invés de dizermos, por exemplo, um seis, para a fração, dizemos um sexto. Os

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "invés de dizermos, por exemplo, um seis, para a fração, dizemos um sexto. Os"

Transcrição

1 FRAÇÕES Os números naturais {0,,, 3,...} são uteis para realizar contagens de objetos, por exemplo. No entanto, eles não dão conta de algumas situações do cotidiano, como quantificar partes de um todo. Durante sua história os egípcios se esbarram nesse problema. Quando as águas do rio Nilo baixavam após as enchentes anuais, as demarcações que delimitavam as propriedades eram levadas pelas águas. Era necessário, então, fazer novas medições para demarcar novamente a superfície de terreno que caberia a cada proprietário. Para fazer as medições, eram utilizadas cordas nas quais havia uma unidade de medida indicada por nós. Os medidores esticavam a corda e verificavam quantas vezes a unidade de medida cabia nos lados do terreno. Muitas vezes, porém, a unidade de medida não cabia um número inteiro de vezes no lado do terreno. Era necessário partir, isto é, fracionar a unidade de medida. Assim, surgiram no Egito os números fracionários. Veja como os egípcios representavam alguns números fracionários. É interessante observar que a palavra fração está relacionada com a palavra fratura que significa quebrar, e, de fato, podemos pensar que as frações representam quantidades que correspondem a pedaços de coisas.

2 Como ler frações? Como acontece muitas vezes, prestar atenção nas palavras pode nos ajudar a lembrar a que elas se referem. A palavra denominador quer dizer indicar nome de, e, de fato, o denominador de uma fração indica o seu nome, que tipo de partes são, se são meios, quartos, sextos ou doze avos como nas frações acima. Já o numerador, indica o número que vamos tomar deste tipo de partes. É como se, ao escrever a fração, estivéssemos dizendo uma parte do tipo sexta. 6 Para ler uma fração, então, dizemos o numerador e depois o denominador, mas por tradição, ao invés de dizermos, por exemplo, um seis, para a fração, dizemos um sexto. Os 6 denominadores de a 0 são lidos assim: denominador como se lê meio terço quarto quinto sexto sétimo oitavo nono décimo Como você pode reparar, as palavras usadas para ler denominadores de fração de a 0, são as mesmas que usamos para indicar posição, por exemplo, em uma fila; isso pode ajudar a memorizálas. Se o denominador é um, podemos dizer inteiros : pode ser lido quatro inteiros. Para denominadores maiores que 0, usamos a palavra avos : é lido um doze avos. Essa palavra pode parecer estranha, mas a usamos corriqueiramente. cinco centavos Quando falamos cinco centavos, estamos fazendo referência a, já que um centavo 00 corresponde a um centésimo de real. Mas, ao invés de dizermos cinco centésimos de um real, dizemos cinco cem avos de real ou cinco centavos. Outro modo de se ler frações, bastante mais simples, mas que não é o oficial, é simplesmente ler o numerador e o denominador, colocando entre eles a palavra sobre. Nesse caso, pode ser lida 3 sobre 3 e 3, pode ser lida 3 sobre.

3 3 Frações de uma quantidade Para calcular a fração de uma medida ou quantidade que é indicada por um número, basta dividir esse número pelo denominador da fração e multiplicá-lo pelo numerador. Exemplo Uma pesquisa com duzentas pessoas concluiu-se que três quartos delas são esportistas. Qual é o número de pessoas que são esportistas? Resolução A pergunta nesse caso é: quantos são 3 de 00?. Para responder, primeiramente dividimos 00 por Em seguida, multiplicamos o resultado por =0 O mesmo resultado pode ser obtido apenas multiplicando a fração pela quantidade, ou seja, de Portanto, para calcular a fração de uma quantidade, basta multiplicar a fração pela quantidade. O mesmo se aplica para o cálculo de uma fração de outra fração. Exemplo Calcule de 3 9. Resolução de Comparar frações Para obter uma fração a partir da divisão de um objeto ou de um inteiro, deve-se lembrar que a divisão deve ser feita de maneira a obter partes iguais. Na figura abaixo não é verdade que foram pintados, já que o retângulo não está dividido em partes iguais.

4 Agora, observando os recipientes a seguir podemos dizer que A foi dividido em partes iguais e, que B foi dividido em 3 partes iguais. Podemos afirmar ainda que de A está preenchido com líquido e que 3 de B está preenchido com líquido. Se fosse perguntado qual das duas frações e é a maior, ficaria simples de responder com 3 referência aos recipientes, pois a relacionada ao recipiente com mais líquido é a maior. Mas, se não estivéssemos observando os recipientes com líquido, como seria possível afirmar qual é a maior? Poderíamos obter frações equivalentes a cada uma delas com o mesmo denominador, ou seja, calcular um conjunto de frações equivalentes a cada uma delas multiplicando tanto o numerador quanto o denominador por,, 3,,... 3 :,,,,, :,,,,,, Ao invés de comparar e 3, comparamos e. Observando os numeradores percebemos que é maior que, logo é maior que 3. Para economizar em cálculos e encontrar as frações a serem comparadas, sem que para isso seja necessário encontrar um conjunto ou uma classe de frações equivalentes, podemos utilizar o mínimo múltiplo comum dos denominadores, no nosso caso, mmc(3, ) =. Em seguida, obtemos frações equivalentes cujos denominadores são. e 3 são respectivamente equivalentes a e Para encontrar a fração equivalente a, por exemplo, dividimos o mmc, ou seja, pelo seu 3 denominador, que é igual a 3, e obtemos. Em seguida, multiplicamos tanto o numerador como o denominador por e obtemos. 3

5 Adição e Subtração de frações Na adição ou subtração de frações com denominadores iguais, adicionamos ou subtraímos os numeradores e mantemos o denominador O cálculo é realizado dessa forma, porque o numerador é o elemento da fração que indica a quantidade de partes a serem tomadas, o denominador, por sua vez, apenas indica em quantas partes foi dividido o todo. Na adição e na subtração de frações com denominadores diferentes, é preciso primeiro substituir as frações por frações equivalentes de mesmo denominador e depois adicionar ou subtrair, respectivamente, as frações Multiplicação de frações Na multiplicação de duas ou mais frações, multiplica-se numerador por numerador e denominador por denominador Divisão de frações Na divisão de um número natural por uma fração (diferente de zero), há uma regra prática que diz que basta multiplicar o número natural pelo inverso da fração. Observe. A mesma regra também pode ser aplicada na divisão de uma fração por um número natural (diferente de zero) e na divisão de uma fração por outra. Observe.

6 6 Frações x Decimais Uma fração é chamada de irredutível quando o maior divisor comum entre o numerador e o denominador for. Uma fração irredutível pode ser representa em forma decimal, para isso basta dividir o numerador da fração pelo seu denominador., 7, ,3 3 Como podemos observar a primeira fração resultou em um número com decimal finita e, a segunda resultou em um número com decimal periódica. O primeiro caso acontece quando um ou mais fatores do denominar forem iguais a e/ou , ,0 0 (.) ,7 0 (.) Possuir apenas os fatores e/ou no denominador faz com que seja possível obter uma potência de 0 no denominador, como podemos ver nos exemplos acima. Assim, a divisão resulta em um número com parte decimal finita. Quando o denominador não possuir apenas e/ou como fatores, a divisão resultará em uma decimal periódica, o que chamamos de dízima periódica. 0,... 0, 9 7 0, ,07 99 Os algarismos escritos abaixo do traço são chamados de período da dízima e eles se repetem indefinidamente. Uma pergunta importante nesse momento é a seguinte: Dada uma dízima periódica, como podemos encontrar a fração correspondente, ou seja, a fração geratriz? Vejamos alguns exemplos. 0,... X = 0,... 0X =,... 0X X =,... 0,... 9X = X 9

7 7 0, X = 0, X = 3, X X = 3, , X = 3 3 X 99, X =,0 + 0, X,0 = 0, (X ) = 0, (X ) = 8, (X ) 0(X ) = 8, , X 000 0X + 0 = 8 990X 990 = 8 990X = X = X X Exercícios Resolvidos. Qual é o resultado de 6: 3? 3 8 6: Qual é o resultado do cálculo. 3? Na compra de um carro, foi paga uma entrada, correspondendo a um terço do seu valor, e o restante foi dividido em prestações fixas e sem juros de R$ 6,00. Calcule o preço do carro. x 000 x x 000 x x

8 8. Em uma caixa havia chocolates. João abriu a caixa e comeu um terço dos chocolates que encontrou. Pedro chegou em seguida e comeu metade dos chocolates que encontrou. Sobraram chocolates. Qual foi a quantidade de chocolates que João comeu? º momento x º momento x x x 3 3 3º momento x 3 x x 3 3. Qual é a soma de todas as frações irredutíveis que são possíveis de escrever com numerador e denominador com apenas um algarismo e formados a partir dos números, 3 e? Em uma sala com 30 alunos foi feita uma pesquisa para saber o esporte preferido dos alunos. O gráfico de setores abaixo representa os resultados dessa pesquisa. Sabendo-se que o círculo representa todos os alunos da sala, responda as questões. a) Qual é a fração que representa os alunos que preferem basquete? FB V V V V V 3 b) Qual é o número de alunos que prefere cada esporte? Futebol: 30 0; Basquete: 30 e Vôlei:

9 9 7. Na figura abaixo todos os triângulos são equiláteros. Que fração irredutível representa a superfície preta dessa figura? Na figura podemos observar quatro tamanhos diferentes de triângulos, que em ordem decrescente, nomeamos por T, T, T 3 e T. Tomando como unidade o T, podemos observar que T T, T3 T e T T3, ou seja, cada triângulo possui um quarto da área do triângulo de tamanho imediatamente superior ao seu. A área preta da figura é composta por T 9T, ou seja, Escreva cada fração na forma do número decimal correspondente. a) b) , , ,37 00 c) 0 0, 0 0 0, 0 0, d) , 9 8 0, , 00 _ , 8

10 0 9. Escreva os números decimais na forma de fração irredutível. a) 0,7 7 0 b) 0, c) 0, d), e), Calcule. a) 7 de b) 7 de c) 9 de Escreva as frações impróprias na forma de número misto. a).().( ) () ou b) 3.() 3 3.( ) 3 3 3() 3 3 ou

11 . Encontre a fração que representa cada dízima periódica a seguir. a) 0, b) 0, c) 3, d), , 0, e) 0, , Compare as frações com os sinais <, > ou =. 3 a) 7, pois 3 mmc(,7) 3 e b) 00, pois mmc(,00) c) 8, pois 7 mmc(,8) e 8 3 d) 3, pois 3 9 mmc(3,) 33 e e) 6, pois 3 33 mmc(6,) e 6. Um vendedor externo recebe comissão de % das vendas que realiza. Em um mês recebeu de comissão R$.00,00, qual foi a sua venda nesse mês? 00 % 00.(00) 00.( 0 0) 00.(0) x x x x 000 x 00% Assim, o vendedor vendeu nesse mês R$.000,00.

12 . A comissão de um vendedor de automóveis é de 0,7% sobre o valor da venda. Quanto ele recebe de comissão ao vender um automóvel por R$ 3.700,00? 0,7 7 0,7% Assim, (3,7),9 000 A comissão da venda desse automóvel é de R$,00. Exercícios Propostos. Sobre as frações: afirmar que: 7 a) 7 8 b) 8 7 e 7 c) são irredutíveis. d) são menores que 7 e 7, é incorreto. A soma dos termos de uma fração é. Adicionando 3 ao numerador e subtraindo 0 do denominador, a diferença entre eles passa a ser. Sendo assim, qual é o valor do denominador? a) 9 b) c) 6 d) 70 e) 79 e) são equivalentes

13 3 3. O texto seguinte é um extrato do testamento do senhor Astolfo: Deixo/3 da quantia que tenho no Banco à minha única filha, Minerva, e o restante à criança que ela está esperando, caso seja do sexo feminino; entretanto, se a criança que ela espera for do sexo masculino, tal quantia deverá ser igualmente dividida entre os dois. Considerando que, mês após o falecimento de Astolfo, Minerva teve um casal de gêmeos, então, para que o testamento de Astolfo fosse atendido, as frações da quantia existente no Banco, recebidas por Minerva, seu filho e sua filha foram, respectivamente: a) b) c) d) e), e 6 6 3, e 6 3 6, e, e, e. Dadas as frações 3,, e 6 3 a) b) c) d) a maior é: e) Nenhuma das demais alternativas

14 . Uma empresa tem funcionários. 3 Desses, executam serviço técnico, um 8 deles é o gerente e o restante executa serviços administrativos. Qual é a fração que representa o número de funcionários que executam serviços administrativos? a) 3 b) c) d) 36 e) 7 7. A expressão a) b) c) d) é igual a: 6. Um avião partiu de um aeroporto com certo número de passageiros. Na primeira escala, desembarcaram 37 dos passageiros. Na escala seguinte embarcaram 0. Na penúltima escala desembarcaram /8 dos passageiros, calcule com quantos passageiros ele partiu do primeiro aeroporto, sabendo que chegaram no destino final 36 passageiros. a) 0 b) 96 c) 6 d) 08 e) 98 Gabarito e d d b b e b

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

AGENTE ADMINISTRATIVO FEDERAL

AGENTE ADMINISTRATIVO FEDERAL FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a

Leia mais

Fração. Parte ou pedaço de um inteiro.

Fração. Parte ou pedaço de um inteiro. Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte

Leia mais

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)

Leia mais

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos

Leia mais

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor

Leia mais

Planejamento de Curso de Matemática para a 5º serie.

Planejamento de Curso de Matemática para a 5º serie. Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) = PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é

Leia mais

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10. DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

Pró-letramento Matemática Estado de Minas Gerais

Pró-letramento Matemática Estado de Minas Gerais Pró-letramento Matemática Estado de Minas Gerais Diferentes significados de um mesmo conceito: o caso das frações. 1 Cleiton Batista Vasconcelos e Elizabeth Belfort Muitos conceitos matemáticos podem ser

Leia mais

2º Ano Matemática Básica Estudo das Frações Página 1

2º Ano Matemática Básica Estudo das Frações Página 1 Frações Impróprias: É aquela em que o numerador é maior do que o denominador: exemplos:. Frações Aparentes: É aquela em que o numerador é múltiplo do denominador: exemplos:. Há aproximadamente 5000 anos,

Leia mais

Concurso Público 2017

Concurso Público 2017 Concurso Público 017 Conteúdo I Frações frações equivalentes, simplificação de frações, comparação de frações, números fracionários, operações com frações (adição, subtração, multiplicação, divisão e potenciação).

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

O filho sábio alegra a seu pai. (Provérbios 15:20)

O filho sábio alegra a seu pai. (Provérbios 15:20) Lista de Matemática e Interpretacão de texto 5 o ano de 5 à 9/08/206 O filho sábio alegra a seu pai. (Provérbios 5:20) 2 a Feira 5/08.Com muita mordomia, resolva os problemas abaixo. a) Wanessa é professora

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /2012 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

FRAÇÕES. Professora: Gianni Leal 6ºBM

FRAÇÕES. Professora: Gianni Leal 6ºBM FRAÇÕES Professora: Gianni Leal 6ºBM IDEIA INTUITIVA DE INTEIRO E O QUEBRADO Frases comuns no dia a dia: Perdi o ônibus por uma fração de segundos Paguei 7 reais e uns quebrados. São quatro horas e meia.

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar

Leia mais

Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km

Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para efeito de revisão,

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

unidade de milhar Centena dezena unidade ordem

unidade de milhar Centena dezena unidade ordem 1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y. SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras

Leia mais

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro. MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

I-EXPRESSÕES NUMÉRICAS

I-EXPRESSÕES NUMÉRICAS I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 4 5 + 7 2-1 + 7 2 + 6 2 = + 4 = 4 Nas expressões e sentenças matemáticas, os

Leia mais

O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES

O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES SITUAÇÃO DE APRENDIZAGEM O SISTEMA DE NUMERAÇÃO DECIMAL E SUAS OPERAÇÕES Contando de diferentes maneiras Página 6. Experimentação Se cada grupo receber pedrinhas, o quadro será o seguinte: Observação:

Leia mais

Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações

Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações 5. Frações Há 5000 anos, os geômetras dos faraós do Egito realizavam a marcação das terras que ficavam às margens do rio Nilo, para a sua população. No período de junho a setembro, o rio inundava essas

Leia mais

Resolvendo equações. 2 = 26-3 α φ-1

Resolvendo equações. 2 = 26-3 α φ-1 A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas

Leia mais

aparecem os números, na parte de cima da máquina)

aparecem os números, na parte de cima da máquina) Um número de quatro algarismos multiplicado por outro de três algarismos deu como resultado 123 123. Quais são esses números? Vamos aprender a utilizar a máquina de calcular em operações simples. Para

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

Provão. Matemática 4 o ano

Provão. Matemática 4 o ano Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

3º Ano e Curso Matemática Básica 02 Página 1

3º Ano e Curso Matemática Básica 02 Página 1 º Modo: O MMC é o produto de todos os fatores primos dos números, considerados uma única vez e de maior expoente. = MMC {;} = = =. NÚMEROS PRIMOS Um número natural maior que é chamado de número primo,

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367 Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito

Leia mais

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro

Números Racionais. MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro Números Racionais MAT1514 MEB 2/2016 T42 Diurno Substituição da Profa. Martha Monteiro O que são números racionais? Alguma definição? Como surgiram? Relacionados a quais ideias ou situações? Representação

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

Matemática Básica para ENEM

Matemática Básica para ENEM Matemática Básica para ENEM Júlio Sousa I - Frações Fração também pode ser chamada de razão e é escrita da seguinte forma: a b onde a é o numerador e b o denominador, e devemos ter a Є N e b Є N* Obs:

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO - 3 ( QUINTA SÉRIE ) PROFESSOR:Ardelino R Puhl PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º ao 9º ano e Magistério. 1.3 Tempo da aula: 2,5 horas 1.4 Tempo da oficina: 5 horas 1.5 Conteúdo

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 MÚLTIPLA ESCOLHA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 0. Sejam os conjuntos: A = Conjunto dos números no quadrado B = Conjunto dos números no pentágono C =

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017

Leia mais

O conceito de fração e de razão Rômulo Campos Lins e Heloísa da Silva

O conceito de fração e de razão Rômulo Campos Lins e Heloísa da Silva Texto complementar O conceito de fração e de razão Rômulo Campos Lins e Heloísa da Silva MATEMÁTICA Matemática Assunto: Números, grandezas e medidas O conceito de fração e de razão [...] Quando dizemos

Leia mais

LISTA DE EXERCÍCIOS III 2 O BIMESTRE. NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação)

LISTA DE EXERCÍCIOS III 2 O BIMESTRE. NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação) NOME: Nº. - 6 o ANO - E.F.II DATA: / / 2016 PROF. MARCO MALZONE - MATEMÁTICA I LISTA DE EXERCÍCIOS III 2 O BIMESTRE NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação) PARTE

Leia mais

MATEMÁTICA Nº DE INSCRIÇÃO. C Adm 5ª Série MATEMÁTICA Tempo de duração da prova Confere: Página 1 de

MATEMÁTICA Nº DE INSCRIÇÃO. C Adm 5ª Série MATEMÁTICA Tempo de duração da prova Confere: Página 1 de Página 1 de 10 MATEMÁTICA 01. Quando se fala em sistema de numeração decimal pensamos nos dedos das mãos. Muitos alunos fazem contas de adição e subtração olhando para os dedos das mãos, e isso não pode

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. 1º período Os números naturais: Sistema de Numeração Decimal. (SND). Pág.30 a 32. Um pouco de história: sistema de numeração dos romanos. Pág. 33 a 35 Os números naturais. Pág. 36 e 37 Sistema de Numeração

Leia mais

Objetivos Gerais Descritores Conteúdos. 1.Utilizar corretamente os números ordinais até "centésimo

Objetivos Gerais Descritores Conteúdos. 1.Utilizar corretamente os números ordinais até centésimo AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 3.º ANO DE ESCOLARIDADE - 2016-2017 Domínio/ Números naturais Objetivos Gerais Descritores Conteúdos 1.Conhecer os números ordinais

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática3º ano Ano Letivo 2016/2017

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática3º ano Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática3º ano Ano Letivo 2016/2017 1º Período Domínios Números e Operações Números naturais Numerais ordinais até centésimo;

Leia mais

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação EQUAÇÃO DO 1º GRAU Toda sentença aberta epressa por uma igualdade é uma equação Interessante : A palavra equação apresenta o prefio equa que em latim quer dizer igual. São Equações + 12 = 21 3 + 7 = 23

Leia mais

ACTIVIDADE Nº II. Fracções. Números racionais

ACTIVIDADE Nº II. Fracções. Números racionais ACTIVIDADE Nº II Nome do Formando: Data: / / Fracções. Números racionais A D. Maria tem um terreno que quer dividir pelos 7 sobrinhos. Cada sobrinho ficou com a sétima parte do terreno ou um sétimo do

Leia mais

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo

Leia mais

Técnico Judiciário TJ / RS

Técnico Judiciário TJ / RS CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

30's Volume 23 Matemática

30's Volume 23 Matemática 0's Volume 2 Matemática www.cursomentor.com 20 de julho de 20 Q. Calcule o valor da seguinte expressão aritmética: 0 {[( + 6 ) 2 2 ] 2 } [2 0 (2 2 ) (0 2 2 2)] Q2. Em uma determinada cidade, os ônibus

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

PLANIFICAÇÃO MENSAL DE MATEMÁTICA

PLANIFICAÇÃO MENSAL DE MATEMÁTICA AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA- Cantanhede DEPARTAMENTO CURRICULAR DO 1.º CICLO 4.º ANO DE ESCOLARIDADE PLANIFICAÇÃO MENSAL DE MATEMÁTICA Metas (objectivos) / Descritores de desempenho setembro

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 1.º Período Números e Operações Conteúdos Programados Aulas Previstas Aulas Dadas Números naturais Conhecer os numerais ordinais Utilizar corretamente

Leia mais