Nivelamento Matemática Básica

Tamanho: px
Começar a partir da página:

Download "Nivelamento Matemática Básica"

Transcrição

1 Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga - 0

2 Listas de exercícios ATIVIDADE ESPECÍFICA Nº 0 -) Transforme os números decimais abaixo em fração: 0, b-), c-) 0,80 d-),6 e-) 0,0 f-) 0,000 g-) % h-) 0% -) Calcule e dê a resposta na forma fracionária: b-) c-) d-) e-) f-) g-) h-) i-) 6 8 0, j-), 0,, 0, k-) l-) 0, m-), -) Sabendo que x e y, calcule: 6 x + y = c-) y x = b-) x y = -) Calcule os produtos e dê a resposta na forma fracionária: 6 8 6

3 b-),.( 0,).(, ) c-). ( 0,6) 8 9 d-),.( 0,).(,). 6 e-) 9 0,8 0, 0 f-) ( 0,) 0 -) Calcule as divisões: 9 f-) b-) g-) 9 c-) h-) 8 d-) i-) 0 e-) 6-) Escreva o resultado das operações na forma fracionária: e-) b-) f-) 9 c-) g-) d-) h-) -) Escreva o resultado das operações em forma de fração: 0,,

4 b-) c-) d-) e-) f-) g-) 0,80, 0, 0, 0,0 0,0 0,0 % 8-) Determine o valor de x, sendo: x b-) x c-) x 0, 9-) Coloque os números abaixo na ordem crescente: 0, ;, ;, ;, ; 0, ; 0,000 ;,0. 0 b-) ; ; ; ; ;, , ;, ;, ; ; ; c-).

5 ATIVIDADE ESPECÍFICA Nº 0 -) Calcule as potências: b-) (-6) c-) -6 d-) (-) e-) - f-) 0 g-) (-8) 0 h-) i-) j-) 6 k-) 0 8 l-) m-) (-) 0 n-) (-) o-) -) O valor de [. 0.] : ( ) é: 6 b-) 8 c-) 6 d-) e-) 6 -) Sendo a. 8. e b., o quociente de a por b é: b-) 6 c-) 6 d-) 8 e-) -) Calcule o valor da expressão: A -) Simplificando a expressão.., obtemos o número: 6 d-) 6 b-) e-) c-) 6 6

6 -) Escreva a forma decimal de representar as seguintes potências: - = b-) 0 - = c-) - = 8-) Efetue: b-) a 6.a a a 8 c-) x f-) g-) a b a b ab h-) x d-) (x ) i-) a e-) ( x ) 9-) Sabendo que a, determine o valor de a. 0-) Calcule: b-) c-) 6 d-) e-) 6 0 f-) g-) h-) i-) -) Fatore e escreva na forma de potência com expoente fracionário: b-) c-) d-) 8 e-) f-) 8 g-) 8 h-) 8 6 6

7 ATIVIDADE ESPECÍFICA Nº 0 -) Calcule o valor numérico das expressões (Conhecimento exigido: regra dos sinais, conhecimento de ordem em que se deve executar as operações, potência simples) 0 ( ): ( ) + ( ) ( ) b-) + ( ) ( ) c-) ( ) + ( ) 0 : d-) ( ) ( +) 0 e-) { [ ( ) + (( ) 0 0 ) + 00: ] } -) Calcule o valor das expressões numéricas: ( Além dos conhecimentos acima, neste exercício se faz necessário efetuar cálculos com frações e números decimais) -) ( ) + : ( ) -) ( ) + ( ) -) (0,) : (0,, 0,:,) -) + 0,9: ( 0,8: 0, ) -) 0, 0,0 0, 0,0 6-) 8 6 : 0 9 -) 0 : : 8-) 0 66: 0 9-) 8 : 6 : 8 0-) : 0 : -) 9 0 : 0 9 : 8 -) : 9 : : 9 6 : 0 -) 9 0 -) 0 : 6 : -) 6 :8 : 6-) 8 : : : 8 8-),6 :,8 0, : 0,, : 0,8 0,9 :, -) 9-) 0-), : 0, 0,8: 0, -) -) -) : -) : -) : 0

8 -) Determine o valor das expressões: (Além dos conhecimentos desenvolvidos nos exercícios anteriores, vamos trabalhar com potências negativas) b-) c-) + 6 ( ) ( ) d-) ( ) : ( ) + ( 6 )0 e-) 6 8 -) Escreva os números abaixo como produto de um número inteiro por uma potência de 0: 0, b-) 000 c-) 0,00 d-) 0,06 e-), f-), g-) h-) 6,00 -) Simplifique o valor das expressões: (Agora vamos fazer uso de frações nos expoentes, inclusive negativas) (0,) + 0, + 8 b-) ( ) + 8 c-) 8 6-) Simplifique as expressões: b-) ) Calcule o valor numérico das expressões: x x +, para x=- b-) a + b a + ab +, para a= e b= - c-) xy x, para x = e y = y 0 00 d-) m n, para m= e n= e-) x 6x, para x = f-) x 9x +, para x = g-) a b ab,para a= e b= h-)(a )(a )(a ), para a = i-) j-) a ab b a b x x, para x = x, para a = e b = 8

9 k-) x x y, para x= e y = l-) b ac, para a =, b = e c =. m-) x xy x, para x= e y= n-) x x xy xy, para x= e y= o-) m mn + n, quando m = e n = ¼ p-) q-) a a a, quando a = a ax, quando a = 8, x = 0 e m = 9 m r-) (x y ) 0(x + y)(x y), quando x = e y =. s-) t-) u-) x xy x x y y y x x y, quando x = ½ e y = 8., quando x = ½ e y =., quando x = 0 e y = 8-) Simplifique as expressões, reduzindo-as ao máximo: x + ( x) ( x) b-) (a + a + ) + (a + a ) (a + a ). 9

10 ATIVIDADE ESPECÍFICA n o 0 -) Determine o conjunto solução de cada uma das seguintes equações: a) x x x 9 x b) 6 x x x c) x x x d) 6 x x x e) x x x 0 f) y y 6 g) x x h) x + 6 = x + 8 i) x = x + 9 j) (x ) + (x + ) = x + 8 k) x + (x ) = x + 9 l) (x + ) (x ) = 6x m) x = x n) x = o) x + = p) x (x ) = q) x (x ) = (x ) r) (x - )/0 + ( - x)/ = (-x)/ s) t) -) Sendo x a incógnita (portanto considere as demais variáveis constantes quaisquer), resolva as seguintes equações literais: a) 8x m 9m b) bx 9c c bx c) ax bx 8 d) ax a ax am mx e) a bx a a bx 0 m x m x f) m g) x a b h) x a a i) x b x a j) m x mx mx k) ax ax com a 0 0

11 -) ( UFRN ) Seja a função linear y = ax -. Se y = 0 para x = - então o valor de y para x = - é: a. b. c. - d. - e. nda -) ( MACK - SP ) A função f é definida por f(x)= ax + b. Sabe-se que f(-) = e f() =. O valor de f( ) é : a. 0 b. c. - d. - e. - -) Se f(x) = x -x, determine: f(0), b-) f(), c-) f() e d-) f(-). 6-) Se f(x) = x +x -x-, encontre: f(), b-) f(-), c-) f( ) e d-) f(a) s -) Se h(s) =, encontre: (+s) h( ), b-) h( ), c-) h(a+) e d-) h(. 8-) Se f(x)= f(0) b-) f c-) f t d-) f(-) e-) f(x-) f-) f t x, achar: x x 9-) Se f(x)=, determine: x f ( ) f (0) f () b-) f f = c-) f =

12 0-) Esboce o gráfico das seguintes funções: y= -x + b-) f(x) = x - c-) g(x) = -x d-) h(x)= 0,x- e-) y= - x f-) y= x+ g-) y= x- Respostas -) x= b-) x=/ c-) x= d-) x= e-) x=/ f-) y=-/ g-) x=-9 h-) x= i-) x= j-) x= k-) x= l-) x= m-) x=/ n-) x=6 o-) x=- p-) x=- q-) x=/ r-) x=- s-) x=/ t-) x=6/ -) x=m b-) x= c/b c-) x=/(a+b) d-) x=a e-) x= f-) x= -m/ g-) x= a+b h-) x=a/ i-) x= a b j-) x=8/ k-) x=-/a -) alternativa -) alternativa e-) -) 0 b-) 0 c-) 0 d-) 0 6-) 0 b-) 0 c-)-9/8 d-) a + a - a + -) / b-) c-) (a+)/(a+) d-) (/( t x x 8-) b-) c-) d-) 0 e-) t t x 6 9-) b-) c-) 98 0-) Gráficos não estão na resposta 9 f-) t t

13 ATIVIDADE ESPECÍFICA n o 0 -) Resolva as seguintes equações do º grau, identifique os coeficientes e determine as raízes se existir. x² - x + 6 = 0 b-) x² - 8x + = 0 c-) x² + x - 8 = 0 d-) x² - x + 8 = 0 e-) x² - 8x + 8 = 0 f-) x² - x - = 0 g-) -x² + x + = 0 h-) -x² + 6x - = 0 i-) 6x² + x - = 0 j-) x² - x + = 0 k-) x² - x = l-) x² + 9 = x m-) x² = x + n-) x² = -x - 8 o-) x² + 9 = x p-) x² = 0x q-) x = x² r-) x² + x 6 = -8 s-) x² + x = t-) x - 0 = 0 u-) x - 8x = 0 v-) (x+) - (x+) + = 0 w-) + x = x-) x x + = x y-) (x x ) ( x ) = 0 z-)x.(x+) - x = - (x-) -) (ANGLO) O vértice da parábola y= x²- x + é o ponto (,) b-), c-) (-,) d-), e-) (,) -) (ANGLO) A função f(x) = x²- x + k tem o valor mínimo igual a 8. O valor de k é: 8 b-) 0 c-) d-) e-) 6 -) Para que valores reais de k a função f(x) = (k - )x² - x + não admite zeros reais? -) Considere as expressões: A= (x-) - x(x-) e B = - (x+). Resolva a equação A = B ) Resolva, em R, a seguinte equação literal do º grau na variável x: x - ax + a = 0 -) O produto dos dois termos de uma fração é. Subtraindo do denominador e adicionando ao numerador, os dois termos ficam iguais. Determine essa fração.

14 8-) Uma companhia de seguros levantou dados sobre os carros de uma determinada cidade e constatou que são roubados, em média, 0 carros por ano. O número de carros roubados da marca X é o dobro do número dos carros roubados da marca Y, e as marcas X e Y juntas correspondem por cerca de 60% dos carros roubados. O número de esperado de carros roubados da marca Y é: 0 b-) 0 c-) 0 d-) 0 e-) 60 9-) Esboce o gráfico da função f cuja parábola passa pelos pontos (, -) e (0, ) e tem vértice no ponto (, -); em seguida, verifique qual das seguintes sentenças corresponde a essa função: f(x) = -x² - 8x + b-) f(x) = x² - 8x + c-) f(x) = x² + 8x + 0-) O gráfico abaixo representa a função f(x) = ax² + bx + c. Pode se afirmar que: a < 0, Δ > 0 e c < 0 b-) a < 0, Δ = 0 e c < 0 c-) a < 0, Δ > 0 e c > 0 d-) a > 0, Δ < 0 e c < 0 e-) a < 0, Δ < 0 e c < 0 -) Construa o gráfico das seguintes funções f(x) = ax + bx + c, observando valores de a,b,c,, raízes, vértice, ponto de máximo ou mínimo. f(x) = x + 6x + b-) f(x) = -x + x + 8 c-) f(x) = x + x + d-) f(x) = x - x + -) (ACAFE - SC) A função f(x) = x - x + tem mínimo no ponto em que x vale: 0 b-) c-) d-) e-) -) (PUC - MG) O valor máximo da função f(x) = - x + x + é: b-) c-) d-) e-) 6 -) (CEFET - PR) O maior valor que y pode de assumir na expressão y= - x +x é: b-) c-) d-) e-) -)(UEL-PR) Se x e y são as coordenadas do vértice da parábola y= x -x + 9, então x + y é igual a: /6 b-) / c-) 8/ d-) 89/8 e-) 9/

15 6- - x +. Pode-se afirmar corretamente que: vértice do gráfico de f é o ponto (; ); b-) f possui dois zeros reais e distintos; c-) f atinge um máximo para x = ; d-) gráfico de f tem concavidades voltada para baixo. e-) nda -) Determine o valor de k nas equações, de modo que: a) x² - x + k = 0, tenha uma raiz real b) x² - 6x +k = 0, não tenha raízes reais c) kx² - (k+)x + (k+) = 0, tenha duas raízes reais e diferentes 8-) Se o vértice da parábola dada por y = x² - x + m é o ponto (, ), então o valor de m é : 0 b-) c-) - d-) 9 e-) -9 9-) Considere a parábola de equação y = x² - x + m. Para que a abscissa e a ordenada do vértice dessa parábola sejam iguais, então m deve ser igual a : - b-) -0 c-) d-) e-) 6 0-) Quais dos pontos abaixo pertencem a função f(x) = x -x+: (, ) b-) (, ) c-) (, ) d-) (/, 8/6) e-) (-, ) f-) (0, ) g-) (/, 8/9) Respostas -) a =, b = -, c = 6. Raízes: e b-) a =, b = -8, c =. Raízes: e 6 c-) a =, b =, c = -8. Raízes: e - d-) a =, b = -, c = 8. Não existem raízes reais e-) a =, b = -8, c = 8. Raiz: f-) a =, b = -, c = -. Raízes: - e g-) a = -, b =, c =. Raízes: - e h-) a = -, b = 6, c = -. Raízes: e i-) a = 6, b =, c = -. Raízes: -/ e / j-) a =, b = -, c =. Raízes: / e k-) a =, b = -, c = -. Raízes: -/ e l-) a =, b = -, c = 9. Raiz: / m-) a =, b = -, c = -. Raízes: - e n-) a =, b =, c = 8. Raiz: - o-) a =, b = -, c = 9. Não existem raízes reais p-) a =, b = -0, c =. Raiz: / q-) a =, b =, c = -. Raízes: - e r-) a =, b =, c =. Raízes: - e - s-) a =, b =, c = -. Raízes: - e

16 t-) a =, b = 0, c = - 0. Raízes: - e u-) a =, b = - 8, c = 0. Raízes: 0 e 8/ v-) a =, b = - 6, c = 0. Raízes: 0 e / w-) a =, b = 0, c = - 6. Raízes: / e / x-) a =, b = 0, c = - 9 Raízes: - e y-) a =, b = -, c =. Raízes: / e z-) a =, b = -, c = - Raízes: - e -) e-) -) c-) -) S=:{kε R k > /} -) x ' =0 e x '' = / 6-) x ' = a e x '' = a/ -) x/y = /6 8-) b-) 9-) b-) Fazer o esboço do gráfico. 0-) e-) -) a=, b=6, c=, Δ = 6. A parábola corta o eixo x nos pontos (raízes): (-, 0) e (-, 0). Seu vértice é (-, -) e como a > 0, a parábola tem concavidade voltada para cima e seu vértice será um ponto de mínimo. b-) a= -, b=, c=8, Δ = 6. A parábola corta o eixo x nos pontos (raízes): (, 0) e (-, 0). Seu vértice é (, 9) e como a < 0, a parábola tem concavidade voltada para baixo e seu vértice será um ponto de máximo. c-) a=, b=, c=, Δ = 0. A parábola encosta no eixo x no ponto (raiz): (-, 0). Seu vértice é (-, 0) e como a > 0, a parábola tem concavidade voltada para cima e seu vértice será um ponto de mínimo. d-) a=, b=-, c=, Δ = -. A parábola não corta o eixo x, portanto não existem raízes reais. Seu vértice é (, ) e como a > 0, a parábola tem concavidade voltada para cima e seu vértice será um ponto de mínimo. -) b-) 8-) d-) -) b-) 9-) e-) -) 0-), c-), e-), f-) e g-) -) e-) 6-) -) k=6 b-) K>/ c-) k</ 6

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA: C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)

Leia mais

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p = x - 1, pode-se afirmar: (01) m = n. p (02) m + n

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores. COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

Exercícios de Matemática Produtos Notáveis Fatoração

Exercícios de Matemática Produtos Notáveis Fatoração Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Inequação do Segundo Grau Vitor Bruno Santos Pereira - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo

Leia mais

Matemática Régis Cortes EQUAÇÕES DE GRAUS

Matemática Régis Cortes EQUAÇÕES DE GRAUS EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Lista de exercícios sobre função quadrática Prof. Márcio Prieto

Lista de exercícios sobre função quadrática Prof. Márcio Prieto 1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço

Leia mais

Matemática Básica. Atividade Extra

Matemática Básica. Atividade Extra Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4}

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4} AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Equações do º grau ) Verifique se o número 9 é raiz da equação - 8 0. Se 9 for raiz, terá de satisfazer a equação: 9 -.9 8 8-99 8 0 Então 9 é raiz da equação

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função: Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

Aula 05 - Erivaldo MATEMÁTICA BÁSICA

Aula 05 - Erivaldo MATEMÁTICA BÁSICA Aula 05 - Erivaldo MATEMÁTICA BÁSICA Principais produtos notáveis I- (a + b).(a b) = a 2 a.b + b.a b 2 I- (a + b).(a b) = a 2 b 2 O Produto de uma soma por uma diferença resulta no quadrado do primeiro

Leia mais

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2 LISTA - 1 1 Números Reais 1. Expresse cada número como decimal: (a) 7 10 (b) 2 5 (c) 9 15 (d) 7 8 (e) 17 20 (f) 4 11 (g) 8 7 (h) 56 14 2. Expresse cada número decimal como uma fração na forma mais reduzida

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

Carreira Policial DIVISIBILIDADE. d) 60

Carreira Policial DIVISIBILIDADE. d) 60 DIVISIBILIDADE 0. Complete o quadro, conforme divisibilidade, por,, e 0 7 é divisível por: 7 é divisível por: c)6 é divisível por: d) é divisível por: e)0 é divisível por: f) é divisível por: g)0000 é

Leia mais

Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1

Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1 Lista de Exercícios Calcular os zeros das seguintes funções: a) f(x) x - 3x 0 b) f(x) x x + c) f(x) x + 4x 4 d) f(x) 36x + x + Calcular m para que: a) a função f(x) (m 3)x + 4x 7 seja côncava para cima

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Exercícios de Matemática Funções Função Polinomial

Exercícios de Matemática Funções Função Polinomial Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

O uso de letras na linguagem matemática

O uso de letras na linguagem matemática O uso de letras na linguagem matemática Vimos que a linguagem matemática utiliza letras para representar propriedades, como por exemplo a propriedade distributiva: a(b + c) = ab + ac De fato as letras

Leia mais

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível:

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível: Exercícios Operações com frações. Determine o valor das seguintes expressões, simplificando sempre que possível: 7 c 6 8 6 d b a 8 : 8 7 0 f 8 7 h g e : 6 8 : 6 7 l k j i n m Equações de º Grau Resolva

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011 CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática

Leia mais

b) ( ) () 0 3 6) Escreva na forma de radical: 8)Calcule o valor de: a) 64 d) 4 81 g) 8 b) 3 1 e) 5 32 h) c) 6 64 f) 3 64 i)( 32) 1 5

b) ( ) () 0 3 6) Escreva na forma de radical: 8)Calcule o valor de: a) 64 d) 4 81 g) 8 b) 3 1 e) 5 32 h) c) 6 64 f) 3 64 i)( 32) 1 5 Calcule o valor numérico das epressões: a 6 6 c 7 { ( } 8 6: : : : d e 8 Determine o valor da epressão: : ( 6 Ache o valor das epressões:,, a,,,9 :,8 :, Calcule o valor das epressões: ( ( ( ( ( ( a : 7

Leia mais

Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO QUADRÁTICA Aulas 01 a 07 + EXTRA Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2016 Sumário O CONCEITO DE FUNÇÃO QUADRÁTICA... 2 (Função polinomial do 2 grau)... 2 EXERCÍCIO

Leia mais

SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS

SUBPROJETO DE MATEMÁTICA-2014 ATIVIDADES DESENVOLVIDAS 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UFRN CENTRO DE ENSINO SUPERIOR DO SERIDÓ CERES DEPARTAMENTO DE CIÊNCIAS EXATAS E APLICADAS DCEA PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO Á DOCÊNCIA (PIBID)

Leia mais

ALUNO(A): Prof.: Andre Luiz 04/06/2012

ALUNO(A): Prof.: Andre Luiz  04/06/2012 1. FUNÇÃO 1.1 Definição A função dada por ( ), com a, b, c reais e a 0. Vejamos alguns exemplos: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) Vamos a outro exemplo: Ex2.: Um objeto que se desloca

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22 Resolução das atividades complementares Matemática M7 Função do o grau p. 0 Estude os sinais da função quadrática ƒ dada por: a) 5 x 8x c) 5 x 4x 4 b) 5 x x d) x x a) zeros de f: x 8x 5 0 x 4x 5 0 (x )?

Leia mais

Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM

Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM NOME: IMPRIMA AS FOLHAS. RESOLVA AS QUESTÕES DISSERTATIVAS EM FOLHA DE PAPEL ALMAÇO OU FOLHA DE FICHÁRIO; OS TESTES PODERÃO SER RESPONDIDOS

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2 Série Professor(a) Aluno(a) Rumo ao ITA Marcelo Mendes Sede Turma Turno Data N / / Ensino Pré-Universitário TC Matemática Revisão de Álgebra OSG.: 85/0 Exercícios de Fixação 0. Encontre os valores das

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Exercícios de exames e provas oficiais 1. Na figura abaixo, está representada, num referencial o.n. xoy, parte do gráfico de uma função polinomial f. Em qual das opções seguintes pode estar representada

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

Álgebra. Polinômios.

Álgebra. Polinômios. Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +

Leia mais

DATA: / 12 / 2014 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO SÉRIE: 8 ANO TURMA: NOME COMPLETO:

DATA: / 12 / 2014 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO SÉRIE: 8 ANO TURMA: NOME COMPLETO: DISCIPLINA: MATEMÁTICA PROF: GRAYSON,MÁRIO E MAURO DATA: / 12 / 2014 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO SÉRIE: 8 ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi planejada

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

FUNÇAO DO 2 GRAU. é igual a:

FUNÇAO DO 2 GRAU. é igual a: 1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

Atividades de fixação 1 semestre / 8 ano

Atividades de fixação 1 semestre / 8 ano Querido (a) aluno (a), Atividades de fixação 1 semestre / 8 ano Os exercícios a seguir contemplarão alguns dos conteúdos abordados durante esse semestre. Faça com seriedade... 1-Expresse os números abaixo

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a...

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a... Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL 1 1) Revisão de Potência Assim: a 1 = a e a n = a.a.a.....a a n+1 = (a.a.a.....a).a 2) Propriedades das Potências P1) a m.a n = a m+n Demonstração: a m.a

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

Escola Secundária com 3º Ciclo D. Dinis. Ano 10º Ano Lectivo 2008 /2009 Matemática B Turma D

Escola Secundária com 3º Ciclo D. Dinis. Ano 10º Ano Lectivo 2008 /2009 Matemática B Turma D Escola Secundária com 3º Ciclo D. Dinis Actividade Investigativa- Função quadrática:família de funções Ano 10º Ano Lectivo 008 /009 Matemática B Turma D Função quadrática Uma função real de variável real

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht

Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht Aula 5 Exercícios e Aplicações de Funções Quadráticas Fabio Licht Construção do gráfico da função do 2.º grau Passo a passo 1º passo: determinar as raízes da função 2º passo: estudo da concavidade 3º passo:

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais