MÓDULO 2 POTÊNCIA. Capítulos do módulo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MÓDULO 2 POTÊNCIA. Capítulos do módulo:"

Transcrição

1 MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida profissional. Capítulos do módulo: 1. Número em forma de potência; 2. Regras de potenciação e radiciação; 3. Fatoração.

2 CAPÍTULO 1 Número em forma de potência A ideia de potência é um conceito bem antigo que ajuda na solução de problemas de um alto grau de complexidade. Por exemplo, se tivermos que fazer 2 x 2 x 2 x 2 x 2, podemos dizer que temos 2 5, o que resulta em Por que utilizar potências? Essa necessidade de utilizar potências para representar um número é útil quando temos um valor muito grande ou extremamente pequeno. Se você tiver o número , que não é tão grande, pode facilmente substituído pela potência de 2 20, que é nada mais do que 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2, percebeu a redução de tamanho? No nosso cotidiano! Um jogo de xadrez é formado por um tabuleiro tipo 8 x 8 e representa uma matriz quadrada de ordem 8. Podemos calcular o número de casas desse tabuleiro utilizando conhecimentos sobre potência. Para isso, elevamos o número de linhas (8) ao número de colunas (8), ficando 8²=64.

3 CAPÍTULO 2 Regras de potenciação e radiciação Assim como qualquer conceito matemático, existem regras importantes para a execução das operações de potências e de raízes Regras de potenciação: 1. Todo número diferente de zero e elevado a zero é um. a. 2 0 = 1 b = 1 c. ( 12) 0 = 1 2. Todo número diferente de zero e elevado a um é o próprio número. a. 2 1 = 2 b = Base zero e qualquer número no expoente, o resultado será zero. a = 0 b = 0 4. Base negativa e expoente ímpar, resultado negativo. a. ( 3) 3 = ( 3) x ( 3) x ( 3) = 27 b. ( 4) 5 = ( 4) x ( 4) x ( 4) x ( 4) x ( 4) = Base negativa e expoente par, resultado positivo. a. ( 2) 4 = ( 2) x ( 2) x ( 2) x ( 2) = +16 b. ( 7) 2 = ( 7) x ( 7) = Se a base for um número racional (fração): devemos elevar ao expoente indicado o numerador e o denominador da fração.

4 a. 7. Quando o expoente é um número negativo: invertemos a base e mudamos o sinal do expoente para positivo. a. Uma importante aplicação de potenciação é a notação científica, usada para expressar valores muito grandes ou muito pequenos. A notação é usada por cientistas, como astrônomos, físicos, biólogos, químicos entre outros. Exemplos: , podemos representá lo usando a seguinte notação decimal 6,12 x ,00012, pode ser representado por 1,2 x 10 4.

5 2.2 - Regras de radiciação: Radiciação é a operação inversão à potenciação. Se tivermos um valor 5², dizemos que o 5 está multiplicando ele mesmo, ou seja, 5 x 5 = 25, porém, e quando queremos saber o inverso dessa operação? Se pegarmos o 25 e tirarmos a raiz dele, teremos (25) = 5 < > 5² = 25. Potenciação de Radicais Observando as potencias, temos que: De modo geral, para se elevar um radical a um dado expoente, basta elevar o radicando àquele expoente. Exemplos: Divisão de Radicais Segundo as propriedades dos radicais, temos que: De um modo geral, na divisão de radicais de mesmo índice, mantemos o índice e dividimos os radicais: Exemplos: : =

6 Se os radicais forem diferentes, devemos reduzi los ao mesmo índice e depois efetue a operação. Exemplos:

7 CAPÍTULO 3 Fatoração Mas você deve estar se perguntando: como eu faço para o obter o resultado de uma radiciação? Simples, separe em fatores! Como fatorar? A ideia de fatoração consiste em pega o valor do radicando e ir dividindo ele pelos números primos, por exemplo, para resolver a raiz quadrada de 64, podemos fazer o seguinte: (64) = Após efetuar a fatoração, precisamos tirar os valores em grupos com quantidades referentes ao número no índice, ou seja, no exemplo a cima, vamos tirar um número à cada dois dele mesmo. Como temos seis números dois, vamos tirar três deles, fazendo agora a multiplicação: 2 x 2 x 2 = 8 Vamos tirar a raiz de (75): Como o nosso índice é 2, vamos tirar um, ou mais números, à cada dois dele mesmo.

8 O número 5 pode sair da raiz, pois temos duas unidades dele. Já o número 3 só tem uma vez na execução da fatoração. Logo, deixamos o 5 fora do radical e o 3 permanece dentro dele: 5 (3) Como vemos, nem sempre o resultado vai ser uma raiz exata, mas nós, matemáticos, sabemos que a multiplicação de 5 pela raiz de 3 é igual ao resultado que uma calculadora iria dar para a raiz de 75.

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

Onde estão as potências?

Onde estão as potências? A ideia de potência é muito antiga e desde tempos remotos suas aplicações facilitaram a vida humana auxiliando, tornando possíveis muitas representações matemáticas solucionando problemas de elevado grau

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC

FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC PROJETO KALI MATEMÁTICA A AULA 0 FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC Introdução Hoje iniciaremos o estudo de alguns assuntos extremamente importantes para uma maior compreensão no ensino da

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Cálculo com expressões que envolvem radicais

Cálculo com expressões que envolvem radicais Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

A definição pode ser estendida para os seguintes casos particulares: e, com.

A definição pode ser estendida para os seguintes casos particulares: e, com. FUNÇÃO EXPONENCIAL REVISÃO: POTENCIAÇÃO Dados um número real a e um número natural n, a expressão a n representa a operação de potenciação onde a é chamado base e n é o expoente, e cujo resultado é obtido

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

EBS DA GRACIOSA - ENSINO BÁSICO 7.º ANO

EBS DA GRACIOSA - ENSINO BÁSICO 7.º ANO EBS DA GRACIOSA - ENSINO BÁSICO 7.º ANO M A T E M Á T I C A: RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O 1 P R O F E S S O R C A R L O S MI G U E L S A N T O S 1. Escrevendo o número de horas em

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

SISTEMA ANGLO DE ENSINO G A B A R I T O

SISTEMA ANGLO DE ENSINO G A B A R I T O Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h 1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)

Leia mais

Aula 1: Conjunto dos Números Inteiros

Aula 1: Conjunto dos Números Inteiros Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Aula 1. e o conjunto dos inteiros é :

Aula 1. e o conjunto dos inteiros é : Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro

Leia mais

CONJUNTOS EXERCÍCIOS DE CONCURSOS

CONJUNTOS EXERCÍCIOS DE CONCURSOS CONJUNTOS EXERCÍCIOS DE CONCURSOS E0626 (IBEG Merendeira Prefeitura de Uruaçu GO). Sendo os conjuntos A = {2, 4, 6, 8, 10, 12}; B = {1, 3, 5, 7, 9, 11}; C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. I A

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /01 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente

Leia mais

SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS

SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UFRN CENTRO DE ENSINO SUPERIOR DO SERIDÓ CERES DEPARTAMENTO DE CIÊNCIAS EXATAS E APLICADAS DCEA PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO Á DOCÊNCIA (PIBID)

Leia mais

Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte:

Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte: Potenciação 31 Sanja Gjenero Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay Fonte: www.sxc.hu e-tec Brasil Estatística Aplicada META Apresentar as operações de potenciação. OBJETIVOS PRÉ-REQUISITOS

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

02. (FEI-SP) O valor da expressão é: a) 1 ERRADO. MAIS ATENÇÃO ÀS OPERAÇÕES E SINAIS. b) ERRADO! PRESTE ATENÇÃO EM QUAL OPERAÇÃO RESOLVER PRIMEIRO

02. (FEI-SP) O valor da expressão é: a) 1 ERRADO. MAIS ATENÇÃO ÀS OPERAÇÕES E SINAIS. b) ERRADO! PRESTE ATENÇÃO EM QUAL OPERAÇÃO RESOLVER PRIMEIRO 01. (PUC-SP) O número de elementos distintos da sequência,,,, é: a) 1 ERRADO, SINAL NEGATIVO NO EXPOENTE SIGNIFICA ENVIAR O NUMERADOR PARA DENOMINADOR b) 2 CORRETA! c) 3 ERRADO! SINAL NEGATIVO NA BASE

Leia mais

Uso da calculadora científica 82MS... 2

Uso da calculadora científica 82MS... 2 Uso da calculadora científica 82MS... 2 Ligar a calculadora... 2 Modo de operação... 2 Digitação de números... 2 Correção de digitação... 3 Segunda função... 3 Desligar a calculadora... 3 Fixação do número

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

M A T E M Á T I C A Desenho Curricular por Área

M A T E M Á T I C A Desenho Curricular por Área M A T E M Á T I C A Desenho Curricular por Área Módulo 1 Conteúdo... Habilidades e Competências... 10 unidades... Matemáticas Módulo 2 Conteúdo... Habilidades e Competências... 10 unidades... Módulo 3

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

A fórmula de Bhaskara

A fórmula de Bhaskara A fórmula de Bhaskara fernandopaim@paim.pro.br A equação do 2º grau apresenta a seguinte forma geral, onde os coeficientes são constantes e o coeficiente deve ser diferente de zero, caso contrário, não

Leia mais

» Potenciação e Radiciação

» Potenciação e Radiciação -* Nome: nº Ano: 9º Ano/EF Data: 30/06/2013 Exercícios de Matemática Professor: Hélio N. Informações Importantes: Não é permitido o uso de calculadora ou qualquer material eletrônico; Esta lista não tem

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

Microsoft Equation 3.0

Microsoft Equation 3.0 Microsoft Equation 3.0 Instalação: http://support.microsoft.com/kb/228569/pt-br (observe a versão do Office) Fonte deste material: http://www.laboratoriovirtualdematematica.org/apostilas/diversos/equation.htm

Leia mais

Escola Adventista Thiago White

Escola Adventista Thiago White Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

INEQUAÇÕES : Conceito:

INEQUAÇÕES : Conceito: INEQUAÇÕES : Conceito: Toda inequação é uma desigualdade aberta, o que significa que ela contém ao menos uma incógnita Trabalharemos a seguir com inequações de º e de º graus com uma só incógnita, e para

Leia mais

1.3 CÁLCULO DOS VALORES APROXIMADOS

1.3 CÁLCULO DOS VALORES APROXIMADOS 1.3 CÁLCULO DOS VALORES APROXIMADOS 302 Página em branco 1.3 CÁLCULO DOS VALORES APROXIMADOS 1. - Consideremos uma recta orientada, sobre a qual se escreveu um ponto para origem e um comprimento para unidade.

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010.

Números Racionais. Matemática - UEL Compilada em 25 de Março de 2010. Matemática Essencial Números Racionais Conteúdo Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Relacionando

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Nivelamento de Matemática Centro Universitário Leonardo da Vinci. Organização Cristiane Bonatti. Reitor da UNIASSELVI Prof.

Nivelamento de Matemática Centro Universitário Leonardo da Vinci. Organização Cristiane Bonatti. Reitor da UNIASSELVI Prof. Rodovia BR 470, km 71, n 1.040, Bairro Benedito Caixa postal n 191 - CEP: 89.130-000. lndaial-sc Fone: (0xx47) 3281-9000/3281-9090 Home-page: www.uniasselvi.com.br Nivelamento de Matemática Centro Universitário

Leia mais

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS E TECNOLOGIAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 5 ºANO 1º Período 2º Período 3º

Leia mais

Uso da calculadora científica 105B... 2

Uso da calculadora científica 105B... 2 Uso da calculadora científica 105B... 2 Ligar/desligar a calculadora... 2 Digitação de números... 2 Utilização de separadores (ponto e vírgula)... 3 Correção de digitação... 3 Segunda função... 3 Fiação

Leia mais

Números e Operações. Nome: N.ª: Ano: Turma:

Números e Operações. Nome: N.ª: Ano: Turma: MATEMÁTICA 3º CICLO FICHA 1 Números e Operações Números Racionais Nome: N.ª: Ano: Turma: Data: / / 20 Os números 1, 2, 3, 4, 5, chamam-se números naturais. O conjunto dos números naturais representa-se

Leia mais

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Propriedades das Operações Aritméticas em Q

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Propriedades das Operações Aritméticas em Q Agrupamento de Escolas de Almeirim Matemática 7.º Ano Propriedades das Operações Aritméticas em Q Potências A definição usual de potência, remetendo para um expoente natural, reporta-se a uma multiplicação.

Leia mais

MATEMÁTICA Prof.: Alexsandro de Sousa

MATEMÁTICA Prof.: Alexsandro de Sousa E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

AULA 4: EQUIVALÊNCIA DE TAXAS

AULA 4: EQUIVALÊNCIA DE TAXAS MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano EXPRESSÃO NUMÉRICA Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços

Leia mais

Exponencial: Equação e Função (Operações Básicas)

Exponencial: Equação e Função (Operações Básicas) Exponencial: Equação e Função (Operações Básicas) Profª: Helen Savi Mondo de Oliveira Setembro 2014 Um pouco sobre a história O primeiro indício do uso de equações está relacionado, aproximadamente, ao

Leia mais

1º Período. Figuras geométricas

1º Período. Figuras geométricas ii 1º Período Figuras geométricas Quadrado polígono com quatro lados iguais e com quatro ângulos rectos. Rectângulo polígono com quatro lados iguais dois a dois e com quatro ângulos rectos. Trapézio rectângulo

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais