A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição

Tamanho: px
Começar a partir da página:

Download "A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição"

Transcrição

1 Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função afim Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 A função afim Proposição O gráfico de uma função afim f : x y f x ax + b é uma reta Definição Uma função f : R R chama-se afim se existem constantes a, b R tais que f x ax + b para todo x R Exemplo de função afim: f : R R x f x 2x + 3 Demonstração Basta verificarmos que três pontos quaisquer do gráfico de f são colineares Sejam, portanto, P 1 x 1, ax 1 + b, P 2 x 2, ax 2 + b e P 3 x 3, ax 3 + b Para verificar que P 1, P 2 e P 3 são colineares é necessário e suficiente que o maior dos três números dp 1, P 2, dp 2, P 3 e dp 1, P 3 seja igual à soma dos outros dois Sem perda de generalidade, podemos supor que as abscissas x 1, x 2 e x 3 foram ordenadas de modo que x 1 < x 2 < x 3 A fórmula da distância entre dois pontos nos dá: dp 1, P 2 x 2 x a 2 x 2 x 1 2 x 2 x a 2, dp 2, P 3 x 3 x a 2, dp 1, P 3 x 3 x a 2 Daí se segue imediatamente que dp 1, P 3 dp 1, P 2 +dp 2, P 3 Parte 5 Pré-Cálculo 3 Parte 5 Pré-Cálculo 4

2 Cuidado! Observações Todo gráfico de uma função afim é uma reta no plano cartesiano, mas nem toda reta no plano cartesiano é gráfico de uma função afim! y f x a x + b 1 O gráfico de uma função afim é uma reta: a éocoeficiente angular com relação ao eixo x e b é o coeficiente linear da reta 2 O coeficiente linear b é a ordenada do ponto de interseção da reta com o eixo y 3 O coeficiente angular a mede a inclinação da reta: ele é igual a tangente do ângulo entre a reta e o eixo x quando a mesma escala foi usada nos dois eixos coordenados Parte 5 Pré-Cálculo 5 Parte 5 Pré-Cálculo 6 A função afim Exercícios y f x a x + b 1 f é crescente se, e somente se, a > 0 f é decrescente se, e somente se, a < 0 2 Estude a equação ax + b 0 isto é, f x 0 A resposta dependerá dos sinais de a e b 3 Estude a inequação ax + b > 0 isto é, f x > 0 A resposta dependerá dos sinais de a e b Parte 5 Pré-Cálculo 7 Parte 5 Pré-Cálculo 8

3 Proposição Dados arbitrariamente x 1, y 1, x 2, y 2 R 2, com x 1 x 2, existe uma, e somente uma, função afim f : R R tal que Demonstração Observe que: { f x1 y 1, f x 2 y 2, f x 1 y 1 e f x 2 y 2 { a x1 + b y 1, a x 2 + b y 2 Assim, existe uma única função afim f : R R tal que f x 1 y 1 e f x 2 y 2 se, e somente se, o sistema linear nas variáveis a e b { a x1 + b y 1, a x 2 + b y 2, possui uma única solução Mas, como x 1 x 2, este é o caso, a y 2 y 1 x 2 x 1, b x 2y 1 x 1 y 2 x 2 x 1 Funções afins e progressões aritméticas x f x 2 x x f x 2 x Parte 5 Pré-Cálculo 9 Parte 5 Pré-Cálculo 10 Funções afins e progressões aritméticas x f x 2 x + 3 x 1 2 x x 1 + h 2 x h x h 2 x h x h 2 x h A função linear A função afim y f x 2 x + 3 transforma progressões aritméticas no domínio em progressões aritméticas no contradomínio Mais geralmente, qualquer função afim y f x a x + b transforma progressões aritméticas no domínio em progressões aritméticas no contradomínio prove! A recíproca é verdadeira? Parte 5 Pré-Cálculo 11 Parte 5 Pré-Cálculo 12

4 A função linear Observações Definição Uma função f : R R chama-se linear se existe constante a R tal que f x ax para todo x R Exemplo de função afim: f : R R x f x 2x 1 Se y f x ax é uma função linear, então f x 1 + x 2 f x 1 +f x 2 para todo x 1, x 2 R e f cx cfx para todo c, x R 2 A função linear é o modelo matemático para os problemas de proporcionalidade A proporcionalidade é, provavelmente, a noção matemática mais difundida na cultura de todos os povos e seu uso universal data de milênios Parte 5 Pré-Cálculo 13 Parte 5 Pré-Cálculo 14 O teorema fundamental da proporcionalidade: parte 1 Seja f : R + R + uma função crescente que satisfaz a seguinte propriedade: f k xkfx para todo k N e todo x R + 1 Então f x a x para todo x R +, com a f 1 O teorema fundamental da proporcionalidade: parte 1 Seja f : R + R + uma função crescente que satisfaz a seguinte propriedade: f k xkfx para todo k N e todo x R + 1 Então f x a x para todo x R +, com a f 1 Demonstração Primeiro mostraremos que f x a x para todo x racional > 0 e, depois, que f x a x para todo x irracional > 0 Caso 1 Seja r um número racional > 0 Logo, r m/n, com m N e n N Usando 1 temos que n f r x f n r x f m x m f x, logo f r x m f x r f x n Seja a f 1 Temos que para todo r racional, f r f r 1 r f 1 r a a r Demonstração continuação Caso 2 Observe que a f 1 > 0 Suponha, por absurdo, que exista algum número irracional x > 0 tal que f x a x Para fixar ideias, admitamos que f x < a x o caso f x > a x seria tratado de modo análogo Temos então que f x/a < x Tomemos um número racional r entre f x/a e x: f x a < r < x Então f x < a r < a x, ou seja, f x < f r < a x Mas isto é absurdo, pois f é crescente logo, como r < x, deveríamos ter f r < f x Esta contradição completa a demonstração Parte 5 Pré-Cálculo 15 Parte 5 Pré-Cálculo 16

5 Aplicação A área de um retângulo de altura a e base x é igual a a x Demonstração Seja f x a área do retângulo de altura a e base x É claro que f é uma função crescente de x Além disso, é claro que um retângulo de altura a e base k x pode ser decomposto em k retângulos de mesma altura a, com um com base x O teorema fundamental da proporcionalidade: parte 2 Seja f : R R uma função crescente As seguintes afirmações são equivalentes: 1 f k xkfx para todo k Z e todo x R 2 Pondo a f 1, tem-se f x a x para todo x R 3 f x 1 + x 2 fx 1 +fx 2 para quaisquer x 1, x 2 R a Demonstração Vamos mostrar primeiro que 1 2 Vamos dividir a demonstração em dois casos: primeiro mostraremos que f x a x para todo x racional e, depois, que f x a x para todo x irracional x x x x Logo, f k x k f x Assim, pelo teorema fundamental da proporcionalidade, temos que f x c x, onde c f 1 é a área do retângulo de base 1 e altura a Vamos mostrar que c a O mesmo argumento aplicado aos retângulos de mesma base 1 e altura variável mostra que f 1 a u, onde u é área do quadrado de lado 1 a qual, por definição, é igual a 1 Logo, c f 1 a Caso 1 Seja r um número racional Logo, r m/n, com m Z e n Z Usando 1 temos que n f r x f n r x f m x m f x, logo f r x m f x r f x n Seja a f 1 Temos que para todo r racional, f r f r 1 r f 1 r a a r Parte 5 Pré-Cálculo 17 Parte 5 Pré-Cálculo 18 O teorema fundamental da proporcionalidade: parte 2 Seja f : R R uma função crescente As seguintes afirmações são equivalentes: 1 f k xkfx para todo k Z e todo x R 2 Pondo a f 1, tem-se f x a x para todo x R 3 f x 1 + x 2 fx 1 +fx 2 para quaisquer x 1, x 2 R O teorema fundamental da proporcionalidade: parte 2 Seja f : R R uma função crescente As seguintes afirmações são equivalentes: 1 f k xkfx para todo k Z e todo x R 2 Pondo a f 1, tem-se f x a x para todo x R 3 f x 1 + x 2 fx 1 +fx 2 para quaisquer x 1, x 2 R Demonstração continuação Caso 2 Como f 0 f f 0 0, o fato de f ser crescente nos dá que a f 1 > f 0 0 Assim, a é positivo Suponha, por absurdo, que exista algum número irracional x tal que f x a x Para fixar ideias, admitamos que f x < a x o caso f x > a x seria tratado de modo análogo Temos então que f x/a < x Tomemos um número racional r entre f x/a e x: Demonstração continuação As implicações 2 3 e 3 1 são mais fáceis de se demonstrar e ficam como exercício f x a < r < x Então f x < a r < a x, ou seja, f x < f r < a x Mas isto é absurdo, pois f é crescente logo, como r < x, deveríamos ter f r < f x Esta contradição completa a prova de que 1 2 Parte 5 Pré-Cálculo 19 Parte 5 Pré-Cálculo 20

6 Versão para ser aplicada em grandezas positivas Seja f : R + R + uma função crescente, onde R + {x R x > 0} As seguintes afirmações são equivalentes: 1 + f nxnfx para todo n N e todo x R Pondo a f 1, tem-se f x a x para todo x R f x 1 + x 2 fx 1 +fx 2 para quaisquer x 1, x 2 R + Demonstração Defina F : R R por f x, se x > 0, F x 0, se x 0, f x, se x < 0 Caracterização da função afim Cada uma das afirmações 1 +, 2 + e 3 + para f equivale a umas das afirmações 1, 2 e 3 do teorema fundamental da proporcionalidade para f Parte 5 Pré-Cálculo 21 Parte 5 Pré-Cálculo 22 Proposição: caracterização da função afim parte 1 Seja f : R R uma função monótona Se o valor do acréscimo f x + h f x ϕh depender apenas de h, mas não de x, então f é uma função afim Proposição: caracterização da função afim parte 2 Seja f : R R uma função monótona que transforma progressões aritméticas em progressões aritméticas, então f é uma função afim Demonstração Para fixar as ideias, suporemos que a função f seja crescente Então ϕ: R R também é crescente, com ϕ0 0 Além disso, para quaisquer h, k R, temos: ϕh + k f x + h + k f x f x + k+h f x + k+f x + k f x ϕh+ϕk Logo, pelo Teorema Fundamental da Proporcionalidade, pondo-se a ϕ1, tem-se ϕh a h, para todo h R Isto quer dizer que f x + h f x a h Tomando x 0 e escrevendo b f 0, resulta que f h a h + b Assim, f x a x + b para todo x R Em outras palavras, f é uma função afim Demonstração Considere a função ϕ: R R definida por ϕx f x f 0 A função ϕ é tal que ela transforma progressões aritméticas em progressões aritméticas e ϕ0 0 Se mostrarmos que ϕ é uma função linear, seguirá que f é uma função afim Para todo x R, os números x, 0e +x formam uma progressão aritmética, logo o mesmo ocorre com os números ϕ x, ϕ0 e ϕ+x Por conseguinte, g x gx Em seguida, consideremos x R e n N Então os números 0, x, 2x,, nx formam uma progressão aritmética, o mesmo se dando com suas imagens por ϕ: 0, ϕx, ϕ2 x,, ϕnx A razão desta progressão pode ser obtida tomando-se a diferença entre o segundo e o primeiro termo, logo esta razão é ϕx Segue-se então que ϕnx n ϕx Finalmente, se n é um inteiro negativo, temos n N, logo ϕnx ϕ nx n ϕx n ϕx Assim, vale que ϕnx n ϕx para todo n Z e para todo x R Pelo Teorema Fundamental da Proporcionalidade, segue-se que ϕ é linear Parte 5 Pré-Cálculo 23 Parte 5 Pré-Cálculo 24

7 A função quadrática y f x a x 2 + b x + c com a 0 1 O gráfico de uma função quadrática é uma parábola A função quadrática 2 O coeficiente c é a ordenada do ponto de interseção da parábola com o eixo y 3 Se o coeficiente a é > 0, a parábola é côncava para cima Se a é < 0, ela é côncava para baixo 4 Se b 2 4 a c < 0, então a parábola não intercepta o eixo x Parte 5 Pré-Cálculo 25 Parte 5 Pré-Cálculo 26 A função quadrática A função quadrática y f x a x 2 + b x + c 5 Se b 2 4 a c > 0, então a parábola intercepta o eixo x em dois pontos de abscissas: x 1 b 2 a a x 2 b + 2 a 6 Se b 2 4 a c 0, então a parábola intercepta o eixo x no ponto de abscissa: x 1 b 2 a Ir para o GeoGebra Parte 5 Pré-Cálculo 27 Parte 5 Pré-Cálculo 28

8 Completamento de quadrados: exemplo 1 Lembre-se que: u + v 2 u uv+v 2 e u v 2 u 2 2 uv+v 2 Completamento de quadrados x 2 8 x + 15 x 2 2 x4+?? + 15 x 2 2 x x Parte 5 Pré-Cálculo 29 Parte 5 Pré-Cálculo 30 Completamento de quadrados: exemplo 1 Logo: x 2 8 x x Completamento de quadrados: exemplo 2 Lembre-se que: u + v 2 u uv+v 2 e u v 2 u 2 2 uv+v 2 x x x 4 1 x 4 1 oux 4 1 x x x x x x x ?? x 3oux 5 Parte 5 Pré-Cálculo 31 Parte 5 Pré-Cálculo 32

9 Completamento de quadrados: exemplo 2 x x Logo: x x x x Completamento de quadrados: exemplo 3 Lembre-se que: u + v 2 u uv+v 2 e u v 2 u 2 2 uv+v x 2 3 x x 2 2 x 2 x 2 2 x 2 x 3 4 +?? x ou x x 2 oux 1 Parte 5 Pré-Cálculo 33 Parte 5 Pré-Cálculo 34 Completamento de quadrados: exemplo 3 Logo: 2 x 2 3 x x x x x Completamento de quadrados: exemplo 4 Lembre-se que: u + v 2 u uv+v 2 e u v 2 u 2 2 uv+v 2 x x 1 x 2 2 x1+? +? 1 x 2 2 x x 1 x ou x x 1oux 1 2 Parte 5 Pré-Cálculo 35 Parte 5 Pré-Cálculo 36

10 Completamento de quadrados: exemplo 4 Logo: x x 1 0 x Completamento de quadrados: exemplo 5 Lembre-se que: u + v 2 u uv+v 2 e u v 2 u 2 2 uv+v 2 x x x 1 0 x x + 4 x x1+?? + 4 x x x x 1 0 x 1 Parte 5 Pré-Cálculo 37 Parte 5 Pré-Cálculo 38 Completamento de quadrados: exemplo 5 Logo: x x x x Moral: como x para todo x R e 3 < 0, segue-se que a equação x x não possui solução real Completamento de quadrados: caso geral Hipótese: a 0 b ax 2 + bx+ c a x x +?? + c 2 a b a x x + b2 2 a 4 a 2? + c b a x x + b2 2 a 4 a 2 b2 4 a + c b a x x + b2 b 2 2 a 4 a 2 4 a c b a x x + b2 b 2 4 ac 2 a 4 a 2 4 a a x + b 2 2 a 4 a Parte 5 Pré-Cálculo 39 Parte 5 Pré-Cálculo 40

11 A forma canônica do trinômio Forma canônica do trinômio: se a 0, então A forma canônica do trinômio ax 2 + bx+ c a x + b 2 2 a b 2 4 ac 4 a Parte 5 Pré-Cálculo 41 Parte 5 Pré-Cálculo 42 Aplicação: raízes de uma equação quadrática Aplicação: raízes de uma equação quadrática Hipótese: a 0 ax 2 + bx+ c 0 a x + b a 4 a a x + b 2 2 a 4 a x + b 2 2 a 4 a 2 Moral: se b 2 4 ac < 0, então 4 a 2 < 0 e x + b a Logo, a equação quadrática ax 2 + bx + c 0 não possui solução real Parte 5 Pré-Cálculo 43 Parte 5 Pré-Cálculo 44

12 Aplicação: raízes de uma equação quadrática Hipótese: a 0 e b 2 4 ac 0 ax 2 + bx+ c 0 x + b 2 2 a 4 a 2 x + b 2 2 a 4 a 2 x + b 2 a 4 a 2 2 a 2a x + b 2 a 2a ou x + b 2 a + 2a x b 2 a 2a ou x b 2 a + 2a x b 2a ou x b + 2a A fórmula de Bhaskara é de Bhaskara? O hábito de dar o nome de Bhaskara para a fórmula de resolução da equação do segundo grau se estabeleceu no Brasil por volta de 1960 Esse costume aparentemente só brasileiro não se encontra o nome de Bhaskara para essa fórmula na literatura internacional, não é adequado pois: 1 Problemas que recaem numa equação do segundo grau já apareciam, há quase 4 mil anos, em textos escritos pelos babilônios Nesses textos o que se tinha era uma receita escrita em prosa, sem uso de símbolos que ensina como proceder para determinar as raízes em exemplos concretos com coeficientes numéricos 2 Até o fim do século XVI não se usava fórmula para obter raízes de uma equação do segundo grau, simplesmente porque não se representavam por letras os coeficientes de uma equação Isso passou a ser feito a partir de François Viète, matemático francês que viveu de 1540 a 1603 Logo, embora não se deva negar a importância e a riqueza da obra de Bhaskara, não é correto atribuir a ele a conhecida fórmula de resolução da equação do segundo grau Fonte: Revista do Professor de Matemática, SBM, vol 39, p 54 Parte 5 Pré-Cálculo 45 Parte 5 Pré-Cálculo 46 A fórmula de Bhaskara é de Bhaskara? Problemas que recaem numa equação do segundo grau estão entre os mais antigos da Matemática Em textos cuneiformes, escritos pelos babilônicos há quase quatro mil anos, encontramos, por exemplo, a questão de achar dois números conhecendo sua soma s e o seu produto p Os números procurados são raízes da equação de segundo grau x 2 s x + p 0 Com efeito: se x éum dos números, então s x é o outro pois a soma dos dois números deve ser igual a s Logo, o seu produto é igual a p xs x s x x 2, Aplicação: o gráfico de uma função quadrática de modo que x 2 s x + p 0 Em termos geométricos, este problema pede que se determine os lados de um retângulo conhecendo o semiperímetro s e a área p Parte 5 Pré-Cálculo 47 Parte 5 Pré-Cálculo 48

13 Aplicação: o gráfico de uma função quadrática Aplicação: o gráfico de uma função quadrática Uma vez que ax 2 + bx+ c a x + b 2 b 2 4 ac, 2 a 4 a segue-se que se f x x 2 e gx ax 2 + bx+ c, então gx a f x + r+s, onde r b 2 a e s 4 ac b2 4 a Moral: o gráfico de qualquer função quadrática pode ser obtido via um alongamento/compressão vertical, uma translação horizontal e uma translação vertical do gráfico da função f x x 2 Ir para o GeoGebra Parte 5 Pré-Cálculo 49 Parte 5 Pré-Cálculo 50 Aplicação: o gráfico de uma função quadrática O vértice da parábola que é gráfico da função quadrática f x ax 2 + bx+ c a V x + b 2 2 a têm coordenadas b 2 a, 4 ac b2 4 a b 2 4 ac 4 a, Parte 5 Pré-Cálculo 51

Funções da forma x elevado a menos n

Funções da forma x elevado a menos n Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções da forma x elevado a menos n Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 Funções

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais

Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix

Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,

Leia mais

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2). FUNÇÃO QUADRÁTICA Funções quadráticas Definição Função quadrática é toda a função de R em R que pode ser definida por uma expressão analítica da forma ax 2 + bx + c, com a, b, c R e a 0 (ou seja, é toda

Leia mais

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5. Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =

Leia mais

Função Afim. Definição. Gráfico

Função Afim. Definição. Gráfico Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função

Leia mais

Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau

Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério

Leia mais

MAT 0143 : Cálculo para Ciências Biológicas

MAT 0143 : Cálculo para Ciências Biológicas MAT 0143 : Cálculo para Ciências Biológicas Aula 2/ Quarta 26/02/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 1 1 Informaçãoes gerais: Email: sylvain@ime.usp.br Site: ver o link para MAT 2110 na pagina

Leia mais

Matemática. FUNÇÃO de 1 GRAU. Professor Dudan

Matemática. FUNÇÃO de 1 GRAU. Professor Dudan Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

Matemática. FUNÇÃO de 1 GRAU. Professor Dudan

Matemática. FUNÇÃO de 1 GRAU. Professor Dudan Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais

Leia mais

Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina.

Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 8 - Seção 8.4 do livro texto da disciplina: Números e Funções Reais,

Leia mais

Função de Proporcionalidade Direta

Função de Proporcionalidade Direta Função de Proporcionalidade Direta Recorda Dadas duas grandezas x e y, diz-se que y é diretamente proporcional a x: y se x 0 e y 0 e o quociente entre dois quaisquer valores correspondentes for constante.

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

MAT 2110 : Cálculo para Química

MAT 2110 : Cálculo para Química MAT 2110 : Cálculo para Química Aula 3/ Sexta 28/02/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informaçãoes gerais: Site: ver o link para MAT 2110 na pagina http://www.ime.usp.br/~sylvain/courses.html

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c 47 6. Função Quadrática É todo função que pode ser escrita na forma: f: R R y = ax² + bx + c Em que a, b e c são constantes reais e a 0, caso contrário a função seria afim. Já estudamos um tipo de função

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE: Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5

Leia mais

Plano Cartesiano. Relação Binária

Plano Cartesiano. Relação Binária Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

MAT 0143 : Cálculo para Ciências Biológicas

MAT 0143 : Cálculo para Ciências Biológicas MAT 0143 : Cálculo para Ciências Biológicas Aula 3/ Segunda 10/03/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informações gerais: Email: sylvain@ime.usp.br Site: o link do MAT 0143 na pagina seguinte

Leia mais

MAT Cálculo Diferencial e Integral I

MAT Cálculo Diferencial e Integral I MAT3110 - Cálculo Diferencial e Integral I Bacharelado em Matemática Aplicada e Computacional - IME/USP Lista de exercícios 4 23/04/2015 1. Encontre as equações das retas que passam pelo ponto (3, 2) e

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:

Leia mais

Revisão de Pré-Cálculo PÁRABOLAS. Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior

Revisão de Pré-Cálculo PÁRABOLAS. Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Revisão de Pré-Cálculo PÁRABOLAS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Março, 2018 Direitos reservados. Reprodução

Leia mais

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a

Leia mais

2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019

2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019 Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado

Leia mais

( 5,2 ). Quantas soluções existem?

( 5,2 ). Quantas soluções existem? Escola Secundária com º ciclo D Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades Funções polinomiais Função módulo Considere as funções da família y = a(x b) Tarefa nº De que tipo de funções

Leia mais

Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19

Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19 Máximos e Mínimos - Continuação Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Abril de 2014 Primeiro Semestre

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma

Leia mais

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,

Leia mais

PROFESSOR: ALEXSANDRO DE SOUSA

PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as

Leia mais

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1 PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 3º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 1.1 Conceito e Elementos Definição 1.1 Sejam l uma reta e F um ponto não pertencente a l. Chamamos parábola de diretriz l e foco F o conjunto

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Função Quadrática e Proporcionalidade Inversa ( )

Função Quadrática e Proporcionalidade Inversa ( ) Função Quadrática e (18-01-08) F. Quadrática e Matemática e Estatística 2007/2008 Função Quadrática Chama-se função quadrática a qualquer função f de R em R dada por uma lei da forma f(x) = ax 2 + bx +

Leia mais

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2 [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Campus Caçapava do Sul Curso de Licenciatura em Ciências Exatas Programa Institucional de Bolsas de Iniciação a Docência Subprojeto Matemática

Campus Caçapava do Sul Curso de Licenciatura em Ciências Exatas Programa Institucional de Bolsas de Iniciação a Docência Subprojeto Matemática Campus Caçapava do Sul Curso de Licenciatura em Ciências Exatas Programa Institucional de Bolsas de Iniciação a Docência Subprojeto Matemática Bolsista: Leriana Afonso Plano de Aula Conceitos/Conteúdos:

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: Funções 10/04/14 e 11/04/14 Definição de função Dados dois conjuntos A e B não vazios, uma relação f de A em

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais