NÚMEROS RACIONAIS OPERAÇÕES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "NÚMEROS RACIONAIS OPERAÇÕES"

Transcrição

1 UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas

2 Noção de número racional Já sabemos que entre os números naturais não é possível efetuar determinadas divisões como, por exemplo, a divisão de 1 por 8. No entanto, na prática, essa divisão pode ser possível? É possível dividir uma pizza em 8 partes iguais?

3 Diferentes significados dos números racionais SIGNIFICADO PARTE-TODO: Um todo é dividido em partes iguais e são consideradas algumas dessas partes QUOCIENTE: Refere-se à divisão entre dois números naturais, sendo o segundo diferente de zero. RAZÃO: Relação entre duas grandezas. OPERADOR: Operador em um cálculo. SITUAÇÕES-PROBLEMA Uma pizza pequena será dividida igualmente em três pedaços. Você comeu 2 pedaços. Quanto da pizza você comeu? Duas pizzas serão divididas igualmente entre 3 irmãos. Quanto das pizzas caberá a cada um? Os meninos correspondem a 2/3 da turma. Por quanto devemos multiplicar 2 para obter o número 5?

4 Os números racionais podem ser representados de duas formas: Fracionária: Ex.: 2/5 Decimal: Ex.: 1,25 Transformação: Para transformar frações em números decimais, basta efetuar a divisão indicada. Ex.: 2/5 = 0,4 ; 1/3 = 0,33... ; 1/10 = 0,10

5 Observações: Se a e b são números naturais, com b diferente de zero, então a/b é um número fracionário. O número colocado acima do traço (a) chama-se numerador e indica quantas partes foram tomadas do inteiro. O número colocado abaixo do traço (b) chama-se denominador e indica em quantas partes iguais o inteiro foi dividido. O numerador e o denominador são chamados termos da fração.

6 Como se lêem as frações Se o denominador for: 2 - meio 3 - terço 4 - quarto 5 - quinto 6 - sexto 7 - sétimo 8 - oitavo 9 - nono 10 décimos centésimos milésimos Nos demais casos, lê-se o denominador acompanhado da palavra avos. Exemplos.: ½ - um meio 1/3 um terço 3/10 três décimos 2/15 dois quinze avos

7 Como se lêem os decimais Cada número racional escrito na sua forma decimal tem sua leitura de acordo com a posição que ocupam os algarismos: Parte inteira Parte decimal centenas dezenas unidades décimos centésimos milésimos Décimos milésimos Centésimos milésimos Milionésimos Lê-se a parte inteira, seguida da parte decimal, acompanhada das palavras. Décimos, centésimos, etc... Exemplos.: 2,3 = dois inteiros e três décimos 0,07 = sete centésimos 13,12 = treze inteiros e doze centésimos 1,302 = um inteiro e trezentos e dois milésimos 4, 3415 = quatro inteiros e três mil quatrocentos e quinze décimos milésimos Obs.: Quando representa uma quantidade de dinheiro: R$ 6,71 = seis reais e setenta e um centavos

8 Representação de decimais no material dourado:

9 Representação de decimais no ábaco:

10 Tipos de Frações Frações equivalentes: São frações que representam a mesma quantidade Propriedade fundamental: quando multiplicamos ou dividimos os termos de uma fração por um mesmo número, diferente de zero, obtemos uma fração equivalente a ela.

11

12 Atividade: Corrida das frações Material necessário: - Dados - Régua das frações - Carrinhos

13 Comparação de frações de mesmo denominador Duas frações com mesmo denominador podem ser comparadas pelos valores dos seus numeradores. Ex.: 1/4 < 3/4 pois 1< 3

14 Comparação de frações de denominadores diferentes Para comparar duas frações de denominadores diferentes, é necessário reduzi-las a um mesmo denominador. Ex.: 3/4 e 1/2 ½ pode ser escrito como 2/4 (frações equivalentes) Comparando ¾ e 2/4, temos: 3/4 > 2/4, pois 3 > 2.

15 O que é e como se calcula o MMC? Dados dois ou mais números naturais diferentes de zero, chama-se mínimo múltiplo comum desses números o menor de seus múltiplos comuns diferentes de zero. Ex.: Vamos determinar o MMC entre os números 12, 18 e 24 (Método 1): 12 = (12, 24, 36, 48, 60, 72, 84, 96,...) 18 = (18, 36, 54, 72, 90, 108,...) 24 = (24, 48, 72, 96, 120, 144,...)

16 O que é e como se calcula o MMC? Dados dois ou mais números naturais diferentes de zero, chama-se mínimo múltiplo comum desses números o menor de seus múltiplos comuns diferentes de zero. Método 2: Ex.: 12 = = = m.m.c.= = 72

17 O que é e como se calcula o MMC? Dados dois ou mais números naturais diferentes de zero, chama-se mínimo múltiplo comum desses números o menor de seus múltiplos comuns diferentes de zero. Processo prático para o cálculo do MMC: Decomposição simultânea Método 3: M.M.C. (12, 18, 24) = 2 x 2 x 2 x 3 x 3 = 72 O mínimo múltiplo comum dos números 12, 18 e 24 é igual a 72. Atividades: Calcule o mmc entre: a) 64 e 40 b) 4, 6, 9 e 30

18 Redução de frações ao mesmo denominador pelo m.m.c. Ex.: a) 1/2 e 2/3 b) 1/4, 3/6 e 1/5

19 Comparação de números decimais O maior número decimal é aquele que tem maior parte inteira. Ex.: 12,435 ; 5,7 e 32,73 32,73 > 12,435 > 5,7

20 Dificuldades na aprendizagem de números racionais Algumas ideias válidas para os números naturais não são válidas para números racionais. Sendo os racionais trabalhados como extensão do conceito de número inteiro, fica fácil compreender que os alunos queiram transferir para os números racionais o que já foi aprendido sobre os números naturais. Por isso há algumas dificuldades na aprendizagem de números racionais para os quais o professor deve estar atento. Uma das dificuldades é a forma de representação. Se para os números naturais, cada número tem representação única, para os racionais há infinitas formas fracionárias de representar um mesmo numero e uma única forma decimal. Outra dificuldade é a comparação entre números racionais. No caso da escrita fracionária, quando se compara, por exemplo, ½ e 1/3, alguns alunos tendem a pensar, pelo menos num primeiro momento, que ½ é menor que 1/3, pois 2 é menor que 3 (2<3). Quando na verdade ½ é maior que 1/3. No caso da escrita decimal, também surgem dificuldades na comparação de números racionais. Os alunos aprendem na comparação de números naturais que, quanto mais dígitos tem um número, maior ele é. (SILVEIRA, 2010).

21

22 Adição e Subtração de números fracionários de mesmo denominador Obs.: Na educação básica é importante o uso de materiais concretos, que permitam visualizar as operações, tais como tiras de papel retangular, onde será destacada a parte-todo. Ex.: 1/3 + 1/3 2/3 1/3 2/4 + 1/4

23 Adição e Subtração de números fracionários de denominadores diferentes Para somar e subtrair frações com denominadores diferentes, utiliza-se o conceito de frações equivalentes. Ex.: 2/3 + 1/6 1 1/3

24 Ex.: modo para encontrar soma entre os decimais 2, ,152 utilizando o Ábaco.

25 Multiplicação e Divisão de números fracionários Podemos usar representações geométricas para compreender os resultados: Ex.: 2 x 1/3 ½ : 2 ¼. 1/3 ¼ : 1/3

26 Multiplicação e Divisão de números decimais Para que os alunos melhor compreendam o algoritmo da multiplicação de número decimais podemos utilizar, por exemplo, o material dourado ou o ábaco. Ex.: 4. 0,10 0,10. 0,12 1,56 : 3 6,45 : 0,5

27 1) Comprei duas barras iguais de chocolate, uma de chocolate branco e outra de chocolate preto. Comi 1/2 de chocolate branco e 1/3 de chocolate preto. Quanto de chocolate eu comi ao todo? 2 ) Eu comi 1/2 de uma barra de chocolate branco e meu amigo 1/3 de uma barra igual, de chocolate preto. Quem comeu mais? Quanto a mais? 3) Meu pai comeu 2 pedaços de 2/8 de chocolate. Qual a fração que representa o total comido por ele?

28 É importante, também, propor situações em que a criança perceba que trabalhar com material concreto, qualquer que seja ele, se torna pesaroso e, portanto, há necessidade de um algoritmo que possa ser utilizado em qualquer situação. Essa é a forma que acreditamos que os algoritmos devem ser apresentados aos alunos nos primeiros ciclos do ensino fundamental: devem ser construídos com a participação deles e a partir da necessidade de generalizações (SILVEIRA, 2010).

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais

Fração. Parte ou pedaço de um inteiro.

Fração. Parte ou pedaço de um inteiro. Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia

Leia mais

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

AGENTE ADMINISTRATIVO FEDERAL

AGENTE ADMINISTRATIVO FEDERAL FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) = PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é

Leia mais

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares de Matemática 1º CICLO MATEMÁTICA 4º ANO TEMAS/DOMÍNIOS

Leia mais

Planejamento de Curso de Matemática para a 5º serie.

Planejamento de Curso de Matemática para a 5º serie. Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:

Leia mais

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e de Avaliação Números e Operações Números Sistema de decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até ao milhão Conhecer a romana Descodificar o sistema de decimal Adicionar

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE Sociedade Brasileira de Matemática Matemática na Contemporaneidade: desafios e possibilidades UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram

Leia mais

MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER

MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER CONTEÚDOS MATEMÁTICA 5º ANO COLEÇÃO INTERAGIR E CRESCER UNIDADE 1 1. Números, problemas e soluções Sistema de numeração - Uso e função dos números grandes; - Os milhões e os bilhões; - Classes e ordens;

Leia mais

MATEMÁTICA 4º ANO COLEÇÃO INTERAGIR E CRESCER

MATEMÁTICA 4º ANO COLEÇÃO INTERAGIR E CRESCER CONTEÚDOS MATEMÁTICA 4º ANO COLEÇÃO INTERAGIR E CRESCER UNIDADE 1 1. Sistema de numeração decimal - Unidade; - Dezena; - Centena; - Unidade de milhar; - Dezena de milhar; - Centena de milhar; - Milhões.

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

FRAÇÕES. Professora: Gianni Leal 6ºBM

FRAÇÕES. Professora: Gianni Leal 6ºBM FRAÇÕES Professora: Gianni Leal 6ºBM IDEIA INTUITIVA DE INTEIRO E O QUEBRADO Frases comuns no dia a dia: Perdi o ônibus por uma fração de segundos Paguei 7 reais e uns quebrados. São quatro horas e meia.

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /2012 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

Oficina de Matemática

Oficina de Matemática Oficina do Programa Integrar Eixo Educação 2012 Como usar bem o resultado da avaliação Oficina de Matemática Paracatu, 22 de junho de 2012 Eliane Scheid Gazire egazire@terra.com.br Quadro resumo do desempenho

Leia mais

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 5º ano do Ensino Fundamental 1º BIMESTRE Compor e decompor números naturais e racionais na forma decimal. Reconhecer ordens e classes numa escrita numérica. Arredondar números na precisão desejada. Ordenar

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos?

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? Meça a página do seu livro com uma régua. Como você representa, em centímetros, a medida encontrada?

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA III - NÚMEROS E OPERAÇÕES / ÁLGEBRA E FUNÇÕES Este é o tema de maior prioridade para a Matemática

Leia mais

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/

Leia mais

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de

Leia mais

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número. Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.

Leia mais

MATEMÁTICA - 2º ANO. Novo programa de matemática Objetivos específicos

MATEMÁTICA - 2º ANO. Novo programa de matemática Objetivos específicos MATEMÁTICA - 2º ANO NÚMEROS E OPERAÇÕES Números naturais Noção de número natural Relações numéricas Sistema de numeração decimal Classificar e ordenar de acordo com um dado critério. Realizar contagens

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa 1º CICLO MATEMÁTICA 2º ANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS TEMPO AVALIAÇÃO

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.

Leia mais

TEMPO DE CÁLCULO. 3º Ano. Maria José Porto Louza Silva Ferreira. Escola EB1 António Nobre (Lisboa)

TEMPO DE CÁLCULO. 3º Ano. Maria José Porto Louza Silva Ferreira. Escola EB1 António Nobre (Lisboa) TEMPO DE CÁLCULO 3º Ano Maria José Porto Louza Silva Ferreira Escola EB1 António Nobre (Lisboa) Este ficheiro pode ser usado de 2 maneiras distintas: 1.Pode constituir uma rotina semanal. Neste caso, o

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /01 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

5. Objetivo geral (prever a contribuição da disciplina em termos de conhecimento, habilidades e atitudes para a formação do aluno)

5. Objetivo geral (prever a contribuição da disciplina em termos de conhecimento, habilidades e atitudes para a formação do aluno) ANEXO I UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE COLÉGIO DA UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: Missão do Colégio: Promover o desenvolvimento do cidadão e, na sua ação educativa,

Leia mais

INSTITUTO EDUCACIONAL MANOEL PINHEIRO. LÍNGUA PORTUGUESA 1. Leitura e interpretação de diferentes gêneros textuais (verbais e não verbais): contexto;

INSTITUTO EDUCACIONAL MANOEL PINHEIRO. LÍNGUA PORTUGUESA 1. Leitura e interpretação de diferentes gêneros textuais (verbais e não verbais): contexto; 2º ANO DO ENSINO FUNDAMENTAL 1. Leitura e interpretação de diferentes gêneros textuais (verbais e não verbais): contexto; 2. Expressão escrita: Produção de narrativa, com clareza, sequência lógico-temporal,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática3º ano Ano Letivo 2016/2017

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática3º ano Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática3º ano Ano Letivo 2016/2017 1º Período Domínios Números e Operações Números naturais Numerais ordinais até centésimo;

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 3º ano Ano Letivo 2015/2016

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 3º ano Ano Letivo 2015/2016 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 3º ano Ano Letivo 2015/2016 1º Trimestre Domínios Números e Operações Números naturais Numerais ordinais até centésimo;

Leia mais

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017 4.º Ano - Ano Letivo 2016/2017 1.º Período - Números naturais Números e operações Contar Estender as regras de construção dos numerais decimais para classes de grandeza indefinida; Conhecer os diferentes

Leia mais

O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES

O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES SITUAÇÃO DE APRENDIZAGEM O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES Contando de diferentes maneiras Página 6. Experimentação Se cada grupo receber pedrinhas, o quadro será o seguinte: Observação:

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

AGRUPAMENTO DE ESCOLAS MARTIM DE FREITAS 1º CICLO DO ENSINO BÁSICO

AGRUPAMENTO DE ESCOLAS MARTIM DE FREITAS 1º CICLO DO ENSINO BÁSICO AGRUPAMENTO DE ESCOLAS MARTIM DE FREITAS 1º CICLO DO ENSINO BÁSICO PLANO DE TRABALHO ANUAL MATEMÁTICA* 3º Ano de escolaridade Domínios/Subdomínios Objetivos/Descritores de desempenho Meses GEOMERIA E MEDIDA

Leia mais

MATEMÁTICA 3º ANO. Novo programa de matemática Objetivos específicos. Currículo Paulo VI. Números naturais. Relações numéricas Múltiplos e divisores

MATEMÁTICA 3º ANO. Novo programa de matemática Objetivos específicos. Currículo Paulo VI. Números naturais. Relações numéricas Múltiplos e divisores MATEMÁTICA 3º ANO NÚMEROS E OPERAÇÕES Tópicos Números naturais Relações numéricas Múltiplos e divisores Novo programa de matemática Objetivos específicos Realizar contagens progressivas e regressivas a

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Plano Geral de Trabalho da Disciplina de Matemática 2016/ º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas

Plano Geral de Trabalho da Disciplina de Matemática 2016/ º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA Plano Geral de Trabalho da Disciplina de Matemática 2016/ 2017 2º ANO Aulas previstas: 1º Período: 88 aulas 2º Período: 88 aulas 3º Período: 63 aulas Gestão dos

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

CONHECIMENTOS CAPACIDADES OBJETIVOS / METAS CURRICULARES

CONHECIMENTOS CAPACIDADES OBJETIVOS / METAS CURRICULARES Escola Secundária 2-3 de Clara de Resende COD. 346 779 Critérios de Avaliação Perfil de Aprendizagens Específicas (Aprovado em Conselho Pedagógico de 18 julho de 2016) AGRU P A M E N T O DE No caso específico

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Técnico Judiciário TJ / RS

Técnico Judiciário TJ / RS CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las

Leia mais

OS DIFERENTES SIGNIFICADOS DE NÚMEROS RACIONAIS: um estudo das dificuldades apresentadas por alunos de 6º ano do Ensino Fundamental

OS DIFERENTES SIGNIFICADOS DE NÚMEROS RACIONAIS: um estudo das dificuldades apresentadas por alunos de 6º ano do Ensino Fundamental OS DIFERENTES SIGNIFICADOS DE NÚMEROS RACIONAIS: um estudo das dificuldades apresentadas por alunos de 6º ano do Ensino Fundamental Karolyne Camile Batista dos Santos karolynecamile19@gmail.com Elisa Fonseca

Leia mais

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro. MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Sequência da apresentação

Sequência da apresentação Sequência da apresentação Mal entendidos dos alunos relativos às frações. Os diferentes significados das frações. Diferentes tipos de unidade. Exemplos de tarefas para a reconstrução da unidade e exploração

Leia mais

PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA. UNIDADE 1 Conteúdos

PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA. UNIDADE 1 Conteúdos PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA 1. ano - 1. volume 1. ano - 2. volume UNIDADE 1 Localização espacial, utilizando o próprio corpo como referencial. Localização espacial, utilizando referenciais externos

Leia mais

INSTITUTO EDUCACIONAL MANOEL PINHEIRO CONTEÚDO PROGRAMÁTICO ADMISSÃO DE NOVOS ALUNOS 2017

INSTITUTO EDUCACIONAL MANOEL PINHEIRO CONTEÚDO PROGRAMÁTICO ADMISSÃO DE NOVOS ALUNOS 2017 INSTITUTO EDUCACIONAL MANOEL PINHEIRO CONTEÚDO PROGRAMÁTICO ADMISSÃO DE NOVOS ALUNOS 2017 1º ANO DO ENSINO FUNDAMENTAL 1. Reconhecer os usos sociais e as funções da escrita 2. Compreender diferenças entre

Leia mais

Agrupamento de Escolas Dr. Vieira de Carvalho P L A N I F I C A Ç Ã O A N U A L D E M A T E M Á T I C A

Agrupamento de Escolas Dr. Vieira de Carvalho P L A N I F I C A Ç Ã O A N U A L D E M A T E M Á T I C A Agrupamento de Escolas Dr. Vieira de Carvalho P L A N I F I C A Ç Ã O A N U A L D E M A T E M Á T I C A ANO LETIVO 2016/2017 1º Período Domínios Subdomínios / Conteúdos Números e Operações Números naturais

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

À Conquista das Aprendizagens: alguns exemplos de adequações

À Conquista das Aprendizagens: alguns exemplos de adequações À Conquista das Aprendizagens: alguns exemplos de adequações Nelson Santos XIII Ciclos de Sábados Beja, 9 de abril de 2016 O sucesso da educação inclusiva reside nas formas de gestão do currículo. Requer

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações

Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações 5. Frações Há 5000 anos, os geômetras dos faraós do Egito realizavam a marcação das terras que ficavam às margens do rio Nilo, para a sua população. No período de junho a setembro, o rio inundava essas

Leia mais

Aula 4. Frações. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental

Aula 4. Frações. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental Frações Aula Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar os conceitos sobre os números fracionários e as operações com frações. Objetivos Ao concluir esta aula, você deverá

Leia mais

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125 A Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) 24 + 25 + 76 = (24 + 76) + 25 = 100 + 25 = 125 2) 192 + 65 = (200 8) + 65 = 200 + 65 8 = 200 + 57

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

Lista de Matemática e Interpretação de Texto 5 o ano de 22 a 26/08/16

Lista de Matemática e Interpretação de Texto 5 o ano de 22 a 26/08/16 Lista de Matemática e Interpretação de Texto 5 o ano de a 6/08/6 Ouça o sábio e cresça em prudência. (Provérbios :5) Segunda-feira /08 Vamos reforçar o que já aprendemos sobre as frações.. Resolva: a)

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais