tópicos de matemática básica SUMÁRIO PÁGINA 1. Teoria 01 2. Resolução de questões

Leia mais

AGENTE ADMINISTRATIVO FEDERAL

AGENTE ADMINISTRATIVO FEDERAL FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a

Leia mais

Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25

Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25 Sumário CAPÍTULO 1 Números 1. Os números registram o mundo em que vivemos 11 2. Sistemas de numeração 12 3. O sistema de numeração indo-arábico 16 Leitura e escrita de um número no sistema de numeração

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

Fração. Parte ou pedaço de um inteiro.

Fração. Parte ou pedaço de um inteiro. Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais