Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix"

Transcrição

1 Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix

2 Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja, será preciso determinar, de forma correta, a raiz da equação. No método de resolução dos problemas que envolvem equações do 1º grau, sempre colocamos, de um lado, as incógnitas, e de outros, os números para que se tenha, assim, a solução da equação. Determine o valor de x: x + 5 = 10 x = 10 5 x = 5 V = {5}

3 Equações do 2º grau Denominamos equação do 2º grau toda equação do tipo ax² + bx + c com coeficientes numéricos a, b e c, sendo a 0 Exemplo: x² + 4x + 1 a = 1 b = 4 c = 1 Exemplo: 5x² + 3x 2 a = 5 b = 3 c = 2

4 Resolução da equação do 2º grau incompleta As equações do 2º grau podem ser completas ou incompletas. São chamadas de incompletas se um dos coeficientes (b ou c) for nulo. Caso 1: b = 0 x² 9 = 0 x² = 9 x = ± 9 x = ± 3 Caso 2: c = 0 x² 9x = 0 Basta fatorar o fator comum x: x(x 9)=0 x = 0 ou x = 9 Caso 3: b = c = 0 2x² = 0 x = 0

5 Resolução da equação do 2º grau completa As equações do 2º grau completas são do tipo ax² + bx + c = 0 com a, b e c diferentes de zero. Uma equação do 2º grau pode ter até 2 raízes reais, que podem ser determinadas pela fórmula de Bhaskara: x = b ± b² 4ac 2a ou x = b ± Δ 2a Δ = b² 4ac

6 Resolução da equação do 2º grau completa Resolver 3x² 7x + 2 = 0 a = 3, b = 7 e c = 2 x = b ± b² 4ac 2a x = ( 7) ± (-7)² x = 7 ± 25 = 7 ± = 12 = = 2 = 1 Logo, V = { 1, 2 }

7 Resolução da equação do 2º grau completa Resolver x² + 4x 4 = 0 a = 1, b = 4 e c = 4 Δ = b² 4ac = 4² (4). ( 1). ( 4) = = 0 x = b ± Δ 2a x = 4 ± 0 = 4 = 2 2. ( 1) 2 Neste caso, tivemos uma equação do 2º grau com duas raízes reais e iguais (Δ = 0)

8 Resolução da equação do 2º grau completa Resolver 5x² 6x + 5 = 0 a = 5, b = 6 e c = 5 Δ = b² 4ac = ( 6)² = = 64 Note que Δ < 0 e que não existe raiz quadrada de um número negativo. Assim, a equação não possui nenhuma raiz real. Logo: V = (conjunto vazio).

9 Gráficos da função Lembre-se: a é o coeficiente do x² (ax²) a > 0, concavidade voltada para cima. a < 0, concavidade voltada para baixo.

10 Relações Em matemática, uma relação é apenas um conjunto de pares ordenados. Se utilizamos { } como o símbolo para o conjunto, temos abaixo um exemplo de relação entre pares ordenados: {(0, 1), (5, 2), (- 3, 9)} Em uma relação entre pares ordenados, não há absolutamente nenhuma condição especial que a estabeleça, isto é, qualquer conjunto de números é uma relação, contanto que esses números sejam pares ordenados.

11 Funções Já para uma função, temos condições precisas que definem sua existência. Ainda assim, funções são um tipo especial da relação.

12 Interatividade Ache as raízes da equação x² x 20 = 0 a) V = { 1, 2 } b) V = { 5, 4 } c) V = { 5, 4 } d) V = { 1, 2 } e) V =

13 Funções Uma relação f: A B é chamada de função se: I. Não há elemento x em A sem correspondente y em B (não podem sobrar elementos de A). II. Qualquer elemento x de A tem um único correspondente y em B (não pode haver elemento de A associado a mais de um elemento de B).

14 Funções - exemplo Sendo A = -2, -1, 0, 1 B = 2, 3, 4, 5, 7, verifique se a relação f: A função. A B é uma B Sim, é uma função. Pode existir y B (contradomínio) que não esteja associado a nenhum elemento pertencente ao conjunto A (domínio da função f).

15 Funções Na notação y = f(x), entendemos que y é a imagem de x pela função f, ou seja: y está associado a x através da função f f(x) = 4x+3 f(2) = = 11 Portanto, 11 é imagem de 2 pela função f f(5) = = 23 Portanto, 23 é imagem de 5 pela função f

16 Função constante É toda a função y = k, em que k é uma constante real. Verifica-se que o gráfico dessa função é uma reta horizontal, passando pelo ponto de ordenada k Exemplo: f(x) = 7 k y = f(x) = k

17 Função linear Sendo A e B conjuntos de números reais, e a uma constante real diferente de zero, dizemos que uma função f: A B com f (x) = a.x é uma função linear. Exemplo: f(x) = 7x

18 Função do 1º grau (ou função afim) Uma função é chamada de função 1º grau ou função afim se sua sentença for dada por y = a. x + b, sendo a e b constantes reais com a 0 Exemplo: y = 7x + 3 Neste exemplo, a = 7 e b = 3

19 Observações importantes da função do 1º grau 1ª) A constante b é chamada de coeficiente linear e representa, no gráfico, a ordenada do ponto de interseção da reta com o eixo y. 2ª) A constante a é chamada de coeficiente angular: quando a > 0, o gráfico corresponde a uma função crescente; quando a < 0, o gráfico corresponde a uma função decrescente.

20 Função do 1º grau (ou função afim) Sua sentença é dada por y = a. x + b, sendo a e b constantes reais com a 0 b b a > 0 a < 0

21 Observações importantes da função do 1º grau 3ª) Conhecendo-se dois pontos de uma reta, A (x 1, y 1 ) e B (x 2, y 2 ), o coeficiente angular a é dado por: a = y 2 y 1 x 2 x 1 4ª) Conhecendo-se um ponto P (x 0, y 0 ) de uma reta e seu coeficiente angular a, a função correspondente é dada por: y y 0 = a (x x 0 ) Ou seja, a equação da reta é: y = a (x x 0 ) + y 0

22 Interatividade Sendo f(x) = 3x + 5, calcule f( 4). a) 17 b) 17 c) 15 d) 7 e) 7

23 Função demanda de mercado A demanda (ou procura) de um determinado bem é a quantidade desse bem que os consumidores pretendem adquirir. Chama-se função de demanda a relação entre p (preço) e x (quantidade demandada), indicada por p = f(x) Qd = a. P + b, em que: Qd é a quantidade de demanda; P é o preço do bem. Essa função do 1º grau é decrescente pois a < 0

24 Função oferta de mercado A oferta de um bem é a quantidade de produtos que os vendedores desejam e podem produzir para vender em diversos níveis de preço. Chamamos de função de oferta a relação entre o preço do bem (p) e a quantidade ofertada (x) e a indicamos por p = g(x) Normalmente, o gráfico de p em função de x é o de uma função crescente, a>0, pois quanto maior o preço, maior a quantidade ofertada.

25 Preço e quantidade de equilíbrio É o ponto de interseção entre as curvas de demanda e oferta. Ocorre quando a demanda é igual à oferta: D(p) = S(p) Suponha que as funções demanda e oferta sejam dadas por funções lineares, tais que: D(p) = 34 5p e S(p) = 8 + 2p. Qual é o preço de equilíbrio de mercado para essas funções? 34 5p = 8 + 2p = 2p + 5p 42 = 7p p = 42 = 6 7

26 Receita total Seja x a quantidade vendida de um produto, chamamos de função receita o produto do preço de venda por x e indicamos por R: R(x) = P.x

27 Custo total Seja x a quantidade produzida de um produto, o custo total de produção, ou simplesmente custo, depende de x, e a relação entre eles chamamos de função custo total, ou simplesmente função custo, e a indicamos por C.

28 Custo total Existem custos que não dependem da quantidade produzida, tais como aluguel, seguros e outros. A soma desses custos chamamos de custo fixo e indicamos por C F A parcela do custo que depende de x chamamos de custo variável e indicamos por C V C(x) = C F + C V Para x variando dentro de certos valores, normalmente não muito grandes, o custo variável é, geralmente, igual a uma constante multiplicada pela quantidade x.

29 Ponto crítico (break even point) ou ponto de nivelamento O ponto de nivelamento é o valor de x tal que R(x) = C(x)

30 Ponto crítico (break even point) ou ponto de nivelamento - exemplo Uma editora vende um certo livro por R$60,00 a unidade. Seu custo fixo é de R$10.000,00 por mês, e o custo variável, por unidade, é de R$ 40,00. Qual o ponto de nivelamento? Neste caso, temos: Função receita: R(x) = 60.x Função custo: C(x) = x Sendo R(x) = C(x), temos: 60.x = x 60.x 40.x = x = x = 500

31 Função lucro A função lucro é definida como a diferença entre a função receita R e a função custo C. Indicando a função lucro por L, teremos: L(x) = R(x) C(x)

32 Função lucro - exemplo O custo fixo mensal de uma empresa é de R$ ,00, o preço unitário de venda é R$ 8,00, e o custo variável por unidade é de R$ 6,00. Qual a função lucro? R(x) = P.x = 8.x C(x) = C F + C V = x L(x) = R(x) C(x) L(x) = 8.x ( x) = L(x) = 8.x x L(x) = 2.x 30000

33 Interatividade O custo fixo mensal de uma empresa é de R$5.000,00, o custo variável por unidade produzida é de R$ 30,00, e o preço de venda é R$ 40,00. Indique a alternativa que apresenta, respectivamente, a função receita total e a função custo total: a) R(x) = 30.x e C(x) = x b) R(x) = 30.x e C(x) = x c) R(x) = 40.x e C(x) = x d) R(x) = 40.x e C(x) = x e) R(x) = 40.x e C(x) = x

34 Ajuste de curvas É um método que consiste em encontrar uma curva que se ajuste a uma série de pontos e que, possivelmente, cumpra uma série de parâmetros adicionais. Custo Total X Quantidade Custo Total em R$ Quantidade em unidades

35 Ajuste de curvas Teoria de interpolação: obtenção de funções que passem exatamente pelos pontos dados. Teoria de aproximação: obtenção de funções que se aproximem ao máximo dos pontos dados.

36 Método dos mínimos quadrados Consiste em um dos mais simples e eficazes métodos da análise de regressão. É utilizado quando temos uma distribuição de pontos e precisamos ajustar a melhor curva para esse conjunto de dados.

37 Regressão linear - equação da reta y = A.x + B n = número de pontos observados x = soma dos valores de x y = soma dos valores de y x.y = soma dos produtos entre x e y x 2 = soma dos quadrados dos valores de x x = x e y = y (médias de x e y) n n

38 Regressão linear exemplo Uma empresa produz uma determinada quantidade de produtos (x) e tem seu custo (y) de acordo com a tabela abaixo. Qual a curva que se adapta melhor ao conjunto de pontos e qual a previsão de custo para 10 unidades do produto? x y

39 Regressão linear - exemplo y = A.x + B x y x.y x =10 =690 = 1992 =30

40 Regressão linear - exemplo y = A.x + B Sendo x = 10 e y = 690, temos: x = 10 = 2,5 y = 690 = 172,5 4 4 A = (2,5).172,5 = = 53,4 30 4(25) 4.(2,5)

41 Regressão linear - exemplo B = y A.x B = 172,5 53,4. 2,5 = 172,5 133,5 = 39 y = A.x + B y = 53,4.x + 39 Para 10 unidades, o custo será: y = 53,4.x + 39 y = 53, = 573

42 Matemática financeira Divisão da matemática aplicada que estuda o comportamento do dinheiro ao longo do tempo. Juro (J) é a remuneração gerada por um capital aplicado ou emprestado. Taxa de juros (i) é a forma de se estipular o montante de juros, ou seja, o valor percentual a ser pago pelo uso do capital emprestado durante um tempo determinado. 20% a.m = 20 = 0,20 (forma unitária) % a.a = 3 = 0,03 (forma unitária). 100

43 Capitalização O prazo da capitalização e a taxa de juros devem estar expressos, necessariamente, na mesma unidade de tempo. Para juros simples, podemos observar os seguintes exemplos: 24% a. a. = 24/12 = 2% ao mês. 24% a. a. = 24/6 = 4% ao bimestre.

44 Capitalização Capitalização simples é aquela em que a taxa de juros incide somente sobre o capital inicial; não incide, pois, sobre os juros acumulados. O uso de juros simples restringe-se, principalmente, às operações praticadas no âmbito de curto prazo. O montante de capital e juros se comporta como uma progressão aritmética. Capitalização composta é aquela em que a taxa de juros incide sobre o principal acrescido dos juros acumulados até o período anterior. O montante de capital e juros se comporta como uma progressão geométrica.

45 Capitalização simples - fórmulas J = C.i.n, em que: J = juros i = taxa de juros C = principal (capital) n = número de períodos Ao somarmos os juros ao valor principal, temos o montante (M): M = C + J M = C (1 + i.n)

46 Interatividade Uma pessoa aplicou a juros simples R$ 3.000,00 à taxa de 2% ao mês durante 5 meses. Quanto receberá de juro ao fim dessa aplicação? a) R$ 300,00 b) R$ 400,00 c) R$ 500,00 d) R$ 600,00 e) R$ 700,00

47 ATÉ A PRÓXIMA!

Por vezes podemos identificar, em várias situações práticas, variáveis que estão em relação de dependência.

Por vezes podemos identificar, em várias situações práticas, variáveis que estão em relação de dependência. Título : B1 FUNÇÕES Conteúdo : 1. FUNÇÕES Na matemática, uma relação é apenas um conjunto de pares requisitados. Se utilizamos {} como o símbolo para o conjunto, temos abaixo alguns exemplos de relações

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Matemática 1. Conceitos Básicos 2007/2008

Matemática 1. Conceitos Básicos 2007/2008 Matemática 1 2007/2008 Objectivos Resolver rapidamente equações dos 1 o e 2 o graus Traduzir alguns problemas em equações Interiorizar os conceitos de equação possível e equação impossível Alguns conceitos

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g

Leia mais

Receita, Custo e Lucro

Receita, Custo e Lucro eceita, Custo e ucro eceita total eceita total ou, simplesmente, eceita é a quantia monetária recebida por uma empresa com a venda de seus produtos. Supondo que a empresa vende apenas um produto e que

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas:

Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas: Título : B1 AJUSTE DE CURVAS Conteúdo : Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Unidade I MATEMÁTICA FINANCEIRA Prof. Luiz Felix Matemática financeira A Matemática Financeira estuda o comportamento do dinheiro ao longo do tempo. Capital é o valor principal de uma operação, ou seja,

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

Prof. Dr. Aldo Vieira

Prof. Dr. Aldo Vieira 1. Em uma determinada região do planeta, a temperatura média anual subiu de 13,35 ºC em 1995 para 13,8 ºC em 2010. Seguindo a tendência de aumento linear observada entre 1995 e 2010, a temperatura média

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

INEQUAÇÕES ESPECIALIZAÇÃO EM INSTRUMENTAÇÃO PARA O ENSINO DE MATEMÁTICA. Prof. M.Sc. Armando Paulo da Silva 1

INEQUAÇÕES ESPECIALIZAÇÃO EM INSTRUMENTAÇÃO PARA O ENSINO DE MATEMÁTICA. Prof. M.Sc. Armando Paulo da Silva 1 ANÁLISE DE MÉTODOS M MÁTEMÁTICOSTICOS INEQUAÇÕES Prof. M.Sc. Armando Paulo da Silva 1 ANÁLISE DE MÉTODOS M MÁTEMÁTICOS TICOS I INEQUAÇÕES 1º GRAU Prof. M.Sc. Armando Paulo da Silva 2 INEQUAÇÕES DE 1º 1

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Aula 06: Funções e seus Gráficos

Aula 06: Funções e seus Gráficos GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Inequação do Segundo Grau Vitor Bruno Santos Pereira - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ.

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. SIMULADO DE MATEMÁTICA TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA: C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério da Educação Universidade Federal do Rio Grande Universidade Aberta do Brasil Administração Bacharelado Matemática para Ciências Sociais Aplicadas I Rodrigo Barbosa Soares

Leia mais

MAT-103 Complementos de Matemáticas para Contabilidade Prof. Juan Carlos Gutierrez Fernandez

MAT-103 Complementos de Matemáticas para Contabilidade Prof. Juan Carlos Gutierrez Fernandez MAT-03 Complementos de Matemáticas para Contabilidade Prof Juan Carlos Gutierrez Fernandez Lista : Números é funções Ano 206 Em uma pesquisa foram encontrados os seguintes resultados: 60% das pessoas entresvistadas

Leia mais

FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.

Leia mais

OBJETIVOS DOS CAPÍTULOS

OBJETIVOS DOS CAPÍTULOS OBJETIVOS DOS CAPÍTULOS Capítulo 1 Nesse capítulo, você notará como muitas situações práticas nas áreas de administração, economia e ciências contábeis podem ser representadas por funções matemáticas.

Leia mais

MATERIAL MATEMÁTICA II

MATERIAL MATEMÁTICA II MATERIAL DE MATEMÁTICA II CAPÍTULO II FUNÇÕES Curso: Administração Prof. Msc. Edmundo Tork 2 2. Funções 2.1 Introdução É comum nos depararmos com situações onde o valor de uma quantidade depende de outra.

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

FUNÇÃO DO 2 GRAU TERÇA FEIRA

FUNÇÃO DO 2 GRAU TERÇA FEIRA FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

PARTE 1 - JUROS SIMPLES CONTEÚDO PROGRAMÁTICO. 1. Definições e nomenclatura 2. Conceito de capitalização simples 3. Fórmulas 4. Exercícios resolvidos

PARTE 1 - JUROS SIMPLES CONTEÚDO PROGRAMÁTICO. 1. Definições e nomenclatura 2. Conceito de capitalização simples 3. Fórmulas 4. Exercícios resolvidos PARTE 1 - JUROS SIMPLES CONTEÚDO PROGRAMÁTICO 1. Definições e nomenclatura 2. Conceito de capitalização simples 3. Fórmulas 4. Exercícios resolvidos 1. Definições e nomenclatura A Matemática Financeira

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t,

Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t, Atividade extra Exercício 1 Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t + 00t, onde h(t) é a altura da bola em função do tempo (t) em segundos. Quanto

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}?

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}? Lista de Exercícios de Matemática 01-) Quantos números naturais há na sequência {10, 104, 105,..., 87, 88}? 0-) V ou F: a) Todo número natural é inteiro. Todo número racional é inteiro. c) Existe número

Leia mais

Introdução ao Método do Balde. Norton Gonzalez

Introdução ao Método do Balde. Norton Gonzalez Introdução ao Método do Balde Norton Gonzalez INTRODUÇÃO AO MÉTODO DO BALDE Regra de três Constituem regra de três os problemas que envolvem pares de grandezas diretamente ou inversamente proporcionais.

Leia mais

Na Matemática financeira temos também: Fluxo de Caixa, montante, capital, juros e juros simples/juros composto.

Na Matemática financeira temos também: Fluxo de Caixa, montante, capital, juros e juros simples/juros composto. A Matemática financeira estuda o conceito do valor do dinheiro no tempo. Empréstimos ou investimentos realizados no presente terão seu valor aumentado no futuro. Inversamente, valores disponíveis no futuro,

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

Professora conteudista: Ângela Maria Pizzo

Professora conteudista: Ângela Maria Pizzo Matemática Aplicada Professora conteudista: Ângela Maria Pizzo Sumário Matemática Aplicada Unidade I 1 CONJUNTOS...1 1.1 Introdução: a ideia de conjunto indo além da matemática...1 1.2 Definições matemáticas...3

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Simulado enem. Matemática e suas Tecnologias. Volume 1 DISTRIBUIÇÃO GRATUITA

Simulado enem. Matemática e suas Tecnologias. Volume 1 DISTRIBUIÇÃO GRATUITA Simulado 06 enem G a b a r i t o 3 ạ série Matemática e suas Tecnologias Volume DISTRIBUIÇÃO GRATUITA Simulado ENEM 06 Questão Matemática e suas Tecnologias Gabarito: Alternativa C ( A ) Analisou apenas

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Função Definida Por Várias Sentenças

Função Definida Por Várias Sentenças Ministrante Profª. Drª. Patrícia Aparecida Manholi Material elaborado pela Profª. Drª. Patrícia Aparecida Manholi SUMÁRIO Função Definida Por Várias Sentenças Lembrando... Dados dois conjuntos não vazios

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Matemática Para Negócios

Matemática Para Negócios PUC - ECEC - Escola de Ciências Exatas e da e Física Matemática Para Negócios 2016 GO, Março / 2016 Prof: Me Samuel Lima Picanço 1 Definição Uma função pode ser entendida como uma fórmula matemática usada

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos matemáticos

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1 PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/2016 Prova A MATEMÁTICA 01. Uma loja reajustou em 20% o preço de certo modelo de televisão. Todavia, diante da queda nas vendas, a loja pretende dar

Leia mais

Matemática: Funções Vestibulares UNICAMP

Matemática: Funções Vestibulares UNICAMP Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,

Leia mais

C) Classificação quanto ao fato de ser afim, linear, identidade ou constante

C) Classificação quanto ao fato de ser afim, linear, identidade ou constante FUNÇÃO DO 1º GRAU I) RESUMO SOBRE FUNÇÃO DO 1º GRAU A) definição: são as funções do tipo f(x) = ax + b onde "a" é o coeficiente angular e "b" é o coeficiente linear. B) Crescente / Dedrescente a > 0 :

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais