SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ

Tamanho: px
Começar a partir da página:

Download "SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ"

Transcrição

1 SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ

2 MÚLTIPLOS E DIVISORES PROFª EDNALVA DOS SANTOS

3 Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos e que possui, internamente ou através de associação, sugestões sobre o contexto apropriado para sua utilização. (Sosteric & Hesemeier, 2001).

4 MÚLTIPLOS E DIVISORES A IDEIA DE MÚLTIPLO E DIVISOR É CONHECIDA DESDE A ANTIGÜIDADE GREGA. NAQUELA ÉPOCA, OS SÁBIOS DAVAM TANTA IMPORTÂNCIA AOS NÚMEROS QUE LHES ATRIBUÍAM CARACTERÍSTICAS HUMANAS. PARA VOCÊS TEREM UMA IDEIA, ELES AGRUPAVAM OS NÚMEROS EM MASCULINOS ( OS ÍMPARES) E FEMININOS ( OS PARES).

5 CRITÉRIOS DE MÚLTIPLOS E DIVISORES Divisibilidade Critérios de divisibilidade: São critérios que nos permite verificar se um número é divisível por outro sem precisarmos efetuar grandes divisões. Um número natural é divisível por outro natural, excluindo-se o zero, se a divisão entre eles é exata, ou seja, se tem resto zero. Divisibilidade por 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par. Exemplos : 8490é divisível por 2, pois termina em não é divisível por 2, pois não é um número par

6 Divisibilidade por 3 :Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 870 é divisível por 3, pois a soma de seus algarismos é igual a 8+7+0=15, como 15 é divisível por 3, então 870 é divisível por 3. Divisibilidade por 4 :Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4. Exemplo: 9500 é divisível por 4, pois termina em é divisível por 4, pois 32 é divisível por é divisível por 4, pois 36 é divisível por não é divisível por 4, pois não termina em 00 e 70 não é divisível por 4. Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5. Exemplos: 425 é divisível por 5, pois termina em é divisível por 5, pois termina em não é divisível por 5, pois não termina em 0 nem em 5.

7 Divisibilidade por 6: Um número é divisível por 6 quando é divisível por 2 e por 3 ao mesmo tempo. Exemplos: 6456 é divisível por 6, porque é divisível por 2e por 3 ao mesmo tempo. 984 não é divisível por 6, é divisível por 2, mas não é divisível por não é divisível por 6, é divisível por 3, mas não é divisível por 2. Divisibilidade por 8: Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 2000 é divisível por 8, pois termina em é divisível por 8, pois 120 é divisível por não é divisível por 8, pois 341 não é divisível por 8. Divisibilidade por 9: Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 6192 é divisível por 9, pois a soma de seus algarismos é igual a =18, e como 18 é divisível por 9, então 6192 é divisível por 9. Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 8970 é divisível por 10, pois termina em não é divisível por 10, pois não termina em 0.

8 MÚLTIPLOS Se um número é divisível por outro, diferente de zero, então dizemos que ele é múltiplo desse outro. Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais. Exemplo: os múltiplos de 7 são: 7x0, 7x1, 7x2, 7x3, 7x4,... = 0, 7, 14, 21, 28,... ATENÇÃO: Observações importantes 1) Um número tem infinitos múltiplos 2) Zero é múltiplo de qualquer número natural

9 NÚMEROS PRIMOS Número primo: É quando um número só é divisível por dois números diferentes; 1 e ele mesmo. Exemplos: 2 tem apenas os divisores 1e 2, portanto 2 é primo. 23 tem apenas os divisores 1e 23, portanto 23 é primo. 10 tem os divisores 1, 2, 5e 10, portanto 10 não é primo. Atenção: 1 não é um número primo, porque ele tem apenas um divisor ele mesmo. 2 é o único número primo que é par. Os números que têm mais de dois divisores são chamados números compostos. Exemplo: 36 tem mais de dois divisores então 36 é um número composto.

10 Como saber se um número é primo Devemos dividir o número dado pelos números primos menores que ele, até obter um quociente menor ou igual ao divisor. Se nenhum das divisões for exata, o número é primo. Decomposição em fatores primos Todo número natural, maior que 1, pode ser escrito na forma de uma multiplicação em que todos os fatores são números primos. É o que nós chamamos de forma fatorada de um número. Decomposição do número 36: 36 =9 x 4 36 = 3 x 3 x 2 x 2 36 = 3 x3 x 2 x 2 = 22x32 No produto 2 x 2 x 3 x 3 todos os fatores são primos. Chamamos de fatoração de 36 a decomposição de 36 num produto de fatores primos.

11 Método Prático Escrevera Forma Fatorada de um Número Natural Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo: ºDividimos o número pelo seu menor divisor primo; 2ºA seguir,dividir o quociente obtido pelo seu menor divisor primo. 3ºProceder dessa forma, daí por diante, até obter o quociente 1.

12 Determinação dos divisores de um número Na prática determinamos todos os divisores de um número utilizando os seus fatores primos. Vamos determinar, por exemplo, os divisores de 72: 1ºFatoramos o número 72. 2ºTraçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número. 3º Multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo. 4º Os divisores já obtidos não precisam ser repetidos. Então o conjunto dos divisores de 72 = {1,2,3,4,6,8,9,12,18,36,72}

13 Máximo Divisor Comum (mdc) O máximo divisor comum entre dois ou mais números naturaisnão nulos (números diferentes de zero) é o maior número queé divisor ao mesmo tempo de todos eles. Não vamos aqui ensinar todos as formas de se calcular o mdc, vamos nos ater apenas a algumas delas. Regra das divisões sucessivas Esta regra é bem prática para o calculo do mdc, observe: Exemplo: Vamos calcular o mdc entre os números 160 e 24. 1º: Dividimos o número maior pelo menor. 2º: Como não deu resto zero, dividimos o divisor pelo resto da divisão anterior. 3º: Prosseguimos com as divisões sucessivas até obter resto zero. O mdc (64; 160) = 32

14 Mínimo Múltiplo Comum - MMC mmc (18, 25, 30) = 720 1º: Escrevemos os números dados, separados por vírgulas, e colocamos um traço vertical a direita dos números dados. 2º: Abaixo de cada número divisível pelo fator primo colocamos o resultado da divisão. O números não divisíveis pelo fator primo são repetidos. 3º: Continuamos a divisão até obtermos resto 1 para todos os números.

15 OBJETO APRENDIZAGEM - JOGOS Os jogos quando convenientemente planejados, são um recurso pedagógico eficaz para a construção do conhecimento matemático. Para que o jogo seja um material produtivo em sala, o professor deve ter alguns cuidados ao escolher os jogos a serem aplicados como: não tomar o jogo algo obrigatório; escolher jogos em que o fator sorte não interfira nas jogadas, permitindo que vença aquele que descobrir as melhores estratégias; estabelecer regras; estudar o jogo antes de aplicá-lo ou seja jogá-lo antes.

16 O JOGO BORBOLETAS ANIMAÇÃO

17 O JOGO Apanhar as borboletas que carregam os números certos, no mais curto espaço de tempo. Cada jogo é constituído por 3 fases (números primos, divisores, etc...). Sempre que se apanha uma borboleta errada será sujeito a uma penalização de 30 segundos.

18

19 COMO JOGAR

20

21

22

23

24

25

26

27 OS NÚMEROS O Objetivo do jogo é descobrir as regras de divisibilidade, múltiplos e seus padrões usando rapidez e a lógica através instrumentos educacionais, ou seja, saber se um número é múltiplo ou divisível por outro sem efetuar multiplicação. Verificar os números primos. Identificar números pares.

28 CONCLUSÃO Um objeto de aprendizagem é qualquer recurso que possa ser reutilizado para dar suporte ao aprendizado. Sua principal idéia é "quebrar" o conteúdo educacional disciplinar em pequenos trechos que podem ser reutilizados em vários ambientes de aprendizagem. Qualquer material eletrônico que provém informações para a construção de conhecimento pode ser considerado um objeto de aprendizagem, seja essa informação em forma de uma imagem, uma página HTM, uma animação ou simulação. RIVED - REDE INTERNACIONAL VIRTUAL DE EDUCAÇÃO

29 LINK

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC

FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC PROJETO KALI MATEMÁTICA A AULA 0 FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC Introdução Hoje iniciaremos o estudo de alguns assuntos extremamente importantes para uma maior compreensão no ensino da

Leia mais

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Equipe de Matemática. Matemática. Divisibilidade

Equipe de Matemática. Matemática. Divisibilidade Aluno (a): Série: 3ª Turma: TUTORIAL 1B Ensino Médio Equipe de Matemática Data: Matemática Divisibilidade Divisores de um número natural são todos os números naturais que ao dividirem tal número, resultarão

Leia mais

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano EXPRESSÃO NUMÉRICA Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços

Leia mais

Para resolver o problema de dona Leonor, é preciso aprender a fatorar, como você já viu na Aula = 2 x = 4 x 5

Para resolver o problema de dona Leonor, é preciso aprender a fatorar, como você já viu na Aula = 2 x = 4 x 5 Dona Leonor faz empadinhas e sempre recebe encomendas para festas. Certo dia, ela recebeu três encomendas: uma de 200 empadinhas, outra de 240 e outra de 300. Depois de fazer todas as empadinhas, dona

Leia mais

CURSO ANUAL DE MATEMÁTICA VOLUME 1

CURSO ANUAL DE MATEMÁTICA VOLUME 1 CURSO ANUAL DE MATEMÁTICA VOLUME ) SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os elementos em grupos de dez. Dezenas cada grupo

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET MATEMÁTICA AULA DEMONSTRATIVA GRATUITA OPERAÇÕES NOS CONJUNTOS NUMÉRICOS A matemática é uma ciência em que o conhecimento é aplicado cumulativamente, ou seja, tudo o que foi aprendido será utilizado nos

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Viajando com a divisão!

Viajando com a divisão! Viajando com a divisão! Você já pensou que dividir é muito mais que fazer uma conta? Que há muitas situações do dia a dia que você pode usar a divisão entre dois números como estratégia para resolver problemas?

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

COMO SABER SE UM NÚMERO FORMADO APENAS POR ALGARISMOS IGUAIS A 1 É DIVISÍVEL POR 7? RELATO DE UMA EXPERIÊNCIA

COMO SABER SE UM NÚMERO FORMADO APENAS POR ALGARISMOS IGUAIS A 1 É DIVISÍVEL POR 7? RELATO DE UMA EXPERIÊNCIA ARTIGO COMO SABER SE UM NÚMERO FORMADO APENAS POR ALGARISMOS IGUAIS A 1 É DIVISÍVEL POR 7? RELATO DE UMA EXPERIÊNCIA José Roberto Julianelli (*) abaixo: O relato a seguir teve início quando eu precisei

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito

Leia mais

Matemática Régis Cortes MÚLTIPLOS E DIVISORES

Matemática Régis Cortes MÚLTIPLOS E DIVISORES MÚLTIPLOS E DIVISORES Múltiplos e divisores de um número Um número é múltiplo de outro quando, ao dividirmos o primeiro pelo segundo, o resto é zero. Observe as seguintes divisões entre números Naturais:

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 4. TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 1). Achando os divisores de um número natural 2). Quantidade de divisores de um número natural 3). Decidindo se um número natural divide outro 4). Extrema

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo.

MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo. Critérios de Divisibilidade MÚLTIPLOS E DIVISORES MÚLTIPLO Um número natural é múltiplo de um outro, quando a sua divisão por esse outro é exata. Assim, é múltiplo de e de, pois: = = Múltiplo de um número

Leia mais

Conjunto dos Números Naturais

Conjunto dos Números Naturais Conjunto dos Números Naturais N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,...} Retirando-se o zero do conjunto dos números naturais, obtemos o conjunto dos números naturais não-nulos, representado por

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. A tabela seguinte apresenta três números, os seus divisores e alguns múltiplos, mas está incompleta. Número Divisores Múltiplos

Leia mais

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h 1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8.

Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Alguns critérios de divisibilidade Divisibilidade por 2 Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Exemplos: O número 5634 é divisível por 2, pois o seu último algarismo

Leia mais

CURSO MATEMÁTICA PARA CONCURSOS I MÓDULO III MÓDULO III

CURSO MATEMÁTICA PARA CONCURSOS I MÓDULO III MÓDULO III 1 MÓDULO III Sem dúvida a maioria dos processos seletivos trazem sempre problemas que tem relação direta com os assuntos que vamos estudar nesse módulo. Agora., só para descontrair!!!! Que tal uma brincadeirinha

Leia mais

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

À procura dos números primos

À procura dos números primos Prática Pedagógica À procura dos números primos Com eles, é possível escrever outros números. Ensine a moçada a usar essa estratégia Cauê Marques NOVA ESCOLA Beatriz Vichessi A decomposição em fatores

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. Observe os números seguintes: 12, 14 e 15. a) Determine os divisores de 14 e de 15 Divisores de 14: Divisores de 15: b) Escreva

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: Alunos de 7º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.)

Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) UNIVERSIDADE FEDERAL DO PARANÁ Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) DANIELA GUERRA HANNAH LACERDA WESLEY S. V. BATISTA WILLIAN VALVERDE Curitiba 2011 SUMÁRIO Introdução...02 1.

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68 Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.

Leia mais

Calculando o MMC (mínimo múltiplo comum)

Calculando o MMC (mínimo múltiplo comum) Calculando o MMC (mínimo múltiplo comum) Público Alvo: Anos finais do ensino fundamental. Duração da atividade: 2h/a. Objetivo Geral: Compreender de forma significativa o algoritmo da fatoração simultânea

Leia mais

XIX Semana Olímpica de Matemática. Nível 1. Problemas com dígitos: o despertar da força. Diego Eloi

XIX Semana Olímpica de Matemática. Nível 1. Problemas com dígitos: o despertar da força. Diego Eloi XIX Semana Olímpica de Matemática Nível 1 Problemas com dígitos: o despertar da força Diego Eloi O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Problemas com dígitos: o despertar da

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

TEORIA DOS NÚMEROS : MMC E MDC

TEORIA DOS NÚMEROS : MMC E MDC 1. (Col. Naval 016) Sejam x e y números reais tais que xy 3. Sendo assim, o valor mínimo de 8 8 x y é a) múltiplo de 18. b) um número primo. c) divisível por 5. d) divisível por 13. e) par maior que 300..

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos esse material.

Leia mais

Cuiabá, de de. REVISÃO DE MATEMÁTICA

Cuiabá, de de. REVISÃO DE MATEMÁTICA Cuiabá, de de. REVISÃO DE MATEMÁTICA 1- O aluno Marcos do 6º ano do Ensino Fundamental, por não ter comparecido à aula na qual sua professora de Matemática explicou a matéria sobre Múltiplos e Divisores

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

Aula 7 - Mais problemas com inteiros

Aula 7 - Mais problemas com inteiros Aula 7 - Mais problemas com inteiros Já vimos nas aulas anteriores alguns detalhes de operações com inteiros. a) A divisão é inteira e o resultado é truncado b) Existe o operador % (resto da divisão) c)

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Centro Educacional Juscelino Kubitschek ALUNO: DATA: / / 2011. ENSINO: Fundamental SÉRIE: 5 ª TURMA: TURNO: DISCIPLINA: Matemática PROFESSOR(A): Equipe de Matemática Valor da Lista: 3,0 Valor Obtido: LISTA

Leia mais

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro

LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER. Rio de Janeiro LAÉRCIO VASCONCELOS MATEMÁTICA PARA VENCER Rio de Janeiro 2011 ÍNDICE Capítulo 1: HORA DE ESTUDAR Para que serve este livro...1 Porque Colégio Militar e Colégio Naval?...2 Matérias e alunos...2 Os exercícios

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

1º ANO PROPOSTA PEDAGÓGICA. Nas relações as pequenas coisas são as grandes.

1º ANO PROPOSTA PEDAGÓGICA. Nas relações as pequenas coisas são as grandes. Processo Admissão 1º ANO PROPOSTA PEDAGÓGICA Nas relações as pequenas coisas são as grandes. (Covey) Vemos a educação da criança como um processo educativo que possibilita a vivência da cidadania, das

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa PLANO DE ENSINO 2016 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Camila Dorneles da Rosa 1.2 Público alvo: alunos do 6 e 7 ano. 1.3 Duração: 2 horas. 1.4 Conteúdo desenvolvido: Números Primos. 2. Objetivo(s)

Leia mais

I-EXPRESSÕES NUMÉRICAS

I-EXPRESSÕES NUMÉRICAS I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 4 5 + 7 2-1 + 7 2 + 6 2 = + 4 = 4 Nas expressões e sentenças matemáticas, os

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores 5. NÚMEROS PRIMOS O conhecimento dos números primos e da decomposição dos números inteiros como produto de primos estão entre os conhecimentos mais úteis e importantes da Aritmética. K. F. Gauss Estudos

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

Escola Adventista Thiago White

Escola Adventista Thiago White Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o

Leia mais

Lista de Exercícios Estrutura de Repetição

Lista de Exercícios Estrutura de Repetição Universidade Federal Fluminense Instituto de Computação Programação de Computadores III Luciana Brugiolo Gonçalves Lista de Exercícios Estrutura de Repetição E15. Desenvolva um algoritmo para exibir todos

Leia mais

MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES

MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES MULTIPLOS; DIVISORES; TRATAMENTO DA INFORMAÇÃO E GEOMETRIA PROFª GERLAINE ALVES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E DIVISORES MULTIPLOS E

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

Raízes quadrada e cúbica de um polinômio

Raízes quadrada e cúbica de um polinômio Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).

Leia mais

a) Defina uma função para obter o máximo entre dois números

a) Defina uma função para obter o máximo entre dois números IP, Resoluções comentadas, Semana 2 jrg, vs 002, Out-2012 a) Defina uma função para obter o máximo entre dois números A versão mais imediata talvez seja esta: public static int maior ( int a, int b ) {

Leia mais

FACULDADE PITÁGORAS PRONATEC

FACULDADE PITÁGORAS PRONATEC FACULDADE PITÁGORAS PRONATEC DISCIPLINA: ARQUITETURA DE COMPUTADORES Prof. Ms. Carlos José Giudice dos Santos carlos@oficinadapesquisa.com.br www.oficinadapesquisa.com.br Objetivos Ao final desta apostila,

Leia mais

V = = I - SISTEMA DE NUMERAÇÃO

V = = I - SISTEMA DE NUMERAÇÃO I - SISTEMA DE NUMERAÇÃO - SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração decimal é formado por algarismos indo-arábicos que são posicionados em classes e ordens. Observe: 4ª classe (bilhões) 3ª classe

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 03 PROVA CM SIMULADA.

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 03 PROVA CM SIMULADA. MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 03 PROVA CM SIMULADA www.laercio.com.br APOSTILA 03 Colégio Militar 6º ano PROVA CM SIMULADA Apostila de complemento do livro MATEMÁTICA PARA VENCER

Leia mais

a) é divisível por: b) é divisível por:

a) é divisível por: b) é divisível por: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 6º ANO - ENSINO FUNDAMENTAL ============================================================================================== 01- Classifique

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

TEORIA MATEMÁTICA BÁSICA

TEORIA MATEMÁTICA BÁSICA TEORIA MATEMÁTICA BÁSICA CRITÉRIOS DE DIVISIBILIDADE Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

3 latas de 3 litros do sorvete BOM 2 latas de 3 litros sorvete BOM R$ 12,00 R$ 7,00

3 latas de 3 litros do sorvete BOM 2 latas de 3 litros sorvete BOM R$ 12,00 R$ 7,00 Caro aluno! No desenvolvimento da oficina 1 você teve algumas situações de aprendizagem que proporcionaram-lhe o desenvolvimento de estratégias de resolução. Para enriquecer cada vez mais a sua aprendizagem,

Leia mais

Potências e logaritmos, tudo a ver!

Potências e logaritmos, tudo a ver! Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

= 18 = = 9

= 18 = = 9 I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 Prevalece o sinal do maior. Exemplo 1: Resolva a seguinte expressão: 4 5 +

Leia mais