1.1. Potenciação com expoentes Inteiros

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1.1. Potenciação com expoentes Inteiros"

Transcrição

1 Potenciação, Radiciação e Notação Científica Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre Potenciação Quando fazemos uma multiplicação os números envolvidos nesta operação são chamados de fatores e o resultado da multiplicação é o produto. Quando temos todos os fatores iguais, então podemos utilizar uma propriedade chamada de potenciação para representar esta multiplicação. De forma geral, a.a.a {{ a = a n, onde n fatores a: A base sempre será o valor do fator. n: O expoente é a quantidade de vezes que o fator repete Potenciação com expoentes Inteiros Seja a n, onde a base a R e o expoente n Z, entao: 1. a 0 = 1; 2. a n = a a {{ a, onde n > 1 n vezes 3. a n = 1 a n, onde n > 0 4. a m a n = a m+n 5. a m a n = am n 6. (a m ) n = a m n = (a n ) m 7. (a b) n = a n b n, onde b R ( a ) n a n 8. =, onde b R b bn A seguir, serão apresentados alguns exemplos com as operações de potenciação: (2.013) 0 = = = {{. 4 vezes 5 2 = = = = 37 5 = 3 2. ( 2 3) 5 = = a 15. (3 5) 2 = ( ) 4 2 = OBS.: (a + b) n a n + b n, para n 1 e a 0 ou b 0; Ex.: Note que (1 + 2) , pois (1 + 2) 4 = 3 4 = = 81 enquanto = = 33.

2 1.2. Radiciação - Potenciação com expoentes Racionais O símbolo n a é utilizado para representar a raiz enésima de a, onde: : radical; a: radicando; n: índice. Se y = n x, estamos buscando o número y que multiplicado ele por ele mesmo n vezes resulta em x. 2 OBS.: A raiz quadrada de um número pode ser representada das seguintes maneiras: a = a. Vejamos algumas propriedades da radiciação: 1. Se a < 0 e n for um número par, então n a = no conjunto dos números reais n a n a 5. b = n b 2. Se a < 0 e n for um número ímpar, então é possível determinar n a no conjunto dos números reais 3. a m n = n a m n am = ( n a) m m n a = m n a 4. n a b = n a n b 8. ( n a) m = n a m OBS.: A propriedade 3 mostra que a raiz n-ésima de um determinado valor pode ser encarada como uma potenciação onde o expoente é um número racional, ou seja, uma fração. Transformando uma raiz em uma potência, podemos trabalhar com as propriedades de potenciação. Determine Queremos descobrir o número que vezes ele mesmo duas vezes seja igual a 81. O número procurado é 9, ou seja, 2 81 = 9. Utilizando as propriedades de potenciação: = 3 4 = = 3 2 = 9. Determine Queremos descobrir o número que vezes ele mesmo três vezes seja igual a 64. O número procurado é 4, ou seja, 3 64 = 4. Utilizando as propriedades de potenciação: 3 64 = = = 2 2 = =, pois não existe um número que vezes ele mesmo dê 25, já que o produto de dois números iguais será sempre um número positivo = = = = = = = 6 64 ( 3 8) 2 = OBS.: CUIDADO!!! n a + b n a + n b Ex.: Note que , pois = 2 9 = 3 enquanto , , 6457 = 4, 0599.

3 2. Potência de 10 Um caso muito utilizado cientificamente são as potências de 10. Neste caso, trabalha-se com os números na forma m 10 E, onde 1 m 9 é um número real e E é o expoente da potência de 10. Vejamos algumas situações: = (1, ) ( ) = 1, , = (9, 4) (0, 00001) = 9, Quando é necessário fazer operações como multiplicação ou divisão, operamos utilizando as regras de potenciação vistas: (2, ) ( ) = (2, 1 3) ( ) = 6, = 6, = = = Quando é necessário fazer operações como adição ou subtração, devemos operar somente se as potências de 10 utilizadas forem idênticas. Quando estas não forem, devemos tranforma-las de forma a tornar as potências de 10 iguais. (2, ) + ( ) = (2, 1 + 3) 10 5 = 5, (1, ) + ( ) = (1, ) + (0, ) = (1, , 04) 10 6 = 1, Na notação científica, o conceito de múltiplos, submúltiplos e seus prefixos são muito úteis. Segue abaixo uma tabela representativa: Potência de Base 10 Nome Símbolo = 0, yocto y = 0, zepto z = 0, atto a = 0, femto f = 0, pico p 10 9 = 0, nano n 10 6 = 0, micro µ 10 3 = 0, 001 mili m 10 2 = 0, 01 centi c 10 1 = 0, 1 deci d 10 0 = = 10 deca da 10 2 = 100 hecto h 10 3 = 1000 kilo k 10 6 = mega M 10 9 = giga G = tera T = peta P = exa E = zetta Z = yotta Y Utilizando a tabela, podemos criar múltiplos e submúltiplos de grandezas físicas como: Dois micro ohms: 2, 0 µω = 2, Ω = 0, Ω Um kilowatt: 1, 0 kw = 1, W = W Considere um objeto com um comprimento de x = 2, 0 m. Este valor em centímetros será dado por: x = 2, 0 m = 200, m = 200, 0 cm Este valor em hectometros será dado por: x = 2, 0 m = 0, m = 0, 002 hm

4 EXERCÍCIOS - Potenciação, Radiciação e Notação Científica Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Nome : Ra : P rojetos Manhã P rojetos Noite 1. Escrever em notação exponencial: (a) (b) x x x x x (c) x 2 x (d) e π e e π (e) 2 a a 2 x 2. Utilize as propriedades de potenciação e escreva a solução em notação exponencial: (a) (b) (c) a 4 b 2 a 3 b (d) 11 8 : 11 5 (e) (f) (g) (h) [( x) 25] 2 (i) : Utilize as propriedades de potenciação e resolva: (a) Se x < 0 e n par, então x n será positivo ou negativo? (b) Se x < 0 e n ímpar, então x n será positivo ou negativo? 4. Utilize as propriedades de potenciação e resolva: ( 123 (a) 659 (b) (57) 1 (c) 3 2 (d) ( 3) 2 (e) ( 3) 3 ) 0 (f) ( 3) 4 (g) (2) 7 (h) (2) 5 ( ) 3 5 (i) 2 (j) ( ) (k) (5 a) 2 (l) (2 x) 4 5. Coloque os valores como potência de 10: (a) (b) (c) 0, (d) 0, Coloque os valores na forma decimal: (a) (b) 0, (c) (d) 0, Escreva em notação científica: (a) A massa de um próton: 0, kg. (b) A massa da Terra é de cerca de kg (c) A circunferência da Terra é de aproximadamente m (d) A velocidade da luz em unidades SI é m/s (e) 1 mol de moléculas tem moléculas. 8. Resolva as seguintes operações (a) (1, ) ( ) (b) (2, ) ( ) (c) (d) (e) (3, ) (2, ) (f) (1, ) + (4, ) 9. Considere uma chapa circular com diâmetro de m. Sabendo que uma circunferência de raio r possui a área definida por A = π r 2, determine a área da chapa.

5 10. A primeira lei de Ohm estabelece que a razão entre a diferença de potencial (volt) e a corrente elétrica (ampère) em um condutor é igual a resistência elétrica (ohm) desse condutor, ou seja, R = U I. (a) Qual o valor da resistência se U = 1, V e I = 1, A? (b) Qual o valor da diferença de potencial se R = 1, Ω e I = 5, A? (c) Qual o valor da corrente se R = 1, Ω e U = 1, V? 11. Transforme para a forma de potência: (a) 3 2 (b) 27 5 (c) 17 (d) Transforme para a forma de raiz: (a) (b) (c) Utilize as propriedades e resolva: (a) 0 (b) 1 (c) 25 (d) 49 (e) 49 (f) (g) 3 8 (h) 5 32 (i) (j) (k) (l) 5 5 (m) (n) π 123 π 123 π {{ 123 vezes (o) (p) (100 8) As sentenças a seguir são verdadeiras ou falsas? Explique. (a) = 48 (b) O dobro de 3 é 6 (c) O dobro de 3 é 12 (d) = 10 (e) 32 2 = 18

6 Soluções (1a) 3 12 (1b) 2 3 x 5 (1c) x 2 (1d) e 3 π 2 (1e) 2 2 a 2 x (2a) 3 7 (2b) (2c) a 7 b 3 (2d) 11 3 (2e) 2 2 (2g) 2 33 (2f) 2 0 (2h) x 50 (2i) (3a) positivo (3b) negativo (4a) 1 (4b) 57 (4c) 9 (4d) 9 (4e) 27 (4f) 81 (4g) 128 (4h) 1 32 (4i) (4j) 7 3 (4k) 25 a 2 (4l) 1 16 x 4 (5a) 1, (5b) 1, (5c) 3, (5d) 5, (6a) (6b) 31, 4 (6c) 2, 9513 (6d) 0, (7a) 1, kg (7b) 5, kg (7c) 4, m (7d) 2, m/s (7e) 6, moléculas (8a) 3, (8b) 1, (8d) 1, (8f) 4, (8c) 1, (8e) 1, (9) 9 π 10 4 m 2 (10a) R = 1, Ω (10b) U = 5, V (10c) I = 8, A (11a) (11b) (11c) (11d) 5 2 (12a) 4 3 (12b) 5 3 (12c) (13a) 0 (13e) 7 (13i) 2 (13m) π (13b) 1 (13f) 5 (13j) 10 (13n) 17 (13c) 5 (13g) 2 (13k) 2 (13o) 5 (13d) (13h) 2 (13l) 5 (13p) 92 (14a) Verdadeiro. Explique o motivo. (14b) Falso. Explique o motivo. (14c) Verdadeiro. Explique o motivo. (14d) Falso. Explique o motivo. (14e) Verdadeiro. Explique o motivo.

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari Eletricidade Aula ZERO Profª Heloise Assis Fazzolari Plano de aulas O objetivo da disciplina é dar ao aluno noções de eletricidade e fenômenos relacionados. Critério de Avaliação Quatro provas bimestrais

Leia mais

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K INTRODUÇÃO O Sistema Internacional e s ( S.I.) O SI é dividido em três grupos, a seguir: Sete s de Base Duas s Suplementares s derivadas Tabela 1 - s de Base do SI Comprimento metro m Massa quilograma

Leia mais

Sistema Internacional de Unidades (SI) e Medida

Sistema Internacional de Unidades (SI) e Medida Área do Conhecimento: Ciências da Natureza e Matemática Componente Curricular: Física Prof. Dr. Mário Mascarenhas Sistema Internacional de Unidades (SI) e Medida Sistema adotado oficialmente no Brasil

Leia mais

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa Física Aplicada A Aula 1 Profª. Me. Valéria Espíndola Lessa valeria-lessa@uergs.edu.br Este material está disponibilizado no endereço: http://matvirtual.pbworks.com/w/page/52894125 /UERGS O que é Física?

Leia mais

Medição em Química e Física

Medição em Química e Física Medição em Química e Física Hás-de fazê-la desta maneira: o comprimento será de trezentos côvados; a largura, de cinquenta côvados; e a altura, de trinta côvados. Génesis, VI, 15 Professor Luís Gonçalves

Leia mais

Fundamentos de Física. Vitor Sencadas

Fundamentos de Física. Vitor Sencadas Fundamentos de Física Vitor Sencadas vsencadas@ipca.pt Grandezas físicas e sistemas de unidades 1.1. Introdução A observação de um fenómeno é incompleta quando dela não resultar uma informação quantitativa.

Leia mais

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão.

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Unidades de Medidas Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Como os antigos faziam para realizar medidas? - Na antiguidade:

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

O SISTEMA INTERNACIONAL DE UNIDADES - SI

O SISTEMA INTERNACIONAL DE UNIDADES - SI O SISTEMA INTERNACIONAL DE UNIDADES - SI As informações aqui apresentadas irão ajudar você a compreender melhor e a escrever corretamente as unidades de medida adotadas no Brasil. A necessidade de medir

Leia mais

DETROIT Circular informativa Eng. de Aplicação

DETROIT Circular informativa Eng. de Aplicação DETROIT Circular informativa Eng. de Aplicação Número 09 - Agosto 2003 www.detroit.ind.br Unidades Legais de Medida INMETRO O Sistema Internacional de Unidades SI As informações aqui apresentadas irão

Leia mais

Múltiplos e submúltiplos

Múltiplos e submúltiplos Múltiplos e submúltiplos Múltiplos e submúltiplos Fator Nome do prefixo Símbolo Fator Nome do prefixo Símbolo 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 10 2 10 1 yotta zetta exa peta tera giga mega

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

3 Unidades de Medida e o Sistema Internacional

3 Unidades de Medida e o Sistema Internacional 3 Unidades de Medida e o Sistema Internacional Fundamentos de Metrologia Medir Medir é o procedimento experimental através do qual o valor momentâneo de uma grandeza física (mensurando) é determinado como

Leia mais

Em seguida são apresentadas as principais unidades do Sistema Internacional, com sua unidade e símbolo.

Em seguida são apresentadas as principais unidades do Sistema Internacional, com sua unidade e símbolo. O Sistema Internacional de Unidades (sigla: SI) é um conjunto de definições utilizado em quase todo o mundo moderno que visa uniformizar e facilitar as medições. O problema era que cada país adotava as

Leia mais

Avaliação da cadeira

Avaliação da cadeira Avaliação da cadeira Trabalho de síntese 20% Trabalhos práticos (4/5) 40% Exame final 40% Metrologia Ciência da medição - desenvolvimento de métodos e procedimentos de medição; - desenho de equipamento

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

Unidades de Medidas - Parte I

Unidades de Medidas - Parte I Unidades de Medidas - Parte I Sistema Métrico Decimal Um dos legados da Revolução Francesa foi criar um sistema de medidas que fosse baseado em constantes naturais e não em padrões arbitrários como pé,

Leia mais

Notas de Aula: Física Aplicada a Imaginologia - parte I

Notas de Aula: Física Aplicada a Imaginologia - parte I Notas de Aula: Física Aplicada a Imaginologia - parte I Prof. Luciano Santa Rita Fonte: Prof. Rafael Silva www.lucianosantarita.pro.br tecnologo@lucianosantarita.pro.br 1 Conteúdo Programático Notação

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

Unidades de Medidas e as Unidades do Sistema Internacional

Unidades de Medidas e as Unidades do Sistema Internacional Unidades de Medidas e as Unidades do Sistema Internacional Metrologia é a ciência da medição, abrangendo todas as medições realizadas num nível conhecido de incerteza, em qualquer dominio da atividade

Leia mais

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Desenho e Projeto de Tubulação Industrial. Módulo I. Aula 01

Desenho e Projeto de Tubulação Industrial. Módulo I. Aula 01 Desenho e Projeto de Tubulação Industrial Módulo I Aula 01 Unidades de Medida Medidas Medir significa comparar duas grandezas de mesma natureza, tomando uma delas como padrão. Por exemplo, dizer que uma

Leia mais

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos.

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos. 1. Sistemas de Unidades 1.1 O Sistema Internacional Os mais diversos sistemas de medidas foram inventados ao longo da história, desde o início das civilizações mais organizadas. Durante vários séculos,

Leia mais

Mecânica Técnica. Aula 1 Conceitos Fundamentais. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 1 Conceitos Fundamentais. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 1 Conceitos Fundamentais Tópicos Abordados Nesta Aula Apresentação do Curso. Apresentação da Bibliografia Definição da. Sistema Internacional de Unidades. Apresentação do Curso Aula 1 - Definição

Leia mais

SISTEMA INTERNACIONAL DE UNIDADES (SI)

SISTEMA INTERNACIONAL DE UNIDADES (SI) INTRODUÇÃO SISTEMA INTERNACIONAL DE UNIDADES (SI) ETE ALBERT EINSTEIN Prof. Edgar Zuim (adaptado por Epaminondas Lage) Qualquer atividade do conhecimento humano para a sua perfeita execução, requer ferramental

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão: Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br O METRO E SEUS MÚLTIPLOS

Leia mais

RESOLUÇÕES ONLINE UNIDADES DE MEDIDAS

RESOLUÇÕES ONLINE  UNIDADES DE MEDIDAS UNIDADES DE MEDIDAS Todas as Unidades de Medidas que são nomes próprios devem ser escritas em maiúsculas quando abreviadas. Se forem escritas por extenso, sempre escrever em minúscula no singular exceto

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA MEDIÇÃO DE GRANDEZAS. Bruno Conde Engenharia Civil Rodrigo Vanderlei - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA MEDIÇÃO DE GRANDEZAS. Bruno Conde Engenharia Civil Rodrigo Vanderlei - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 MEDIÇÃO DE GRANDEZAS Bruno Conde Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Medindo Grandezas Medimos cada grandeza física em unidades

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS

COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS Rogério P. Livi Instituto de Física UFRGS Porto Alegre RS I. Introdução Nossa experiência, tanto em disciplinas teóricas como de laboratório,

Leia mais

Física Geral e Experimental I (2015/01)

Física Geral e Experimental I (2015/01) Diretoria de Ciências Exatas Laboratório de Física Roteiro 01 Física Geral e Experimental I (2015/01) Medidas Diretas de Grandezas Físicas 2 Medidas Diretas de Grandezas Físicas 1. Após estudar os assuntos

Leia mais

MÓDULO 1. Os Métodos da Física:

MÓDULO 1. Os Métodos da Física: MÓDULO 1 O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado. Os Métodos da Física: Todas as

Leia mais

ELETRICIDADE 1. Aula 1 SISTEMA INTERNACIONAL DE UNIDADES

ELETRICIDADE 1. Aula 1 SISTEMA INTERNACIONAL DE UNIDADES ELETRICIDADE 1 Aula 1 SISTEMA INTERNACIONAL DE UNIDADES Professor: Danilo Carvalho de Gouveia 1 Medir é o procedimento experimental através do qual o valor momentâneo de uma grandeza física (mensurando)

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre A melhor maneira de nos prepararmos para o futuro é concentrar toda a imaginação e entusiasmo na execução perfeita do trabalho de hoje. Dale Carnegie 1. Conjuntos Numéricos 1) Pense e Responda: a) Qual

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Explique com as suas palavras por que zero é chamado de elemento neutro da adição. Questão 2 Qual é a única

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo de potências. Expoentes positivos. Aula 7 Potências. Francisco A. M. Gomes.

Roteiro da aula. MA091 Matemática básica. Cálculo de potências. Expoentes positivos. Aula 7 Potências. Francisco A. M. Gomes. Roteiro da aula MA091 Matemática básica Aula 7 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 6 Francisco A. M. Gomes

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

Características da Onda Sinusoidal Notas:

Características da Onda Sinusoidal Notas: Características da Onda Sinusoidal Notas: Existem três características básicas de uma onda sinusoidal: frequência, período e comprimento de onda. Frequência Um ciclo de AC consiste sempre em duas alternâncias,

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

MEDIÇÃO EM QUÍMICA. Escola Secundária José Saramago FQA nível 1-2007/2008. Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora

MEDIÇÃO EM QUÍMICA. Escola Secundária José Saramago FQA nível 1-2007/2008. Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora MEDIÇÃO EM QUÍMICA Escola Secundária José Saramago FQA nível 1-2007/2008 Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora A L 1.1 Medição em Química SUMÁRIO: Obtenção e tratamento

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER Prof. Dr. Guttemberg Silvino UNIDADES DE MEDIDAS LINEAR O metro (m) é uma unidade

Leia mais

Medição em Química e Física

Medição em Química e Física Medição em Química e Física A precisão e a exatidão de uma medida depende do instrumento de medição usado e do modo como este é utilizado. Torna-se assim importante o conhecimento dos tipos de erros associados

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS 1. Introdução: Química é uma ciência experimental e por isso consideramos importante que você inicie a disciplina Introdução ao Laboratório de Química realizando

Leia mais

USO DA CALCULADORA CIENTÍFICA

USO DA CALCULADORA CIENTÍFICA USO DA CALCULADORA CIENTÍFICA Este guia usa a calculadora Casio modelo fx-82ms ou similares. REGRA BÁSICA PARA O USO CONSCIENTE DA CALCULADORA: Salvo em situações mais complicadas, UTILIZE A CALCULADORA

Leia mais

Projeto de circuitos eletrônicos. Vitor Yano

Projeto de circuitos eletrônicos. Vitor Yano Projeto de circuitos eletrônicos Vitor Yano Ciclo de desenvolvimento de hardware Definição dos Requisitos Revisão dos requisitos Definição dos Blocos (arquitetura) Escolha de Fornecedores e Novos componentes

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO Silva, Thiago Luis Nogueira. S586i

nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO Silva, Thiago Luis Nogueira. S586i nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO S586i Silva, Thiago Luis Nogueira. Instrumentos e sistemas de medida : engenharia de produção / Thiago Luis Nogueira Silva. Varginha, 2015.

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

Valor máximo que é possível medir

Valor máximo que é possível medir MEDIÇÃO EM QUÍMICA Escola Secundária José Saramago FQA 10.ºAno 2009/2010 Marília Peres I NSTRUMENTOS DE MEDIDA Alcance Valor máximo que é possível medir Sensibilidade ou Natureza do aparelho Valor da menor

Leia mais

Unidade de Aprendizagem 1. Física I C. O que é a Física? Professor: Mário Forjaz Secca. Departamento t de Física

Unidade de Aprendizagem 1. Física I C. O que é a Física? Professor: Mário Forjaz Secca. Departamento t de Física Unidade de Aprendizagem 1 O que é a Física? Física I C Departamento t de Física Professor: Mário Forjaz Secca O Que é a Física? disciplina científica que estuda a energia e a matéria e as suas interacções

Leia mais

Exercícios de Eletricidade Aplicada

Exercícios de Eletricidade Aplicada Exercícios de Eletricidade Aplicada 1º) Calcular o que se pede: (Lei de Ohm e Cálculo de Potência) a) R=10Ω V=10V I=? b) I=0,5A V=25V R=? c) R=1KΩ I=2mA V=? d) V=38,25V R=4,5Ω I=? e) I=5A V=40V R=? f)

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Noção de potência Quando temos uma multiplicação sucessiva em que o mesmo número se repete, podemos transformar essa expressão numa potência. Veja os exemplos., o é o número que se repete e o número de

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

FÍSICA EXPERIMENTAL I. 1-Medida e algarismos significativos DFIS/UDESC

FÍSICA EXPERIMENTAL I. 1-Medida e algarismos significativos DFIS/UDESC FÍSICA EXPERIMENTAL I 1-Medida e algarismos DFIS/UDESC 1. Introdução: Como a grande maioria das ciências positivistas: A Física se utiliza se do Método Científico: Que se estrutura em: Observação Formulação

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação

Leia mais

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA Nome: Nº 6ºAno Data: / /2016 Professores: Décio e Leandro Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

Números Binários. Apêndice A V1.0

Números Binários. Apêndice A V1.0 Números Binários Apêndice A V1.0 Roteiro Histórico Números de Precisão Finita Números Raiz ou Base Conversão de Base Números Binários Negativos Questões Histórico As maquinas do século XIX eram decimais

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 ATIVIDADES COM O SISTEMA BABILÔNIO DE BASE 60 A representação

Leia mais

GRANDEZAS E UNIDADES DE MEDIDA *

GRANDEZAS E UNIDADES DE MEDIDA * GOVERNO DO ESTADO DO RIO DE JANEIRO FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA FAETEC ESCOLA TÉCNICA ESTADUAL SANTA CRUZ ETESC DISCIPLINA DE QUÍMICA Profs.: Ana Cristina, Denis Dutra e José Lucas Ano Letivo: 2010

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

1 de 6 9/8/2010 15:23. .: Unidades Legais de Medida :. O Sistema Internacional de Unidades - SI

1 de 6 9/8/2010 15:23. .: Unidades Legais de Medida :. O Sistema Internacional de Unidades - SI 1 de 6 9/8/2010 15:23.: Unidades Legais de Medida :. O Sistema Internacional de Unidades - SI As informações aqui apresentadas irão ajudar você a compreender melhor e a escrever corretamente as unidades

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h 1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

1) Unidades de Medida

1) Unidades de Medida CURSO DE INSTRUMENTAÇÃO Conceitos Fundamentais Cedtec 2007/2 Sem equivalente na Apostila 1 Pressão e NívelN 1) Unidades de Medida É necessário saber trabalhar com unidades de medida no Sistema Internacional

Leia mais

1.2. Grandezas Fundamentais e Sistemas de Unidades

1.2. Grandezas Fundamentais e Sistemas de Unidades CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um

Leia mais

3.1 Distâncias na Terra, no Sistema Solar e para além do Sistema Solar

3.1 Distâncias na Terra, no Sistema Solar e para além do Sistema Solar Distâncias no Universo Na Terra utilizamos unidades pequenas para medir distâncias. Distâncias no Universo Dada a grande distância entre os diferentes corpos estelares e o grande tamanho das estruturas

Leia mais

TESTES PARA O SIMULADO COC

TESTES PARA O SIMULADO COC TESTES PARA O SIMULADO COC 1-) Para obter certo resultado, Rodrigo deverá pensar em um número natural, multiplicá-lo por 2, subtrair 3 do resultado e, finalmente, subtrair o quadrado do número pensado.

Leia mais

MEDIÇÃO DE GRANDEZAS. Ana Maria Torres da Silva Engenharia Civil Rafael Santos Carvalho- Engenharia Civil

MEDIÇÃO DE GRANDEZAS. Ana Maria Torres da Silva Engenharia Civil Rafael Santos Carvalho- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 MEDIÇÃO DE GRANDEZAS Ana Maria Torres da Silva Engenharia Civil Rafael Santos Carvalho- Engenharia Civil Medindo Grandezas Medimos cada grandeza

Leia mais

Variáveis, Tipos de Dados e Operadores

Variáveis, Tipos de Dados e Operadores ! Variáveis, Tipos de Dados e Operadores Engenharias Informática Aplicada 2.o sem/2013 Profa Suely (e-mail: smaoki@yahoo.com) VARIÁVEL VARIÁVEL É um local lógico, ligado a um endereço físico da memória

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais