Apontamentos de Matemática 6.º ano

Tamanho: px
Começar a partir da página:

Download "Apontamentos de Matemática 6.º ano"

Transcrição

1 Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos 4 por 1, por e por 4 obtemos resto zero. 4 :1 4, 4 : e 4 : 4 1. Se dividirmos 4 por qualquer outro número natural, não vamos obter resto zero: 4 : 3 1, e tem resto 1. Se dividirmos 4 por números maiores que 4 também vamos obter restos diferentes de zero. Os divisores de 3 são 1 e 3, os divisores de 10 são 1,, 5 e 10. Exemplo Determine os divisores de: a) 5 b) 9 c) 11 d) 15 e) 0 Respostas: a) 1 e 5 b) 1, 3 e 9 c) 1 e 11 d) 1, 3, 5 e 15 e) 1,, 4, 5, 10 e 0 Vamos observar atentamente as respostas e recordar alguns conhecimentos do 5.º ano. - 1 é divisor de todos os números (se dividirmos qualquer número por 1 obtemos resto zero) - Qualquer número natural é divisor de si próprio (neste caso o quociente é a unidade e o resto é zero). - Um número é múltiplo dos seus divisores (se, por exemplo, 3 é divisor de 1, então 1 é múltiplo de 3). 1. Determine os divisores de: a) 6 b) 10 c) 13 d) 15 e) 0 f) 3 g) 30. Em relação ao exercício anterior indique quais são os números primos e quais são os números compostos. Voltemos ao exercício, e reparemos que alguns números têm dois (e só dois) divisores: são eles o 3, 5 e 11. Estes números têm um nome: números primos. Definição Um número é primo se tem dois (e só dois) divisores. Definição Um número é composto se tem mais de dois divisores. O número 1 não é primo nem composto tem um único divisor que é ele próprio. 1

2 Determinação de números primos. Os números primos têm sido objeto de grande investigação ao longo da história da matemática. Apesar da sua definição ser bastante simples, não se conhece nenhum método para verificar se um número é ou não primo a não ser pelo cálculo dos seus divisores, o que se pode tornar trabalhoso. Deve-se a Eratóstenes ( a. C.) um método para encontrar os números primos menores que um dado número que se conhece pelo nome Crivo de Eratóstenes. Escreve-se numa tabela a lista de todos os números de até o número que se pretender. Depois, nessa tabela vão-se eliminando os múltiplos de números primos até que o quadrado do número primo seja maior que o maior número da tabela. Exemplo: Determinar os números primos menores que 100: Constrói-se a tabela com os números de até 100. Eliminam-se todos os múltiplos dos números primos,3,5 e 7 Nota. O seguinte número primo é o 11 mas como os múltiplos de 11. Os números eliminados estão sombreados , então já não se eliminam Os números primos menores que 100 são:, 3, 5, 7, 11, 13, 17, 19, 3, 9, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89 e 97.

3 Decomposição de um número em fatores primos. Vamos escrever alguns números como um produto (resultado de uma multiplicação) de números primos. Exemplo, Como e 5 são números primos, 10 está escrito como um produto de números primos, ou está decomposto em fatores primos., Como 4 não é número primo, substituímos 4 por um produto de números primos. Agora 0 já está escrito como um produto de números primos ou decomposto em fatores primos. Há várias formas de decompor um número em fatores primos. Vamos ver um que é dos mais usados. Supomos que queremos decompor o 18 em fatores primos. 3. Utilizando o procedimento descrito ao lado decomponha em fatores primos os seguintes números: a) 30 b) 1 c) 36 d) 150 e) 350 f) 45 g) 40 h) 99 1) Escreve-se o dezoito e traça-se uma linha vertical como mostra a figura ) Divide-se 18 pelo menor número primo que é seu divisor ( que é colocado à sua direita) 3) Coloca-se o resultado da divisão debaixo do 18 4) Divide-se esse resultado (9) pelo menor primo que é seu divisor (3 que é colocado à sua direita) 5) Coloca-se o resultado debaixo do 9 6) Divide-se esse resultado (3) pelo menor primo (3 que é colocado à sua direita) Quando o resultado for a unidade (1) o processo termina A coluna da direita são os fatores primos, então, 4. Complete as seguintes decomposições em fatores primos a) b) c) d)

4 Neste exemplo os passos foram apresentados separadamente para se compreender, mas faz- -se um único esquema, como se mostra a seguir. Decompor 30 e 8 em fatores primos Então, e Após estes exemplos, vamos enunciar uma regra denominada Teorema fundamental da aritmética Teorema fundamental da aritmética Dado um número natural maior do que 1, existe uma única sequência crescente em sentido lato de números primos, cujo produto é igual a esse número. A decomposição de um número em fatores primos tem diversas aplicações, algumas das quais se indicam a seguir. Aplicação da decomposição em fatores primos para simplificar frações Revisão (simplificação de frações) Duas ou mais frações dizem-se equivalentes quando representam o mesmo número. Por exemplo, 1 4. Estas frações são equivalentes, pois representam o mesmo número. 4 8 Repare no esquema que mostra a equivalência destas três frações 4

5 Princípio de equivalência de frações Se multiplicarmos ou dividirmos o numerador e o denominador de uma fração pelo mesmo número diferente de zero, obtemos uma fração equivalente. Simplificar uma fração é encontrar outra equivalente formada por numerador e denominador menores. Exemplo Encontre duas frações equivalentes a 4 5 Por exemplo, Para obter 8 10 Para obter 0 5 multiplicou-se o numerador e denominador da primeira fração por multiplicou-se o numerador e denominador da primeira fração por 5 Exemplo Simplifique, se possível, as frações seguintes: 10 8, 9 15, e 7 4 Resolução 10 5, dividiu-se o numerador e o denominador por que é um divisor comum , dividiu-se o numerador e denominador por , dividiu-se o numerador e denominador por não se pode simplificar, pois é uma fração irredutível. 5

6 comuns, como a seguir se indica Apontamentos de Matemática 6.º ano Vamos simplificar as mesmas frações usando a decomposição do numerador e do denominador em fatores primos. 5. Simplifique as 10, Decompõe-se o 10 e o 8 em fatores primos. frações seguintes, se 8 possível, tornando-as irredutíveis após decompor o numerador e o denominador em Este processo pode simplificar-se eliminando simplesmente os fatores fatores primos. Habitualmente diz-se que se cortam os fatores comuns. a) 6 10 b) Exemplos , 7 é primo, logo não se decompõe, e como não há fatores 4 4 comuns no numerador e denominador, a fração é irredutível Estes exemplos permitem-nos chegar a outra aplicação da decomposição de números em fatores primos , Reparemos que 3 é divisor comum de 9 e 15. Mais ainda, como não podemos simplificar mais a fração esse é o máximo divisor comum, isto é, m. d. c. 9,15 3 c) d) e) 35 6 f) g) 11 1 Repare que 3 é o fator comum das decomposições de 9 e de 15 No caso de , podemos observar que m. d. c. 10,

7 Vejamos agora outro Repare que eliminámos os fatores comuns elevados ao menor expoente. Estes exemplos, que não provam todos os casos, levam-nos a compreender melhor a aplicação seguinte. Aplicação da decomposição em fatores primos para determinar o máximo divisor comum. A regra seguinte permite determinar o máximo divisor comum de dois ou mais números a partir da sua decomposição em fatores primos. Propriedade O máximo divisor comum de dois ou mais números inteiros, decompostos em fatores primos, é igual ao produto dos fatores primos comuns decomposição destes números elevados cada um deles ao seu menor expoente. Exemplos de aplicação Determinar o m. d. c. 36,500 e m. d. c. 4,75 Resolução 36 3, Há nas decomposições dois fatores comuns: e 3. O menor expoente de é e o menor expoente de 3 é 1. Então m. d. c. 36, , Há na decomposição um fator comum que é o 3, e o seu expoente é 1 nas duas decomposições, logo é o menor expoente. Então m. d. c. 4, Utilizando a decomposição em fatores primos determine: a) m. d. c. 1,11 b) m. d. c. 75,105 c) m. d. c. 18,1 d) m. d. c. 45,55 e) m. d. c. 33,90 7. Considere os números A e B decompostos em fatores primos. A 3 5 B 5 Resolva as alíneas seguintes sem calcular os valores de A e B. a) Indique três divisores de A. b) Indique dois divisores de B que não sejam números primos. c) Determine m. d. c. A, B. Nota: Dois números dizem-se primos entre si se o seu máximo divisor comum é a unidade. 7

8 Aplicação da decomposição em fatores primos para determinar mínimo múltiplo comum. A regra seguinte permite determinar o mínimo múltiplo comum de dois ou mais números a partir da sua decomposição em fatores primos. Propriedade O mínimo múltiplo comum de dois ou mais números inteiros, decompostos em fatores primos, é igual ao produto dos fatores primos comuns e não comuns da decomposição destes números elevados cada um deles ao seu maior expoente. Exemplos de aplicação Determinar o mmc... 0,35 e mmc... 1,40 Resolução 0 5, Há nas decomposições os seguintes fatores:, 5 e 7 (o maior expoente de é e dos outros fatores é 1) Então mmc... 0, , Há na decomposição os seguintes fatores:, 3 e 5 (o maior expoente do é 3, e do 3 e do 5 é 1). 3 Então mmc... 1, Utilizando a decomposição em fatores primos determine: a) mmc... 1,14 b) mmc... 75,35 c) mmc... 18,1 d) mmc... 45,55 e) m. d. c. 33,30 9. Considere os números A e B decompostos em fatores primos. A 3 5 B 5 Resolva as alíneas seguintes sem calcular os valores de A e B. a) Qual é o quociente da divisão de A por 5? E por 5? b) A: B c) Determine m. m. c. A, B. 8

9 Aplicações da decomposição em fatores primos para determinar os divisores de um número natural No 5.º ano os alunos aprenderam a determinar os divisores de um número dividindo sucessivamente esse número por sucessivos números. Este método funciona bem para alguns números, mas torna-se trabalhoso para outros casos. Comecemos por apresentar um exemplo simples: determinar os divisores de 1. Vamos decompor o 1 em fatores primos 1 3 Os divisores de 1 são: 1 (que é divisor de todos os números) (que se encontra na decomposição) 4 (que se encontra na decomposição na forma de ) 6 (que se encontra na decomposição na forma de 3) 1 (que se encontra na decomposição na forma de 3) Na realidade, encontramos os divisores na decomposição do número, procurando os diversos produtos. A procura e determinação destes produtos permite calcular todos os divisores de um número, no entanto, em alguns casos torna-se trabalhosa. Além deste, existem vários algoritmos (ou procedimentos) um dos quais será apresentado a seguir. Exemplo: Determinar todos os divisores de 1 usando a sua decomposição em fatores primos Resolução 1 3 Notas 1 - Coloca-se sempre (é divisor de todos os números naturais) 1 Corresponde a 4 Corresponde a São as potências de base até, a potência mais alta de 9

10 0 Curiosidade: 1 vem de 1, que não faz parte do programa e metas curriculares do 6.º ano uma potência de expoente 0 e base diferente de zero é igual à unidade. 3 É o outro número da decomposição Só aparece 1 vez, pois está elevado a 1 Notas 3 é o resultado de é o resultado de 3 1 é o resultado de 3 4 Os divisores de 1 são: 1,, 4, 3, 6 e 1 (que aparecem no lado direito) O esquema seguinte mostra a determinação dos divisores de Utilizando a decomposição em fatores primos, determine os divisores dos seguintes números: a) 36 Então os divisores de 360 são: 1,, 4, 8, 3, 6, 1, 4, 9, 18, 36, 7, 5, 10, 0, 40, 15, 30, 60, 10, 45, 90, 180, 360. b) 150 c) 63 d) 75 e) 180 f) 300 Notas: 1,, 4 e 8 são as potências de base até 3 e 9, na coluna da esquerda, são as potências de base 3, até 5, na coluna da esquerda, é o 5 da decomposição (que está elevado a 1)

11 Na coluna da direita temos: 3 3 1, 6 3, 1 3 4, 4 3 8, 9 9 1, 18 9, , 7 9 8, 5 5 1, 10 5, 0 5 4, , , , , , , , Para saber mais Aplicação da decomposição em fatores primos para determinar o número de divisores de um número * Para calcular o número de divisores de um número inteiro decomposto em fatores primos: - adiciona-se 1 unidade a todos os expoentes; - multiplicam-se os valores encontrados. Exemplo Determinar todos os divisores de 360 Resolução Os expoentes da decomposição são 3, e 1. Então o número de divisores de 360 é Considere os números: A 3 5 e B 63 a) Escreve B como um produto de fatores primos. Resolva as alíneas anteriores usando a decomposição em fatores primos. b) Determine m. d. c. A, B m. m. c. A, B c) Justifique que A é um número par. d) Determine os divisores de A. 1.* Determine, sem calcular A, o número de divisores de A O número 360 tem 4 divisores. * Tema não incluído no programa e metas curriculares do 6.º ano. 11

12 Soluções dos exercícios propostos 1. a) 1,, 3, 6 b) 1,, 5, 10 c) 1, 13 d) 1, 3, 5, 15 e) 1,, 4, 5, 10, 0 f) 1, 3 g) 1,, 3, 5, 6, 10, 15, 30. Números primos: 13 e 3 (têm dois divisores) Números compostos: 6, 10, 15, 0, 30 (têm mais de dois divisores) 3 a) 3 5 b) e) 5 7 f) 3 c) 5 7 g) 3 d) 3 5 h) a) b) 3 c) 5 d) 5 5. A) 3 5 b) 6 5 c) 6 d) 3 5 e) 5 f) 9 10 g) a) 4 b) c) 3 d) e) 3 7. a), 3 e 10 (por exemplo) b) 10 e 5 c) a) d) b) c) e) a) e 3 18 b) 9 c) a) 1,, 3, 4, 6, 9, 1, 18, 36 b) 1,, 3, 5, 6, 10, 15, 5, 30, 50, 75, 150 c) 1, 3, 7, 9, 1, 63 d) 1, 5, 11, 5, 55, 75 e) 1,, 3, 4, 5, 6, 9, 10, 1, 15, 18, 0, 30, 36, 45, 60, 90, 180 f) 1,, 3, 4, 5, 6, 10, 1, 15, 0, 5, 30, 50, 60, 75, 100, 150, a) b) m. d. c. A, B 3 9, É par, pois é divisor de A (está na sua decomposição) divisores m. m. c. A, B

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

Curso Técnico em Eletromecânica. Edição 2009-2

Curso Técnico em Eletromecânica. Edição 2009-2 Curso Técnico em Eletromecânica Edição 009- MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE ARARANGUÁ

Leia mais

Aprendemos que a relação fundamental da divisão é determinada pela seguinte relação matemática:

Aprendemos que a relação fundamental da divisão é determinada pela seguinte relação matemática: CONCEITO DE MÚLTIPLOS E DIVISORES NOS NÚMEROS NATURAIS 1) Conceitos Iniciais Aprendemos que a relação fundamental da divisão é determinada pela seguinte relação matemática: DIVIDENDO (D) = QUOCIENTE (Q)

Leia mais

Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan

Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan Matemática Máximo Divisor Comum (MDC) O máximo divisor comum entre dois números é representado pelo maior valor comum pertencente aos divisores

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores.

Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou mais fatores. 8º ANO LISTA 1 de fatoração AV 1 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Fatorar é transformar uma expressão num produto indicado, ou seja, numa multiplicação de dois ou

Leia mais

Matéria: Matemática Assunto: Mínimo Múltiplo Comum Prof. Dudan

Matéria: Matemática Assunto: Mínimo Múltiplo Comum Prof. Dudan Matéria: Matemática Assunto: Mínimo Múltiplo Comum Prof. Dudan Matemática Mínimo Múltiplo Comum O mínimo múltiplo comum entre dois números é representado pelo menor valor comum pertencente aos múltiplos

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS

Leia mais

Jogos com números Números ocultos - 2ª Parte

Jogos com números Números ocultos - 2ª Parte Jogos com números Números ocultos - 2ª Parte Observe atentamente os demais números e os elementos que aparecem em cada diagrama, com o objetivo de obter a regra pela qual se formam. 1) 2) 1 3) 4) 5) 6)

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE 1. NÚMEROS NATURAIS ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE CRITÉRIOS DE AVALIAÇÃO ESPECÍFICOS (Aprovados em Conselho Pedagógico a 21 de Outubro de 2014) No caso específico da disciplina de Matemática,

Leia mais

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

IN = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Números Inteiros Números Naturais Desde os tempos mais remotos, o homem sentiu a necessidade de verificar quantos elementos figuravam em um conjunto. Antes que soubessem contar, os pastores verificavam

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas.

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas. Roteiro da aula MA091 Matemática básica Aula 5 MMC e frações. Horas. Francisco A. M. Gomes UNICAMP - IMECC Março de 2015 1 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de

Leia mais

Caderno de Apoio 3.º Ciclo

Caderno de Apoio 3.º Ciclo METAS CURRICULARES DO ENSINO BÁSICO MATEMÁTICA Caderno de Apoio 3.º Ciclo António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo INTRODUÇÃO Este Caderno de Apoio, organizado por ciclos

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR Ciências. Roteiro para a classificação dos padrões do plano

UNIVERSIDADE DA BEIRA INTERIOR Ciências. Roteiro para a classificação dos padrões do plano UNIVERSIDADE DA BEIRA INTERIOR Ciências Roteiro para a classificação dos padrões do plano Paula Cristina Calçada Martins Marques Relatório de Estágio Dissertação apresentada para a obtenção do grau de

Leia mais

INE5403 - Fundamentos de Matemática Discreta para a Computação

INE5403 - Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Divisão

Leia mais

O sentido da divisão e os vários tipos de problemas

O sentido da divisão e os vários tipos de problemas O sentido da divisão e os vários tipos de problemas Dividir - envolve a repartição equitativa dos elementos de um conjunto (por exemplo, doces por crianças) A divisão / distribuição é diferente da adição

Leia mais

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação.

Faça uma leitura atenciosa do conteúdo e das situações problemas propostas para compreensão e interpretação. Apostila de Cálculo Zero Este material visa auxiliar os estudos em Matemática promovendo a revisão de seu conteúdo básico, de forma a facilitar o aprendizado nas disciplinas de cálculo e também melhorar

Leia mais

Alguns Tópicos de Matemática Discreta. Ana Paula Tomás

Alguns Tópicos de Matemática Discreta. Ana Paula Tomás Alguns Tópicos de Matemática Discreta Ana Paula Tomás Departamento de Ciência de Computadores Faculdade de Ciências do Porto 2005 Conteúdo 1 Conjuntos 1 1.1 Operações com Conjuntos.............................

Leia mais

Mínimo múltiplo comum e Máximo divisor comum

Mínimo múltiplo comum e Máximo divisor comum Tema: Mínimo múltiplo comum e Máximo divisor comum INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA Mato Grosso / Campus São Vicente Prof. Msc. Jeferson G. Moriel Jr. jeferson.moriel@svc.ifmt.edu.br

Leia mais

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 1.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Números e Operações Contar até cem, mil,... Descodificar o sistema de numeração

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

MATEMÁTICA - 5º ANO. 1 www.japassei.pt

MATEMÁTICA - 5º ANO. 1 www.japassei.pt 1 www.japassei.pt Este e-book é parte integrante da plataforma de educação Já Passei e propriedade da DEVIT - Desenvolvimento de Tecnologias de Informação, Unipessoal Lda. Disciplina: Matemática Ano de

Leia mais

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos.

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos. Objetivos 2. Sistemas de Numeração, Operações e Códigos Revisar o sistema de numeração decimal Contar no sistema de numeração binário Converter de decimal para binário e vice-versa Aplicar operações aritméticas

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente C

Gabarito Extensivo MATEMÁTICA volume 1 Frente C Gabarito Extensivo MATEMÁTICA volume 1 Frente C 01) B Helô Bicicleta São João Regina Ônibus São Pedro Ana Moto Santo Antonio Corretas I e II 0) Basta calcular o MMC entre 1, 34 e 84.3.5.7 = 40 Após 40

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Vetores Lidando com grandezas vetoriais

Vetores Lidando com grandezas vetoriais Vetores Lidando com grandezas vetoriais matéria de vetores é de extrema importância para o ensino médio basta levar em consideração que a maioria das matérias de física envolve mecânica (movimento, dinâmica,

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ. Questão Sistemas de Numeração No sistema de numeração de base 2, o numeral mais simples de

Leia mais

ÍNDICE 1ª PARTE 2ª PARTE. Problemas diversos Juros simples (apenas os fáceis) 3ª PARTE

ÍNDICE 1ª PARTE 2ª PARTE. Problemas diversos Juros simples (apenas os fáceis) 3ª PARTE INTRODUÇÃO Faz alguns anos que cogitamos da elaboração de um trabalho de Matemática Financeira, exclusivamente pelo raciocínio, com o objetivo de proporcionar ao estudante um processo claro, prático e

Leia mais

AULA DEMONSTRATIVA. Concurso: Companhia Brasileira de Trens Urbanos (CBTU) Cargo: Matemática (todos os cargos e níveis) Matéria: Raciocínio Lógico

AULA DEMONSTRATIVA. Concurso: Companhia Brasileira de Trens Urbanos (CBTU) Cargo: Matemática (todos os cargos e níveis) Matéria: Raciocínio Lógico 1. APRESENTAÇÃO... 2 1.1. Conteúdo Programático... 3 2. Números Inteiros Noções Fundamentais... 4 2.1. Conjunto dos Números Naturais... 4 2.2. Conjunto dos Números Inteiros... 4 2.3. Módulo ou valor absoluto...

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

b) Divisíveis por 10 - e responda: R.: R.: 03- Encontre a) 2 - c) 6 - R.: R.: R.: Esse número é primo? R.: 08- O número R.:

b) Divisíveis por 10 - e responda: R.: R.: 03- Encontre a) 2 - c) 6 - R.: R.: R.: Esse número é primo? R.: 08- O número R.: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 6º ANO - ENSINO FUNDAMENTAL ========== =========== ============ =========== =========== =========== =========== =========== ===========

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDAMENTAL 6- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 6 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Arquitetura de Computadores Prof. Fábio M. Costa Instituto de Informática UFG 1S/2004 Representação de Dados e Aritimética Computacional Roteiro Números inteiros sinalizados e nãosinalizados Operações

Leia mais

Teorema (Algoritmo da Divisão)

Teorema (Algoritmo da Divisão) Teorema (Algoritmo da Divisão) Sejam a e b números inteiros, com b > 0. Então existem números inteiros q e r, únicos e tais que a = bq + r, com 0 r < b. Demonstração. Existência: Consideremos S = {a bk

Leia mais

6 Paquímetro: sistema inglês. Agora que o pessoal da empresa aprendeu a. Um problema. Leitura de polegada milesimal

6 Paquímetro: sistema inglês. Agora que o pessoal da empresa aprendeu a. Um problema. Leitura de polegada milesimal A U A UL LA Paquímetro: sistema inglês Um problema Agora que o pessoal da empresa aprendeu a leitura de paquímetros no sistema métrico, é necessário aprender a ler no sistema inglês. Este é o assunto a

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

1. Usando Linguagem Natural, descreva o algoritmo que resolve o seguinte problema:

1. Usando Linguagem Natural, descreva o algoritmo que resolve o seguinte problema: 1. Usando Linguagem Natural, descreva o algoritmo que resolve o seguinte problema: - Numa escola, decidiu-se fazer o censo de alunos. Criou-se uma base de dados onde os registros são estruturados da seguinte

Leia mais

- O atributo Cursos contém valores não atómicos!!!

- O atributo Cursos contém valores não atómicos!!! 3. Teoria da Normalização 3.1. Dependências Funcionais 3.2. Normalização 3.2.1. Primeira Forma Normal (1FN) Uma relação está na 1ª Forma Normal se. Cada atributo contém apenas valores atómicos.. Não há

Leia mais

RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS

RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS Aluno(a) Turma N o Série 5 a Ensino Fundamental Data / / 06 Matéria Matemática Professora Ynez RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS 01. Observe o quadro ao lado e responda: 75 67 83 105

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2014/2015-3ºCICLO. AVALIAÇÃO DO ALUNO MATEMÁTICA 2º/3º ciclos AVALIAÇÃO

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2014/2015-3ºCICLO. AVALIAÇÃO DO ALUNO MATEMÁTICA 2º/3º ciclos AVALIAÇÃO Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 201/2015-3ºCICLO OBJETO A AVALIAR

Leia mais

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC)

Instalador e Reparador de Redes de Computadores MATEMÁTICA BÁSICA PROF. ESP. RAFAEL BRAZ DE MACÊDO CURSO DE FORMAÇÃO INICIAL E CONTINUADA (FIC) Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Instalador e Reparador de Redes de Computadores MATEMÁTICA

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

Caderno de Apoio 2.º Ciclo

Caderno de Apoio 2.º Ciclo METAS CURRICULARES DO ENSINO BÁSICO MATEMÁTICA Caderno de Apoio 2.º Ciclo António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo INTRODUÇÃO Este Caderno de Apoio, organizado por ciclos

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

PIBID Programa Institucional de Bolsas de Iniciação a Docência Subprojeto: Matemática Ensino Fundamental. Desenvolvimento de atividades

PIBID Programa Institucional de Bolsas de Iniciação a Docência Subprojeto: Matemática Ensino Fundamental. Desenvolvimento de atividades PIBID Programa Institucional de Bolsas de Iniciação a Docência Subprojeto: Matemática Ensino Fundamental 1. Atividade: Aula de reforço Desenvolvimento de atividades 2. Objetivo da atividade: Identificar

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

EXAME DE 1ª ÉPOCA Semestre de Verão 2004/2005 20 Junho 2005 duração: 2h30m

EXAME DE 1ª ÉPOCA Semestre de Verão 2004/2005 20 Junho 2005 duração: 2h30m ISEL DEETC SSIC EXAME DE 1ª ÉPOCA Semestre de Verão 2004/2005 20 Junho 2005 duração: 2h30m Introdução aos Sistemas de Informação Engenharia Informática e Computadores Ano Lectivo: 2004 / 2005 2º Sem. Docente:

Leia mais

Múltiplos e Divisores- MMC e MDC

Múltiplos e Divisores- MMC e MDC Múltiplos e Divisores- MMC e MDC Múltiplo de um número inteiro é o resultado desse número multiplicado por qualquer número inteiro. Definição: Para qualquer número a є Z, b є Z*, e c є Z, c é múltiplo

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros

Leia mais

Margarida Uva Nunes Silva margaridasilvaani@gmail.com. Agrupamento de Escolas de Pinhal de Frades PROFMAT 2011 - Lisboa

Margarida Uva Nunes Silva margaridasilvaani@gmail.com. Agrupamento de Escolas de Pinhal de Frades PROFMAT 2011 - Lisboa Margarida Uva Nunes Silva margaridasilvaani@gmail.com Agrupamento de Escolas de Pinhal de Frades PROFMAT - Lisboa Tábua da multiplicação 2 Tábua da multiplicação Uma visão geométrica 3 I. Construção da

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

2º ANO CONTEÚDO ROCESSO SELETIVO 2016. O aluno deverá demonstrar habilidades de:

2º ANO CONTEÚDO ROCESSO SELETIVO 2016. O aluno deverá demonstrar habilidades de: 2º ANO de: reconhecer letras; reconhecer sílabas; estabelecer relação entre unidades sonoras e suas representações gráficas; ler palavras; ler frases; localizar informação explícita em textos; reconhecer

Leia mais

Fórmula versus Algoritmo

Fórmula versus Algoritmo 1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação

Leia mais

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 1 Números As questões destas aulas foram retiradas ou adaptadas de provas das Olimpíadas Brasileiras de Matemática (OBM), fonte considerável

Leia mais

APROVO Em conformidade com as Port. 38-DECEx, 12ABR11, e Port 137- Cmdo Ex, 28FEV12

APROVO Em conformidade com as Port. 38-DECEx, 12ABR11, e Port 137- Cmdo Ex, 28FEV12 APROVO Em conformidade com as Port. 38-DECEx, 12ABR11, e Port 137- Cmdo Ex, 28FEV12 MINISTERIO DA DEFESA DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXERCITO DIRETORIA DE EDUCAÇÃO PREPARATORIA E ASSISTENCIAL

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Dependência funcional

Dependência funcional Dependência funcional Dependência funcional: Dados dois conjuntos de atributos A e B de uma entidade, diz-se que: B é funcionalmente dependente de A ou A determina B ou B depende de A, se a cada valor

Leia mais

FATORES QUE AFETAM AS VELOCIDADES DAS REAÇÕES. 2. As concentrações dos reagentes. 3. A temperatura na qual a reação ocorre.

FATORES QUE AFETAM AS VELOCIDADES DAS REAÇÕES. 2. As concentrações dos reagentes. 3. A temperatura na qual a reação ocorre. CINÉTICA QUÍMICA FATORES QUE AFETAM AS VELOCIDADES DAS REAÇÕES 1. O estado físico dos reagentes. 2. As concentrações dos reagentes. 3. A temperatura na qual a reação ocorre. 4. A presença de um catalisador.

Leia mais

Campus Sertãozinho. Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior. Aluno: Curso: Turma: APOSTILA MATEMÁTICA BÁSICA

Campus Sertãozinho. Apostila de Matemática Básica Prof. Msc. Luiz Carlos Leal Junior. Aluno: Curso: Turma: APOSTILA MATEMÁTICA BÁSICA APOSTILA MATEMÁTICA BÁSICA Este material serve como introdução aos conceitos matemáticos, adequando-se às necessidades dos alunos do CEFET/ SP, UNED de Sertãozinho. Nele estão conteúdos dos níveis básico

Leia mais

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil.

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,

Leia mais

CIRCULAÇÃO DOS PADRÕES NORTE-AMERICANO E FRANCÊS NA MATEMÁTICA DURANTE O BRASIL OITOCENTISTA

CIRCULAÇÃO DOS PADRÕES NORTE-AMERICANO E FRANCÊS NA MATEMÁTICA DURANTE O BRASIL OITOCENTISTA CIRCULAÇÃO DOS PADRÕES NORTE-AMERICANO E FRANCÊS NA MATEMÁTICA DURANTE O BRASIL OITOCENTISTA Marcus Aldenisson de Oliveira Universidade Tiradentes/GPHPE/Bolsa PIBIC/CNPQ marcus_deninho@hotmail.com Ellen

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N.

2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N. 2.4. PROJECÇÕES 2. dim(l)=dim(m)+dim(n) Demonstração. Se L=M N, qualquer vector x L se pode escrever de forma única como a soma de um vector x M M e outro vector x N N. 1. Dada uma base de M, x M pode

Leia mais

Códigos Lineares CAPÍTULO 4

Códigos Lineares CAPÍTULO 4 CAPÍTULO 4 Códigos Lineares 1. Definição, pârametros e peso mínimo Seja F q o corpo de ordem q. Portanto, pelo Teorema 3.24, q = p m para algum primo p e inteiro positivo m. Definição 4.1. Um código linear

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

O nosso trabalho apresenta a seguinte organização:

O nosso trabalho apresenta a seguinte organização: GLOSSÁRIO DA TERMINOLOGIA MATEMÁTICA integrada nas Metas Curriculares de Matemática do 1. o Ciclo Este documento tem como objetivo apoiar os Professores na implementação das Metas Curriculares de Matemática

Leia mais

Aula Nº 05 Determinação do Cronograma

Aula Nº 05 Determinação do Cronograma Aula Nº 05 Determinação do Cronograma Objetivos da Aula: Os objetivos desta aula são, basicamente, apresentar as atividades necessárias para se produzir o cronograma do projeto. Ao final desta aula, você

Leia mais

Notas de Teoria da Votação. Gonçalo Gutierres da Conceição

Notas de Teoria da Votação. Gonçalo Gutierres da Conceição Notas de Teoria da Votação Gonçalo Gutierres da Conceição Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2006 Conteúdo 1 Sistemas de representação proporcional 1

Leia mais

O que é número primo? Série O que é?

O que é número primo? Série O que é? O que é número primo? Série O que é? Objetivos 1. Discutir o significado da palavra número primo no contexto da Matemática; 2. Apresentar idéias básicas sobre criptografia. O que é número primo? Série

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

CURRÍCULO DE MATEMÁTICA PARA O ENSINO FUNDAMENTAL COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO

CURRÍCULO DE MATEMÁTICA PARA O ENSINO FUNDAMENTAL COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO CURRÍCULO DE MATEMÁTICA PARA O ENSINO FUNDAMENTAL COM BASE NOS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO GOVERNADOR DE PERNAMBUCO Eduardo Campos VICE-GOVERNADOR João Lyra Neto SECRETÁRIO DE EDUCAÇÃO

Leia mais

Parte 2. Polinômios sobre domínios e corpos

Parte 2. Polinômios sobre domínios e corpos Parte Polinômios sobre domínios e corpos Pressupomos que o estudante tenha familiaridade com os anéis comutativos com unidade, em particular com domínios e corpos. Alguns exemplos importantes são Z Q R

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Representação da Informação para seres humanos Números (1,2,3,4...) Letras (a,a,b,b,c,c...) Sinais de pontuação (:,;...) Operadores aritméticos (+,-,x,/) Representação da Informação

Leia mais

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais.

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais. 25BCapítulo 2: Números e Aritmética Binária Os computadores armazenam e manipulam a informação na forma de números. Instruções de programas, dados numéricos, caracteres alfanuméricos, são todos representados

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Fundamentos de Matemática. Conhecimento inicial para bom entendimento do conteúdo abordado futuramente. Matemática.

Fundamentos de Matemática. Conhecimento inicial para bom entendimento do conteúdo abordado futuramente. Matemática. Matemática Fundamentos de Matemática Conhecimento inicial para bom entendimento do conteúdo abordado futuramente Matemática Turmas de ano Curso Pré-Vestibular Conhecimentos do Ensino Médio São Carlos 00

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números?

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números? NÍVEL 1 7 a Lista 1) Qual é o maior dos números? (A) 1000 + 0,01 (B)1000 0,01 (C) 1000/0,01 (D) 0,01/1000 (E) 1000 0,01 ) Qual o maior número de 6 algarismos que se pode encontrar suprimindo-se 9 algarismos

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 12 Páginas Duração

Leia mais

Aula 5 - Matemática (Gestão e Marketing)

Aula 5 - Matemática (Gestão e Marketing) ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado

Leia mais

UNIVERSIDADE ESTADUAL DO PARANÁ UNESPAR CAMPUS DE UNIÃO DA VITÓRIA FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS - FAFIUV COLEGIADO DE MATEMÁTICA

UNIVERSIDADE ESTADUAL DO PARANÁ UNESPAR CAMPUS DE UNIÃO DA VITÓRIA FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS - FAFIUV COLEGIADO DE MATEMÁTICA 0 UNIVERSIDADE ESTADUAL DO PARANÁ UNESPAR CAMPUS DE UNIÃO DA VITÓRIA FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS - FAFIUV COLEGIADO DE MATEMÁTICA VICTOR HUGO GONZALEZ MARTINEZ TEORIA DOS NÚMEROS

Leia mais

Joaquim J. Júdice. Pedro C. Martins. Marta B. Pascoal. Jorge P. Santos OPTIMIZAÇÃO EM REDES. Departamento de Matemática Universidade de Coimbra

Joaquim J. Júdice. Pedro C. Martins. Marta B. Pascoal. Jorge P. Santos OPTIMIZAÇÃO EM REDES. Departamento de Matemática Universidade de Coimbra Joaquim J Júdice Pedro C Martins Marta B Pascoal Jorge P Santos OPTIMIZAÇÃO EM REDES Departamento de Matemática Universidade de Coimbra 006 Conteúdo Introdução Alguns Problemas de Optimização em Redes

Leia mais

EDITAL 2015 Testes de Português e Matemática - Material: com foto PORTUGUÊS Indicação bibliográfica: Na ponta da língua MATEMÁTICA

EDITAL 2015 Testes de Português e Matemática - Material: com foto PORTUGUÊS Indicação bibliográfica: Na ponta da língua MATEMÁTICA EDITAL 2015 2º ANO DO ENSINO FUNDAMENTAL Testes de Português e Matemática - Material: o candidato deverá trazer: lápis apontados, apontador, borracha e o Compreensão e interpretação de textos; exploração

Leia mais

MATEMÁTICA PARA CONCURSOS

MATEMÁTICA PARA CONCURSOS MATEMÁTICA PARA CONCURSOS Sumário Números Naturais ------------------------------------------- 03 Conjuntos numéricos: racionais e reais ------------------- 05 Divisibilidade -------------------------------------------------

Leia mais

FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS

FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS 5/4/010 DEPARTAMENTO DE ENGENHARIA FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS IT 154- MOTORES E TRATORES Carlos Alberto Alves Varella 1 FUNCIONAMENTO DOS MOTORES DE CILINDROS MÚLTIPLOS Carlos Alberto

Leia mais

Módulos. Capítulo 3. 1. Módulos sobre anéis

Módulos. Capítulo 3. 1. Módulos sobre anéis Capítulo 3 Módulos Todos os resultados, e respectivas demonstrações, deste capítulo são transcritos dos capítulos 6 e 8 do livro Introdução à Álgebra, IST Press, Lisboa, 2004 da autoria de Rui Loja Fernandes

Leia mais