Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e"

Transcrição

1 Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é um equação do 2º grau com a = 6, b = -1 e c = -1. 7x 2 - x = 0 é um equação do 2º grau com a = 7, b = -1 e c = 0. x 2-36 = 0 é um equação do 2º grau com a = 1, b = 0 e c = -36. Nas equações escritas na forma ax² + bx + c = 0 (forma normal ou forma reduzida de uma equação do 2º grau na incógnita x) chamamos a, b e c de coeficientes. a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Equação completas e Incompletas Uma equação do 2º grau é completa quando b e c são diferentes de zero. Exemplos: x² - 9x + 20 = 0 e -x² + 10x - 16 = 0 são equações completas. Uma equação do 2º grau é incompleta quando b ou c é igual a zero, ou ainda quando ambos são iguais a zero. Exemplos: x² - 36 = 0 (b = 0) x² - 10x = 0 (c = 0) 4x² = 0 (b = c = 0) Raízes de uma equação do 2º grau Resolver uma equação do 2º grau significa determinar suas raízes. Raiz é o número real que, ao substituir a incógnita de uma equação, transforma-a numa sentença verdadeira. O conjunto formado pelas raízes de uma equação denomina-se conjunto verdade ou conjunto solução. Exemplos: Dentre os elementos do conjuntos A= {-1, 0, 1, 2}, quais são raízes da equação x² - x - 2 = 0? 1

2 Substituímos a incógnita x da equação por cada um dos elementos do conjunto e verificamos quais as sentenças verdadeiras. Para x = -1 Para x = 0 Para x = 1 Para x = 2 (-1)² - (-1) - 2 = = 0 0 = 0 0² = = 0-2 = 0 1² = = 0-2 = 0 2² = = 0 0 = 0 (V) (F) (F) (V) Logo, -1 e 2 são raízes da equação. Determine p sabendo que 2 é raiz da equação (2p - 1) x² - 2px² - 2 = 0. Substituindo a incógnita x por 2, determinamos o valor de p. Logo, o valor de p é. Resolução de equações incompletas Resolver uma equação significa determinar o seu conjunto verdade. Utilizamos na resolução de uma equação incompleta as técnicas da fatoração e duas importantes propriedades dos números reais: 1ª Propriedade: 2ª Propriedade: 1º Caso: Equação do tipo. Exemplo: 2

3 Determine as raízes da equação, sendo. Inicialmente, colocamos x em evidência: Para o produto ser igual a zero, basta que um dos fatores também o seja. Assim: Obtemos dessa maneira duas raízes que formam o conjunto verdade: De modo geral, a equação do tipo tem para soluções e. 2º Caso: Equação do tipo Exemplos: Determine as raízes da equação, sendo U = IR. De modo geral, a equação do tipo possui duas raízes reais se for um número positivo, não tendo raiz real caso seja um número negativo. Resolução de equações completas Para solucionar equações completas do 2º grau utilizaremos a fórmula de Bhaskara. A partir da equação, em que a, b, c IR e, desenvolveremos passo a passo a dedução da fórmula de Bhaskara (ou fórmula resolutiva). 1º passo: multiplicaremos ambos os membros por 4a. 3

4 2º passo: passar 4ac par o 2º membro. 3º passo: adicionar aos dois membros. 4º passo: fatorar o 1º elemento. 5º passo: extrair a raiz quadrada dois membros. 6º passo: passar b para o 2º membro. 7º passo: dividir os dois membros por. Assim, encontramos a fórmula resolutiva da equação do 2º grau: Podemos representar as duas raízes reais por x' e x", assim: Exemplos: 4

5 resolução a equação: Temos Discriminante Denominamos discriminante o radical b 2-4ac que é representado pela letra grega (delta). Podemos agora escrever deste modo a fórmula de Bhaskara: De acordo com o discriminante, temos três casos a considerar: 1º Caso: O discriminante é positivo. O valor de é real e a equação tem duas raízes reais diferentes, assim representadas: Exemplo: Para quais valores de k a equação x² - 2x = 0 admite raízes reais e desiguais? 5

6 Para que a equação admita raízes reais e desiguais, devemos ter Logo, os valores de k devem ser menores que 3. 2º Caso: O discriminante é nulo O valor de é nulo e a equação tem duas raízes reais e iguais, assim representadas: Exemplo: Determine o valor de p, para que a equação x² - (p - 1) x + p = 0 Para que a equação admita raízes iguais é necessário que. Logo, o valor de p é 3. 3º Caso: O discriminante é negativo. O valor de não existe em IR, não existindo, portanto, raízes reais. As raízes da equação são número complexos. Exemplo: Para quais valores de m a equação 3x² + 6x +m = 0 não admite nenhuma raiz real? 6

7 Para que a equação não tenha raiz real devemos ter Logo, os valores de m devem ser maiores que 3. Resumindo Dada a equação ax² + bx + c = 0, temos: Para Para Para, a equação tem duas raízes reais diferentes., a equação tem duas raízes reais iguais., a equação não tem raízes reais. EQUAÇÕES LITERAIS As equações do 2º grau na variável x que possuem alguns coeficientes ou alguns termos independentes indicados por outras letras são denominadas equações literais. As letras que aparecem numa equação literal, excluindo a incógnita, são denominadas parâmetros. Exemplos: ax 2 + bx + c = 0 incógnita: x parâmetro: a, b, c ax 2 - (2a + 1) x + 5 = 0 incógnita: x parâmetro: a Equações literais incompletas A resolução de equações literais incompletas segue o mesmo processo das equações numéricas. Observe os exemplos: Resolva a equação literal incompleta 3x 2-12m 2 =0, sendo x a variável. 7

8 3x 2-12m 2 = 0 3x 2 = 12m 2 x 2 = 4m 2 x= Logo, temos: Resolva a equação literal incompleta my 2-2aby=0,com m 0, sendo y a variável. my 2-2aby = 0 y(my - 2ab)=0 Temos, portanto, duas soluções: y=0 ou Assim: my - 2ab = 0 my = 2ab y= Na solução do último exemplo, teríamos cometido um erro grave se tivéssemos assim resolvido: my 2-2aby= 0 my 2 = 2aby my = 2ab Desta maneira, obteríamos apenas a solução. 8

9 O zero da outra solução foi "perdido" quando dividimos ambos os termos por y. Esta é uma boa razão para termos muito cuidado com os cancelamentos, evitando desta maneira a divisão por zero, que é um absurdo. Equações literais completas As equações literais completas podem ser também resolvidas pela fórmula de Bhaskara: Exemplo: Resolva a equação: x 2-2abx - 3a 2 b 2, sendo x a variável. Temos a=1, b = -2ab e c=-3a 2 b 2 Portanto: Assim, temos: V= { - ab, 3ab}. RELAÇÕES ENTRE OS COEFICIENTES E AS RAÍZES Considere a equação ax 2 + bx + c = 0, com a equação. 0 e sejam x'e x'' as raízes reais dessa Logo: 9

10 Observe as seguintes relações: Soma das raízes (S) Produto das raízes (P) Como,temos: Denominamos essas relações de relações de Girard. Verifique alguns exemplos de aplicação dessas relações. Determine a soma e o produto das raízes da equação 10x 2 + x - 2 = 0. Nesta equação, temos: a=10, b=1 e c=-2. A soma das raízes é igual a. O produto das raízes é igual a Assim: Assim: Determine o valor de k na equação x 2 + ( 2k - 3)x + 2 = 0, de modo que a soma de suas raízes seja igual a 7. 10

11 Nesta equação, temos: a=1, b=2k e c=2. S= x 1 + x 2 = 7 Logo, o valor de k é -2. Determine o valor de m na equação 4x 2-7x + 3m = 0, para que o produto das raízes seja igual a -2. Nesta equação, temos: a=4, b=-7 e c=3m. P= x 1. x 2 = -2 Logo, o valor de m é. Determine o valor de k na equação 15x 2 + kx + 1 = 0, para que a soma dos diversos de suas raízes seja igual a 8. Considere x 1 e x 2 as raízes da equação. A soma dos inversos das raízes corresponde a. Assim: Logo, o valor de k é -8. Determine os valores de m para os quais a equação ( 2m - 1) x 2 + ( 3m - 2) x + m + 2 = 0 admita: 11

12 a) raízes simétricas; b) raízes inversas. Se as raízes são simétricas, então S=0. Se as raízes são inversas, então P=1. COMPOSIÇÃO DE UMA EQUAÇÃO DO 2º GRAU, CONHECIDAS AS RAÍZES Considere a equação do 2º grau ax 2 + bx + c = 0. Dividindo todos os termos por a, obtemos: Como, podemos escrever a equação desta maneira. x 2 - Sx + P= 0 Exemplos: Componha a equação do 2º grau cujas raízes são -2 e 7. A soma das raízes corresponde a: 12

13 S= x 1 + x 2 = = 5 O produto das raízes corresponde a: P= x 1. x 2 = ( -2). 7 = -14 A equação do 2º grau é dada por x 2 - Sx + P = 0, onde S=5 e P= -14. Logo, x 2-5x - 14 = 0 é a equação procurada. Formar a equação do 2º grau, de coeficientes racionais, sabendo-se que uma das raízes é. Se uma equação do 2º grau, de coeficientes racionais, tem uma raiz, a outra raíz será. Assim: Logo, x 2-2x - 2 = 0 é a equação procurada. FORMA FATORADA Considere a equação ax 2 + bx + c = 0. Colocando a em evidência, obtemos: Então, podemos escrever: 13

14 Logo, a forma fatorada da equação ax 2 + bx + c = 0 é: a.(x - x'). (x - x'') = 0 Exemplos: Escreva na forma fatorada a equação x 2-5x + 6 = 0. Calculando as raízes da equação x 2-5x + 6 = 0, obtemos x 1 = 2 e x 2 = 3. Sendo a= 1, x 1 = 2 e x 2 = 3, a forma fatorada de x 2-5x + 6 = 0 pode ser assim escrita: (x-2).(x-3) = 0 Escreva na forma fatorada a equação 2x 2-20x + 50 = 0. Calculando as raízes da equação 2x 2-20x + 50 = 0, obtemos duas raízes reais e iguais a 5. Sendo a= 2, x 1 =x 2 = 5, a forma fatorada de 2x 2-20x + 50 = 0 pode ser assim escrita: 2.(x - 5) (x - 5) = 0 ou 2. (x - 5) 2 =0 Escreva na forma fatorada a equação x 2 + 2x + 2 = 0. Como o, a equação não possui raízes reais. Logo, essa equação não possui forma fatorada em IR. EQUAÇÕES BIQUADRADAS 14

15 Observe as equações: x 4-13x = 0 9x 4-13x = 0 x 4-5x = 0 Note que os primeiros membros são polinômios do 4º grau na variável x, possuindo um termo em x 4, um termo em x 2 e um termo constante. Os segundos membros são nulos. Denominamos essas equações de equações biquadradas. Ou seja, equação biquadrada com uma variável x é toda equação da forma: ax 4 + bx 2 + c = 0 Exemplos: x 4-5x = 0 x 4-8x 2 = 0 3x 4-27 = 0 Cuidado! x 4-2x 3 + x = 0 6x 4 + 2x 3-2x = 0 x 4-3x = 0 As equações acima não são biquadradas, pois numa equação biquadrada a variável x só possui expoentes pares. RESOLUÇÃO DE UMA EQUAÇÃO BIQUADRADA Na resolução de uma equação biquadrada em IR devemos substituir sua variável, transformando-a numa equação do 2º grau. Observe agora a sequência que deve ser utilizada na resolução de uma equação biquadrada. 15

16 Seqüência prática Substitua x 4 por y 2 ( ou qualquer outra incógnita elevada ao quadrado) e x 2 por y. Resolva a equação ay 2 + by + c = 0 Determine a raiz quadrada de cada uma da raízes ( y'e y'') da equação ay 2 + by + c = 0. Essas duas relações indicam-nos que cada raiz positiva da equação ay 2 + by + c = 0 dá origem a duas raízes simétricas para a biquadrada: a raiz negativa não dá origem a nenhuma raiz real para a mesma. Exemplos: Determine as raízes da equação biquadrada x 4-13 x = 0. Substituindo x 4 por y 2 e x 2 por y, temos: y 2-13y + 36 = 0 Resolvendo essa equação, obtemos: Como x 2 = y, temos: y'=4 e y''=9 Logo, temos para conjunto verdade: V={ -3, -2, 2, 3}. Determine as raízes da equação biquadrada x 4 + 4x 2-60 = 0. Substituindo x 4 por y 2 e x 2 por y, temos: y 2 + 4y - 60 = 0 Resolvendo essa equação, obtemos: 16

17 Como x 2 = y, temos: y'=6 e y''= -10 Logo, temos para o conjunto verdade:. Determine a soma das raízes da equação. Utilizamos o seguinte artifício: Assim: y 2-3y = -2 y 2-3y + 2 = 0 y'=1 e y''=2 Substituindo y, determinamos: Logo, a soma das raízes é dada por: 17

18 Resolução de equações da forma: ax 2n + bx n + c = 0 Esse tipo de equação pode ser resolvida da mesma forma que a biquadrada. Para isso, substituimos x n por y, obtendo: ay 2 + by + c = 0, que é uma equação do 2º grau. Exemplo: resolva a equação x x = 0. Fazendo x 3 =y, temos: y y = 0 Resolvendo a equação, obtemos: y'= 8 e y''= Então: Logo, V= {-5, 2 }. Composição da equação biquadrada Toda equação biquadrada de raízes reais x 1, x 2, x 3 e x 4 pode ser composta pela fórmula: (x -x 1 ). (x - x 2 ). (x - x 3 ). (x - x 4 ) = 0 Exemplo: Compor a equação biquadrada cujas raízes são: a) (x - 0) (x - 0) (x + 7) (x - 7) = 0 b) (x + a) (x - a) (x + b) (x - b) = 0 x 2 (x 2-49) = 0 (x 2 -a 2 ) (x 2 -b 2 ) = 0 x 4-49x 2 = 0 x 4 - (a 2 + b 2 ) x 2 + a 2 b 2 = 0 18

19 PROPRIEDADES DAS RAÍZES DA EQUAÇÃO BIQUADRADA Consideremos a equação ax 4 + bx 2 + c = 0, cujas raízes são x 1, x 2, x 3 e x 4 e a equação do 2º grau ay 2 + by + c = 0, cujas raízes são y' e y''. De cada raiz da equação do 2º grau, obtemos duas raízes simétricas para a biquadrada. Assim: Do exposto, podemos estabelecer as seguintes propriedades: 1ª Propriedade: A soma das raízes reais da equação biquadrada é nula. x 1 + x 2 + x 3 + x 4 = 0 2ª Propriedade: A soma dos quadrados das raízes reais da equação biquadrada é igual a -. 3ª Propriedade:O produto das raízes reais e não-nulas da equação biquadrada é igual a. EQUAÇÕES IRRACIONAIS Considere as seguintes equações: 19

20 Observe que todas elas apresentam variável ou incógnita no radicando. Essas equações são irracionais. Ou seja: Equação irracional é toda equação que tem variável no radicando. RESOLUÇÃO DE UMA EQUAÇÃO IRRACIONAL A resolução de uma equação irracional deve ser efetuada procurando transformá-la inicialmente numa equação racional, obtida ao elevarmos ambos os membros da equação a uma potência conveniente. Em seguida, resolvemos a equação racional encontrada e, finalmente, verificamos se as raízes da equação racional obtidas podem ou não ser aceitas como raízes da equação irracional dada ( verificar a igualdade). É necessária essa verificação, pois, ao elevarmos os dois membros de uma equação a uma potência, podem aparecer na equação obtida raízes estranhas à equação dada. Observe alguns exemplos de resolução de equações irracionais no conjunto dos reais. Logo, V= {58}. 20

21 Logo, V= { -3}; note que 2 é uma raiz estranha a essa equação irracional. Logo, V= { 7 }; note que 2 é uma raiz estranha a essa equação irracional. 21

22 Logo, V={9}; note que é uma raiz estranha a essa equação irracional. SISTEMAS DE EQUAÇÕES DO 2º GRAU Observe o seguinte problema: Uma quadra de tênis tem a forma da figura, com perímetro de 64 m e área de 192 m 2. Determine as medidas x e y indicadas na figura. De acordo com os dados, podemos escrever: 8x + 4y = 64 2x. ( 2x + 2y) = 192 4x 2 + 4xy =

23 Simplificando, obtemos: 2x + y = 16 1 x 2 +xy = 48 2 Temos aí um sistema de equações do 2º grau, pois uma das equações é do 2º grau. Podemos resolvê-lo pelo método a substituição: Assim: 2x + y = 16 1 y = 16-2x Substituindo y em 2, temos: x 2 + x ( 16-2x) = 48 x x - 2x 2 = 48 - x x - 48 = 0 Multiplicando ambos os membros por -1. x 2-16x + 48 = 0 x'=4 e x''=12 Determinando y para cada um dos valores de x, obtemos: y'= = 8 y''= = - 8 As soluções do sistema são os pares ordenados (4,8) e ( 12, -8). desprezando o par ordenado que possui ordenada negativa, teremos para dimensões da quadra: Comprimento Largura =2x + 2y = = 24m =2x = 2. 4 = 8m Verifique agora a solução deste outro sistema: 23

24 Isolando y em 1 y - 3x = -1 y = 3x - 1 Substituindo em 2 x 2-2x(3x - 1) = -3 x 2-6x 2 + 2x = -3-5x 2 + 2x + 3 = 0 Multiplicando ambos os membros por -1. 5x 2-2x - 3 = 0 x'=1 e x''=- Determinando y para cada um dos valores de x, obtemos: As soluções do sistema são os pares ordenados ( 1, 2) e. Logo, temos para conjunto verdade: PROBLEMAS DO 2º GRAU Para resolução de problemas do 2º grau, devemos seguir etapas: Sequência prática Estabeleça a equação ou sistema de equações que traduzem o problema para a linguagem matemática. Resolva a equação ou o sistema de equações. Interprete as raízes encontradas, verificando se são compatíveis com os dados do problema. Observe agora, a resolução de alguns problemas do 2º grau: Determine dois números inteiros consecutivos tais que a soma de seus inversos seja. 24

25 Representamos um número por x, e por x + 1 o seu consecutivo. Os seus inversos serão representados por. Temos estão a equação:. Resolvendo-a: Observe que a raiz não é utilizada, pois não se trata de número inteiro. Resposta: Os números pedidos são, portanto, 6 e o seu consecutivo 7. Um número de dois algarismos é tal que, trocando-se a ordem dos seus algarismos, obtém-se um número que o excede de 27 unidades. Determine esse número, sabendose que o produto dos valores absolutos dos algarismos é 18. Representamos um número por 10x + y, e o número com a ordem dos algarismos trocada por 10y + x. Observe: Número: 10x + y Número com a ordem dos algarismos trocada: 10y + x. Temos, então, o sistema de equações: Resolvendo o sistema, temos: 25

26 Isolando y em 1 : Substituindo y em 2: xy = 18 x ( x + 3) = 18 x 2 + 3x = 18 x 2 + 3x - 18 = 0 x'= 3 e x''= -6 -x + y = 3 y= x + 3 Determinando y para cada um dos valores de x, obtemos: y'= = 6 y''= = -3 Logo, o conjunto verdade do sistema é dado por: V= { (3,6), ( -6, -3)}. Desprezando o par ordenado de coordenadas negativas, temos para solução do problema o número 36 ( x=3 e y=6). Resposta: O número procurado é 36. Duas torneiras enchem um tanque em 6 horas. Sozinha, uma delas gasta 5 horas mais que a outra. Determine o tempo que uma delas leva para encher esse tanque isoladamente. Consideremos x o tempo gasto para a 1ª torneira encher o tanque e x+5 o tempo gasto para a 2ª torneira encher o tanque. Em uma hora, cada torneira enche a seguinte fração do tanque: Em uma hora, as duas torneiras juntas encherão correspondente: do tanque; observe a equação 26

27 Resolvendo-a, temos: 6( x + 5 ) + 6x = x ( x + 5 ) 6x x = x 2 + 5x x 2-7x - 30 = 0 x'= - 3 e x''=10 Como a raiz negativa não é utilizada, teremos como solução x= 10. Resposta: A 1ª torneira enche o tanque em 10 horas e a 2ª torneira, em 15 horas. Num jantar de confraternização, seria distribuído, em partes iguais, um prêmio de R$ ,00 entre os convidados. Como faltaram 5 pessoas, cada um dos presentes recebeu um acréscimo der$ 400,00 no seu prêmio. Quantos foram presentes nesse jantar? Podemos representar por: Resolvendo-a: Resposta: Nesse jantar estavam presentes 20 pessoas. 27

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Matemática & Raciocínio Lógico

Matemática & Raciocínio Lógico Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur EQUAÇÕES EQUAÇÕES DE 1º GRAU (COM UMA VARIÁVEL) Equação é toda sentença matemática

Leia mais

Matemática Régis Cortes EQUAÇÕES DE GRAUS

Matemática Régis Cortes EQUAÇÕES DE GRAUS EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau Denomina-se equação do 2 grau, qualquer sentença matemática que possa ser reduzida à forma ax 2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a 0. a, b e

Leia mais

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível:

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível: Exercícios Operações com frações. Determine o valor das seguintes expressões, simplificando sempre que possível: 7 c 6 8 6 d b a 8 : 8 7 0 f 8 7 h g e : 6 8 : 6 7 l k j i n m Equações de º Grau Resolva

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Monômios são expressões algébricas formadas por apenas um número, por uma variável ou pela multiplicação de números e variáveis.

Monômios são expressões algébricas formadas por apenas um número, por uma variável ou pela multiplicação de números e variáveis. 1 PRODUTOS NOTÁVEIS Monômios Monômios são expressões algébricas formadas por apenas um número, por uma variável ou pela multiplicação de números e variáveis. 15 x 3x y 5 y ab Em geral, os monômios são

Leia mais

EQUAÇÃO DO 2º GRAU. Prof. Patricia Caldana

EQUAÇÃO DO 2º GRAU. Prof. Patricia Caldana EQUAÇÃO DO 2º GRAU Prof. Patricia Caldana Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas

Leia mais

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Quadrado da soma de dois termos Duas vezes o produto do 1º pelo º Eemplo 1: a) ( + 3y) = +..(3y) + (3y) = + 6y + 9y. ) (7 + 1) = c) (a

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

Equação e Fatoração MATEMÁTICA 8 ANO D PROF.: ISRAEL AVEIRO

Equação e Fatoração MATEMÁTICA 8 ANO D PROF.: ISRAEL AVEIRO Equação e Fatoração MATEMÁTICA 8 ANO D PROF.: ISRAEL AVEIRO WWW.ISRRAEL.COM.BR Definição Fatorar um polinômio é escrevê-lo em forma de um produto de dois ou mais fatores. Casos de fatoração: 1. Fator comum

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

CONSEQUÊNCIAS DO ESTUDO DAS EQUAÇÕES DE 2º GRAU

CONSEQUÊNCIAS DO ESTUDO DAS EQUAÇÕES DE 2º GRAU CONSEQUÊNCIAS DO ESTUDO DAS EQUAÇÕES DE 2º GRAU INTRODUÇÃO No texto anterior abordamos o tema Equação de 2º grau. Lá ela foi definida, resolvida, e teve demonstradas suas propriedades. A partir de agora,

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas incógnitas.

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS

SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UFRN CENTRO DE ENSINO SUPERIOR DO SERIDÓ CERES DEPARTAMENTO DE CIÊNCIAS EXATAS E APLICADAS DCEA PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO Á DOCÊNCIA (PIBID)

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores. COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina

Leia mais

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4}

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4} AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Equações do º grau ) Verifique se o número 9 é raiz da equação - 8 0. Se 9 for raiz, terá de satisfazer a equação: 9 -.9 8 8-99 8 0 Então 9 é raiz da equação

Leia mais

MONÔMIOS E POLINÔMIOS

MONÔMIOS E POLINÔMIOS MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma

Leia mais

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0

Leia mais

DIVISÃO DE POLINÔMIOS

DIVISÃO DE POLINÔMIOS DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Aula 05 - Erivaldo MATEMÁTICA BÁSICA

Aula 05 - Erivaldo MATEMÁTICA BÁSICA Aula 05 - Erivaldo MATEMÁTICA BÁSICA Principais produtos notáveis I- (a + b).(a b) = a 2 a.b + b.a b 2 I- (a + b).(a b) = a 2 b 2 O Produto de uma soma por uma diferença resulta no quadrado do primeiro

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

Curso Intensivo de Matemática para Concursos

Curso Intensivo de Matemática para Concursos 1 Conjuntos Numéricos... 4 1.1 Conjunto dos Números Naturais N... 4 1. Conjunto dos Números Inteiros Z... 4 1. Conjunto dos Números Racionais Q... 4 1..1 Dízimas periódicas simples... 5 1.. Dízimas periódicas

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Sistemas de equações do 1 grau a duas variáveis

Sistemas de equações do 1 grau a duas variáveis Sistemas de equações do 1 grau a duas variáveis Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se que as equações

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação? EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis ENSINO FUNDAMENTAL II ALUNO (A): Nº PROFESSOR(A):Rosylanne Gomes/ Marcelo Vale e Marcelo Bentes DISCIPLINA: matemática SÉRIE: 7 ano TURMA: TURNO: DATA: / / 2016 Sistemas de equações do 1 grau a duas variáveis

Leia mais

A fórmula da equação do 2º grau

A fórmula da equação do 2º grau A UA UL LA A fórmula da equação do 2º grau Introdução Nesta aula vamos encontrar uma fórmula para resolver a equação do 2º grau. ax² + bx + c = 0 (com a ¹ 0) Você poderá naturalmente perguntar por que

Leia mais

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples. Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty

Leia mais

Lista 1- Cálculo I Lic. - Resolução

Lista 1- Cálculo I Lic. - Resolução Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

01. O par (0, 3) também é solução da equação 2x + y = 3 e o par (1, 2) não é solução. Verifique.

01. O par (0, 3) também é solução da equação 2x + y = 3 e o par (1, 2) não é solução. Verifique. ALUNO(A): PROFESSOR(A): WELLINGTON DATA: / / ANO: 7 o E.F. II TURMA: N o MATEMÁTICA LISTA DE REVISÃO - º TRIMESTRE Equações do 1º grau com duas incógnitas: As equações do tipo ax + by = c, em que a, b

Leia mais

Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix

Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Primeiro Grau Isabelle da Silva Araujo - Engenharia de Produção Definição Equação x Inequação Uma equação é uma igualdade entre dois

Leia mais

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração

MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos Nono Ano do Ensino Funcamental Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto

Leia mais

MATERIAL DE PROJETOS I

MATERIAL DE PROJETOS I UNIVERSIDADE NOVE DE JULHO UNINOVE MATERIAL DE PROJETOS I PROF RENATA RIVAS 0. - TECNOLOGIAS ) Conjuntos Numéricos.Conjunto dos números Naturais (N) IN = { 0,,,,4,5,... } Um subconjunto importante de IN

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

SISTEMAS DE EQUAÇÕES 2x2

SISTEMAS DE EQUAÇÕES 2x2 SISTEMAS DE EQUAÇÕES x 1 Introdução Em um estacionamento, entre carros e motos, há 14 veículos Qual é o número exato de carros e motos? Se representarmos o número de carros por x e o número de motos por

Leia mais

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c 47 6. Função Quadrática É todo função que pode ser escrita na forma: f: R R y = ax² + bx + c Em que a, b e c são constantes reais e a 0, caso contrário a função seria afim. Já estudamos um tipo de função

Leia mais

ax bx c 0, onde a, b e c são números reais quaisquer e a 0.

ax bx c 0, onde a, b e c são números reais quaisquer e a 0. Matemática Básica: Revisão 014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno 1 Aula 6 Equações do º grau com uma variável. Resolução de problemas. Objetivos: Conceituar e classificar equações do segundo

Leia mais

4.6. 2x 1. 2x 1 = 10 2x = x = C.S. = (x 5) = x 4 2x 10 = x 4 2x + x = x = (x 1) + 3 = 2 ( 2) ( 2) ( 2)

4.6. 2x 1. 2x 1 = 10 2x = x = C.S. = (x 5) = x 4 2x 10 = x 4 2x + x = x = (x 1) + 3 = 2 ( 2) ( 2) ( 2) Matemática 9.º Ano 1 Tema Álgebra Praticar páginas 88 a 9 1. 1.1. x + 0 1.. (x + 0) 1.. + 1x 1.. x 7..1. 1,0 1 representa a poupança em 1 kg. Então em 0 kg poupa 0 (1,0 1,0) Logo, a opção correta é a [A].

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

equações do 1 grau a duas variáveis 7 3.(3) = 2

equações do 1 grau a duas variáveis 7 3.(3) = 2 Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemáticaa são resolvidos a partir de soluções

Leia mais

» Potenciação e Radiciação

» Potenciação e Radiciação -* Nome: nº Ano: 9º Ano/EF Data: 30/06/2013 Exercícios de Matemática Professor: Hélio N. Informações Importantes: Não é permitido o uso de calculadora ou qualquer material eletrônico; Esta lista não tem

Leia mais

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados!

para Fazer Contas? A primeira e, de longe, mais importante lição é 1.1. Produtos notáveis; em especial, diferença de quadrados! Álgebra: É Necessário ter Ideias para Fazer Contas? A primeira e, de longe, mais importante lição é 1. Fatoração é legal; fatoração é sua amiga 1.1. Produtos notáveis; em especial, diferença de quadrados!

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

INTERAULA I Data: 28/03/2016. Objetivo(s)

INTERAULA I Data: 28/03/2016. Objetivo(s) INTERAULA I Data: 28/03/2016 Retomar conceitos trabalhados em aula, em especial, as propriedades da operação de Potenciação. Desenvolvimento da Práxis Pedagógica Relembrando a n = a.a.a a (n vezes) a 1

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68 Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados

Leia mais

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS 2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8

a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8 Equação do 1º Grau Introdução Equação é uma sentença matemática aberta epressa por uma igualdade envolvendo epressões matemáticas. Uma equação é composta por incógnitas e coeficientes (esses são conhecidos).

Leia mais

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

Matemática E Extensivo V. 7

Matemática E Extensivo V. 7 Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do

Leia mais

Resoluções das atividades de Matemática

Resoluções das atividades de Matemática Resoluções das atividades de Matemática Sumário Capítulo Equação do o grau I... Capítulo Equação do o grau II... Capítulo Equação do o grau III... Capítulo 9 Sistemas de equações...9 Capítulo Relação inária...

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

Lista de Exercícios Equações do 2º Grau

Lista de Exercícios Equações do 2º Grau Lista de Exercícios Equações do º Grau Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero. Aula Equações do Segundo Grau (Parte de ) Endereço: https://youtu.be/4r4rioccmm Gabaritos

Leia mais

O quadrado da diferença de dois termos Observe a representação e utilização da propriedade da potenciação a seguir:

O quadrado da diferença de dois termos Observe a representação e utilização da propriedade da potenciação a seguir: PRODUTOS NOTÁVEIS Chamamos de Produtos Notáveis algumas expressões algébricas ou polinômios que aparecem com mais frequência em cálculos algébricos. Devido a essa regularidade recebem esse nome e são utilizados

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF

Apostila de Pré-Cálculo- Parte 1. Universidade Federal do Rio Grande - FURG. Instituto de Matemática Estatística e Física - IMEF Universidade Federal do Rio Grande - FURG Instituto de Matemática Estatística e Física - IMEF Apostila de Pré-Cálculo- Parte 1 Alessandro da Silva Saadi Felipe Morais da Silva 2017 2 3 Sobre os autores:

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

O uso de letras na linguagem matemática

O uso de letras na linguagem matemática O uso de letras na linguagem matemática Vimos que a linguagem matemática utiliza letras para representar propriedades, como por exemplo a propriedade distributiva: a(b + c) = ab + ac De fato as letras

Leia mais