Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367

Tamanho: px
Começar a partir da página:

Download "Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367"

Transcrição

1 Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito de múltiplos. Para se chegar a esses múltiplos devemos multiplicar o número 5 por 0,,2,3,4,5,... 5x0=0 5x=5 5x2=0 5x3=5 5x4=20 5x5=25 Logo o conjunto dos múltiplos de 5 é { 0,5,0,5,20,25,30,... } Conjunto dos múltiplos de 3 é { 0,3,6,9,2,5,8,... } Veja que no conjunto dos múltiplos de um número temos o menor múltiplo que é o zero já o maior o múltiplo não podemos identificar já que o conjunto dos números naturais é infinito. Critérios de divisibilidade Divisibilidade por 2 Um número é divisível por 2 quando é par, ou seja, quando terminar em 0,2,4,6, ou 8. Atenção não confundir o zero como sendo um número par, o zero é um número nulo e não um número par. Se o zero for o ultimo algarismo de um número, ele faz com que esse número seja par. Exemplo 20. Divisibilidade por 3 Um número é divisível por 3 se a soma de seus algarismo for um número divisível por 3. Exemplo: 5367 é divisível por 3, pois =2 e 2 é divisível por 3 como a soma dos algarismos é um número divisível por 3 logo o número 5367 também é divisível por 3. Divisibilidade por 4 Um número é divisível por 4 quando o número formado pelos os dois últimos algarismo da direita formar um número divisível por 4. Exemplo: 2346 esse número é divisível por 4, pois os dois últimos algarismos formam o número 6 que é divisível por 4.

2 Exemplo: também é divisível por 4, pois os dois últimos algarismos formam o número 04 que é divisível por 4. Atenção quando o número terminar em 00 também será divisível por 4. Divisibilidade por 5 Um número é divisível por 5 quando terminar em 0 ou 5. Exemplo: 20 e 25 Divisibilidade por 6 Um número só será divisível por 6 se ele for ao mesmo tempo divisível por 2 e por 3. Exemplo: 276 é divisível por 6, pois ele é divisível por 2 porque é par e é divisível por 3 porque 2+7+6=5 que é divisível por 3 Divisibilidade por 8 È parecido com o critério da divisibilidade por 4, só que ao invés de pegar os dois últimos algarismos pegamos os três últimos algarismos, se formar um número divisível por 8 então esse número será divisível por 8. Exemplo: é divisível por 8, pois 288 é divisível por 8. Divisibilidade por 9 Um número é divisível por 9 quando a soma de seus algarismos for um número divisível por 9. É o mesmo processo da divisibilidade por 3. Exemplo: é divisível por 9, pois =27 a soma dos algarismos é 27 que é divisível por 9. Portanto o numero é divisível por 9. Divisibilidade por 0 Um numero é divisível por 0 quando termina em ZERO, exemplo 250. Divisibilidade por Um número é divisível por quando a diferença entre a soma dos valores de ordem impar e os de ordem par for divisível por. Essa ordem dos algarismos será da direita para a esquerda.

3 Atenção se o resultado da subtração for zero o número também será divisível por. Exemplo: é divisível por, veja : algarismo 7 Soma dos algarismos de ordem impar = 20 2 algarismo 3 Soma dos algarismos de ordem par = 9 3 algarismo 2 Subtraindo 20-9 =, veja que o resultado é como ele é 4 algarismo 0 divisível por logo o número dado também é divisível por. 5 algarismo 2 6 algarismo 6 7 algarismo 9 Exemplo: 7248 soma dos algarismos de ordem impar 8+2+ = soma dos algarismos de ordem par = veja que temos = 0 por isso 7248 é divisível por. Números primos Número primo é aquele que é divisível apenas por por ele mesmo. Exemplos: 2 é divisível por e por 2 3 é divisível por e por 3 5 é divisível por e por 5 É muito importante que você saiba sem o uso de cálculos pelo menos a seqüência alguns números primos. Como ( 2,3,5,7,,3,7,9,23,27,...) esta seqüência é importante que se aprenda, pois ela será utilizada na decomposição de números e no cálculo de divisores. Como reconhecer um número primo Para saber se um número é primo, dividimos ele pela seguência de números primos ( 2,3,5,7,,3,7,9,23,27,...) até obtermos uma divisão em que o quociente seja menor ou igual ao divisor se nenhuma da divisões anteriores forem exatas, então o número será primo. Ex: Verificar se 239 é primo ou composto

4 Ex: Verificar se 9 é primo ou composto Ex: Verificar se 47 é primo ou composto Atenção: O número que não é primo é chamado de número composto.

5 Fatoração Utilizamos a fatoração para decompor um número composto em fatores primos. Exemplo : vamos fatorar o número dividido por 2 é 30 e coloca embaixo do dividido por 2 é 5 e coloca embaixo do não posso mais dividir por 2,então 5 : 3 é 5 coloca embaixo do não posso mais dividir por 3, então 5 : 5 é coloca embaixo do5 Logo a forma fatorada de 60 é 2 2 x 3 x 5 veja que o 2 tem expoente 2 porque apareceu duas vezes. Lembra da seqüência de números primos citada acima, quando vamos fazer a fatoração de um número só podemos dividir ele por um número primo. Se for possível vamos dividir por 2 até quando não puder mais, depois por 3, depois por 5 e assim sucessivamente. Exemplo: fatorar o número Logo a forma fatorada de 90 é 2 x 3 2 x 5 Divisores Podemos determinar os divisores de um número através da fatoração do número. Após fatorar criamos uma coluna ao lado da coluna fatorada, colocando o número acima do º número da fatoração,depois cada número da fatoração multiplicará que está acima dele na 2ª coluna.

6 Exemplo: encontrar os divisores de x=2 resultado ao lado dele já tem 2x, falta 2x2=4 coloca ao lado dele ,0,20 fazemos 5x=5, 5x2=0 e 5x4=20 colocamos ao lado dele Logo os divisores de 20 são todos os resultados das multiplicações,2,4,5,0 e 20 Exemplo: Vamos agora determinar os divisores de x=2 coloco resultado ao lado do ,6 3x=3 e 3x2=6 coloca resultado ao lado do ,8 já tem 3x e 3x2 falta 3x3=9 e 3x6=8 coloca 9 e8 ao lado 5 5 5,0,5,30,45,90 todos os números multiplicados por 5 Logo os divisores de 90 são todos os resultados das multiplicações,2,3,6,9,8,5,0,5,30,45 e 90 se preferir poderá ser colocado na ordem numérica,2,3,5,6,9,0,5,8,30,45 e 90 Quantidade de divisores de um número Podemos também utilizar a fatoração para indicar a quantidade de divisores sem ter que escrevê-los. Exemplo: quando fatoramos o número 90 temo a forma fatorada 2 x 3 2 x 5 o expoente não é necessário colocar só estou colocando afim de que você possa visualizar melhor o que vou explicar. Na forma fatorada temos os expoente, 2 e, vamos aumentar uma unidade em cada expoente ficando então 2, 3 e 2 e por fim vamos multiplicá-los 2 x 3 x 2 = 2, logo 90 tem 2 divisores.

7 Vamos calcular o numero de divisores de 60 A forma fatorada de 60 é 2 2 x 3 x 5 Os expoentes são 2 Aumentado de fica Multiplicando 3 x 2 x 2 = 2 portanto 60 também tem 2 divisores. Vamos calcular o numero de divisores de 20 A forma fatorada de 20 é 2 2 x 5 Os expoentes são 2 Aumentado de fica 3 2 Multiplicando 3 x 2 = 6 portanto 20 tem 6 divisores.

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo.

MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo. Critérios de Divisibilidade MÚLTIPLOS E DIVISORES MÚLTIPLO Um número natural é múltiplo de um outro, quando a sua divisão por esse outro é exata. Assim, é múltiplo de e de, pois: = = Múltiplo de um número

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 15.1 Conteúdo: Conceituar e exemplificar MMC.

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 15.1 Conteúdo: Conceituar e exemplificar MMC. CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 15.1 Conteúdo: Conceituar e exemplificar MMC. CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Aplicar os conceitos

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Meu nome: Minha Instituição:

Meu nome: Minha Instituição: Meu nome: Minha Instituição: 1. O Teorema Fundamental da Aritmética enuncia que todo número natural maior que 1 ou é primo ou pode ser escrito de forma única, a menos da ordem dos fatores, como produto

Leia mais

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária. 1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.)

Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) UNIVERSIDADE FEDERAL DO PARANÁ Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) DANIELA GUERRA HANNAH LACERDA WESLEY S. V. BATISTA WILLIAN VALVERDE Curitiba 2011 SUMÁRIO Introdução...02 1.

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par. Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Actividade de enriquecimento. Algoritmo da raiz quadrada

Actividade de enriquecimento. Algoritmo da raiz quadrada Actividade de enriquecimento Algoritmo da raiz quadrada Nota: Apresenta-se uma actividade de enriquecimento e de um possível trabalho conjunto com as disciplinas da área de informática: os alunos poderão

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)

Leia mais

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores 5. NÚMEROS PRIMOS O conhecimento dos números primos e da decomposição dos números inteiros como produto de primos estão entre os conhecimentos mais úteis e importantes da Aritmética. K. F. Gauss Estudos

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

Aula 3 Distribuição de Frequências.

Aula 3 Distribuição de Frequências. 1 Estatística e Probabilidade Aula 3 Distribuição de Frequências. Professor Luciano Nóbrega Distribuição de frequência 2 Definições Básicas Dados Brutos são os dados originais que ainda não foram numericamente

Leia mais

O que são custos de transformação?

O que são custos de transformação? O que são custos de transformação? A forma encontrada pelo método UEP para analisar os custos da empresa é através da simplificação do modelo de cálculo da produção do período determinando uma unidade

Leia mais

Matemática Régis Cortes MÚLTIPLOS E DIVISORES

Matemática Régis Cortes MÚLTIPLOS E DIVISORES MÚLTIPLOS E DIVISORES Múltiplos e divisores de um número Um número é múltiplo de outro quando, ao dividirmos o primeiro pelo segundo, o resto é zero. Observe as seguintes divisões entre números Naturais:

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação EQUAÇÃO DO 1º GRAU Toda sentença aberta epressa por uma igualdade é uma equação Interessante : A palavra equação apresenta o prefio equa que em latim quer dizer igual. São Equações + 12 = 21 3 + 7 = 23

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Matéria: Matemática Assunto: Porcentagem Prof. Dudan

Matéria: Matemática Assunto: Porcentagem Prof. Dudan Matéria: Matemática Assunto: Porcentagem Prof. Dudan Matemática Porcentagem DEFINIÇÃO: A percentagem ou porcentagem (do latim per centum, significando por cento, a cada centena ) é uma medida de razão

Leia mais

NOÇÃO DE MEDIDA. O ato de medir está sempre associado ao ato de comparar. Utilizamos como base de comparação uma unidade de medida,

NOÇÃO DE MEDIDA. O ato de medir está sempre associado ao ato de comparar. Utilizamos como base de comparação uma unidade de medida, NOÇÃO DE MEDIDA O ato de medir está sempre associado ao ato de comparar. Utilizamos como base de comparação uma unidade de medida, Medir uma dada grandeza consiste em comparar o seu valor com a respetiva

Leia mais

I-EXPRESSÕES NUMÉRICAS

I-EXPRESSÕES NUMÉRICAS I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 4 5 + 7 2-1 + 7 2 + 6 2 = + 4 = 4 Nas expressões e sentenças matemáticas, os

Leia mais

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Propriedades das Operações Aritméticas em Q

Agrupamento de Escolas de Almeirim. Matemática 7.º Ano Propriedades das Operações Aritméticas em Q Agrupamento de Escolas de Almeirim Matemática 7.º Ano Propriedades das Operações Aritméticas em Q Potências A definição usual de potência, remetendo para um expoente natural, reporta-se a uma multiplicação.

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

ALGUMAS PROPRIEDADES RELATIVAS À CONJECTURA DE GOLBACH

ALGUMAS PROPRIEDADES RELATIVAS À CONJECTURA DE GOLBACH 153 ALGUMAS PROPRIEDADES RELATIVAS À CONJECTURA DE GOLBACH Antônio Carlos da Silva Filho INTRODUÇÃO A Conjectura de Goldbach estabelece que: "Todo inteiro par maior do que 2 pode ser escrito como a soma

Leia mais

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C Exercício 1 Há 3 linhas de ônibus entre as cidades A e B e 2 linhas de ônibus entre B e C. De quantas maneiras uma pessoa pode viajar: (a) indo de A até C, passando por B? (b) indo e voltando entre A e

Leia mais

4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos

4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos 4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos Prepare um dado com três cores em suas faces (azul, amarelo e vermelho), sendo que cada cor deve aparecer duas vezes; Com as peças

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

Especificação do Código de Barras para Bloquetos de Cobrança Sem Registro e Registrada no SIGCB - Cobrança Bancária CAIXA INDICE

Especificação do Código de Barras para Bloquetos de Cobrança Sem Registro e Registrada no SIGCB - Cobrança Bancária CAIXA INDICE Grau de sigilo #00 INDICE 1 INTRODUÇÃO... 02 2 ESPECIFICAÇÕES DO DOCUMENTO DE COBRANÇA BANCÁRIA... 02 2.1 Formato... 02 2.2 Gramatura do papel... 02 2.3 Dimensões do documento... 02 2.4 Número de vias

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

=...= 1,0 = 1,00 = 1,000...

=...= 1,0 = 1,00 = 1,000... OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira

Leia mais

Espera, espera, tive uma idéia e uma idéia não se deixa fugir.

Espera, espera, tive uma idéia e uma idéia não se deixa fugir. Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

S i a g r i Sistemas de Gestão Evidence Assessoria & Treinamentos Margem de Contribuição

S i a g r i Sistemas de Gestão Evidence Assessoria & Treinamentos Margem de Contribuição O que é? é quantia em dinheiro que sobra do preço de venda de um produto, serviço ou mercadoria após retirado o valor do custo variável unitário. Esta quantia é que irá garantir a cobertura do custo fixo

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 11 Matrizes Professor Luciano Nóbrega º Bimestre MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º 45º

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120 Que algarismos devem ser colocados nos pontinhos da conta abaixo?... 34 x 41... O Invente um problema que tenha como solução os cálculos abaixo: IS x 12 = 180 300-180 = 120 Em diversas situações do nosso

Leia mais

Solução da prova da 1 a fase OBMEP 2009 Nível 2

Solução da prova da 1 a fase OBMEP 2009 Nível 2 1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o número, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente ao algarismo 5,

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

Algoritmo da raiz quadrada

Algoritmo da raiz quadrada Algoritmo da raiz quadrada Existem várias formas de nos aproximarmos do valor da raiz quadrada de um número. Uma delas, a equação de Pell, permite encontrar a parte inteira para de uma raiz quadrada de

Leia mais

EXERCÍCIOS EXTRAS RESOLVIDOS PROF. THIAGO

EXERCÍCIOS EXTRAS RESOLVIDOS PROF. THIAGO EXERCÍCIOS EXTRAS RESOLVIDOS PROF. THIAGO INSTRUÇÃO: Leia atentamente cada um dos exercícios e suas respectivas resoluções. Se achar conveniente, tente resolver alguns desses antes de conferir a resposta.

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO SISTEMAS DE NUMERAÇÃO 1. INTRODUÇÃO Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Prof. Rivelino Matemática Básica

Prof. Rivelino Matemática Básica NÚMEROS PROPORCIONAIS Números Diretamente Proporcionais Os números de uma sucessão numérica A = ( a, a, a,... a n ) são ditos diretamente proporcionais aos números da sucessão numérica B = ( b,.. n), quando

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos

NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos 1 NÚMEROS E OPERAÇÕES Sistema de Numeração Decimal O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional Na base 10, dispomos de 10 algarismos

Leia mais

Lista de Exercícios 06 Modularização (Procedimentos e Funções)

Lista de Exercícios 06 Modularização (Procedimentos e Funções) Lista de Exercícios 06 Modularização (Procedimentos e Funções) Procedimentos: Passagem de parâmetros. 1) Escreva um procedimento que receba um número inteiro e imprima o mês correspondente ao número. Por

Leia mais

Observe na figura mostrada acima que temos duas condições para um circuito em paralelo: fontes em paralelo ou cargas (resistores) em paralelo.

Observe na figura mostrada acima que temos duas condições para um circuito em paralelo: fontes em paralelo ou cargas (resistores) em paralelo. Ao contrário dos circuitos em série, em que a corrente é a mesma em qualquer um dos pontos do circuito, no circuito em paralelo a corrente se divide entre vários pontos de um circuito. Observe na figura

Leia mais

TEORIA E EXERCÍCIOS RESOLVIDOS...4

TEORIA E EXERCÍCIOS RESOLVIDOS...4 NÚMEROS INTEIROS NOÇÕES FUNDAMENTAIS Sumário 1. APRESENTAÇÃO...2 2. TEORIA E EXERCÍCIOS RESOLVIDOS...4 3. CONSIDERAÇÕES FINAIS... 32 4. LISTA COM OS EXERCÍCIOS ABORDADOS HOJE... 34 1 1. APRESENTAÇÃO Olá,

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.

Leia mais

3º Ano do Ensino Médio. Aula nº08

3º Ano do Ensino Médio. Aula nº08 Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Análise Combinatória - ENEM

Análise Combinatória - ENEM Prof Rômulo Garcia https://wwwfacebookcom/matematicaenem Análise Combinatória - ENEM 1)Quantos são os gabaritos possíveis de um teste de 10 questões de múltipla escolha, com 5 opções por questão? Podemos

Leia mais

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues 1 TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues Nome :... Número :... Turma :... 2 II - NÚMEROS INTEIROS MÚLTIPLOS E DIVISORES

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

ESTATÍSTICA BÁSICA AULA 05

ESTATÍSTICA BÁSICA AULA 05 ESTATÍSTICA BÁSICA AULA 05 TÁ NA MÉDIA! FILIPE S. MARTINS ESTATÍSTICA - ROTEIRO DISTRIBUIÇÃO DE FREQUÊNCIAS TABELA PRIMITIVA E ROL DISTRIBUIÇÃO DE FREQUENCIA ELEMENTOS DE UMA DISTRIBUIÇÃO DE FREQUÊNCIA

Leia mais

II Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2015

II Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2015 1 2 Questão 1 Artur é muito bom em problemas matemáticos e sempre propõe desafios aos seus colegas. Desta vez, Artur criou uma sequência infinita de letras, juntando as palavras que formavam o nome de

Leia mais

Professor Mauricio Lutz RAZÕES E PROPORÇÕES

Professor Mauricio Lutz RAZÕES E PROPORÇÕES 1 RAZÕES E PROPORÇÕES Chama-se razão de dois números, dados numa certa ordem e sendo o segundo diferente de zero, ao quociente do primeiro pelo segundo. a ou b a : b, onde a é chamado antecedente enquanto

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 2009 2009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

ATIVIDADE DE MATEMÁTICA NÚMEROS NATURAIS. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado.

ATIVIDADE DE MATEMÁTICA NÚMEROS NATURAIS. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado. OSASCO, DE DE 2012 NOME: PROF. 6º ANO ATIVIDADE DE MATEMÁTICA NÚMEROS NATURAIS Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado. 1. Classifique cada sentença em verdadeira

Leia mais

Razonete e Balancete. Osni Moura Ribeiro ; Contabilidade Fundamental 1, Editora Saraiva- ISBN

Razonete e Balancete. Osni Moura Ribeiro ; Contabilidade Fundamental 1, Editora Saraiva- ISBN Razonete e Balancete Osni Moura Ribeiro ; Contabilidade Fundamental 1, Editora Saraiva- ISBN 9788502065901 Razonete Também denominada gráfico em T ou conta em T, o razonete - uma versão simplificada do

Leia mais

A aplicação do método se resume em algumas partes: Apostila escrita e desenvolvida por Renan Cerpe Versão 1.0

A aplicação do método se resume em algumas partes: Apostila escrita e desenvolvida por Renan Cerpe Versão 1.0 Introdução: O método Bindfolded, traduzido como "olhos vendados", é um dos maiores desafios para um Speed Cuber. Solucionar o Cubo Mágico com os olhos vendados parece ser algo impossível e que impressiona

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

Circuitos Série e a Associação Série de Resistores

Circuitos Série e a Associação Série de Resistores 1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Série e a Associação Série de Resistores 1 2 Circuitos Série e a Associação Série de Resistores Utilizando as chaves disponíveis

Leia mais