CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P"

Transcrição

1 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos conceitos de trabalho e energia cinética do corpo rígido. Aplica-se os conceitos de trabalho e de energia cinética e condições gerais e no final estuda-se o caso particular de sisteas conservativos. 7. ENERGIA INÉTIA DE M ORPO RÍGIDO Seja u corpo rígido, de assa e u eleento de assa d nu ponto qualquer deste corpo. v d r v P P igura 7. - Velocidades de u ponto qualquer e do ponto Q. sando a definição de energia cinética de ua partícula, podeos escrever a energia cinética do corpo através da integral

2 T v d (7.) 64 Se desejaros epressar esta equação e função da velocidade de u ponto P particular, escolhido coo orige de referencial, podeos relacionar as velocidades entre u ponto qualquer e o ponto P através de v vp ω r (7.) onde é a velocidade angular de. Assi, para o oviento plano v vp i vp j ωk ( i j) (7.3) ou v ( vp ) i ( vp ) j (7.4) Elevando ao quadrado (7.4) obteos v v v ( vp ) ( vp ) (7.5) Aplicando (7.5) e (7.) obteos T vp ) ( vp ) ] [( d (7.6) ou T vp d vp d vp d r d (7.7) lebrando que v v v e P P P r. sando as definições de centro de assa G de u corpo rígido, dadas por G d e G d (7.8)

3 e a definição do oento de inércia do corpo rígido e relação ao eio z que passa por P, 65 I ) P ( d r d (7.9) podeos escrever a equação (7.7) coo T vp vp G vp G I P (7.0) Esta é a equação geral que perite calcular a energia cinética do corpo rígido a partir da velocidade de u ponto P e de sua velocidade angular. Se escolheros o ponto P coincidente co o centro de assa G, a equação (7.0) toa ua fora ais siples T vg IG (7.) ua vez que neste caso G 0 e G 0. As epressões (7.0) e (7.) perite calcular a energia cinética de u corpo rígido que realiza u oviento qualquer no plano. Há dois casos de ovientos particulares que te estas epressões siplificadas alé de (7.). a zero. Logo No oviento de translação, a velocidade angular do corpo é sepre igual T (7.) v G No caso do oviento de rotação plana e torno de u eio fio z que passa por u ponto O (a velocidade v O 0 ), a equação (7.0) fica igual a T I O (7.3)

4 66 7. TRABALHO DE MA ORÇA O conceito de trabalho de ua força que atua nu corpo rígido, coo definido no apítulo 3, referente à Mecânica da partícula, está relacionado ao oviento do ponto onde está aplicada a força. onfore visto, o trabalho eleentar d realizado por ua força é dado por d dr (7.4) A igura 7. ilustra as grandezas envolvidas nesta definição. Logo dr cos ds (7.5) s s S dr igura 7. - Eleentos da definição de trabalho de ua força. Há alguas condições especiais que apresentareos a seguir. Vaos inicialente calcular o trabalho de ua força constante, cujo ódulo, direção e sentido são invariáveis durante o oviento. Aplicando a definição dada e (7.5), nua trajetória qualquer ostrada na igura 7.3, teos r, dr i j) ( d i d r, ( j) (7.6) oo a força é constante, a equação (7.6) pode ser integrada resultando

5 67,, d d (7.7) onde e. S igura Trabalho de ua força constante. Analogaente, podeos calcular o trabalho da força peso W, sendo a direção vertical, através de r, dr W j) ( d i d r, ( j) (7.8) ou Wd W ( ) W (7.9) O trabalho da força de ua ola linear aplicada nu ponto P de u corpo rígido é obtido a partir de: s d s r (7.0) O odelo linear da força de ola é dado por k (7.)

6 68 onde k é a constante elástica da ola e é a sua deforação toada a partir de sua posição não deforada, ver igura 7.4. Assi, podeos escrever s k d k( s ) (7.) =0 posição da ola não deforada igura Trabalho de ua força de ola. Há alguas forças que não realiza trabalho. orças que atua e pontos fios do corpo e forças norais ao deslocaento do ponto do corpo não realiza trabalho. Entre as forças ais usuais e aplicações de engenharia estão as reações e apoios, forças norais das reações de superfícies estacionárias sobre os corpos rígidos e forças de atrito no rolaento, quando não há escorregaento. a consideração especial deve ser feita sobre o trabalho de u binário, isto é, o trabalho de u par de forças iguais, paralelas entre si, co sentidos contrários. É fácil observar que o trabalho de u binário durante o oviento de translação qualquer de u corpo rígido é nulo, pois os deslocaentos de todos os pontos são iguais e as forças são contrárias. Assi só há trabalho no oviento de rotação. Para u binário M, o trabalho eleentar é dado por d M dr dr (7.3) Sendo o binário dado pelas forças e, onde, e sendo o oviento de rotação, no qual dr dr dr, pode-se escrever a (7.3) coo

7 69 d M dr ( ) ( dr) dr (7.4) Sendo b o braço do binário, teos que dr b d. Integrando (7.4) obté-se b M d M d (7.5) s onde M b é a intensidade do binário, isto é, seu ódulo co o sinal dado pela orientação do ângulo de rotação, confore ostra a igura 7.5. dr d dr b igura Orientações para o binário e o ângulo de rotação. Se o binário for constante de valor M, então M M (7.6) onde.

8 PRINÍPIO DO TRABALHO E ENERGIA onfore deonstrado no apítulo 3, o princípio do trabalho e energia para u sistea de partícula, e consequenteente para u corpo rígido qualquer, é dado por: T (7.7) T onde T e T são as energias cinéticas (7.) do corpo rígido nos instantes t e t, respectivaente, e é a soa dos trabalhos de todas as forças eternas aplicadas neste eso corpo. Observa-se que o trabalho resultante de forças internas atuantes nu corpo rígido é nulo ua vez que as forças internas ocorre aos pares, co esos valores do ódulo, esas direções e sentidos contrários. Os deslocaentos na direção destas forças deve ser iguais para não ocorrer deforação no corpo. Outra fora de calcular o trabalho das forças internas usa a decoposição do oviento qualquer e u oviento de translação e outro de rotação. Na translação os trabalhos das forças internas são iguais e de sinais contrários, sendo nulo o trabalho resultante. Na rotação estas forças não realiza trabalho pois os deslocaentos são perpendiculares às forças. AB = - BA B a AB B b AB AB B 3 BA BA A A 3 A a igura Decoposição de u oviento qualquer entre as posições e 3. (a) translação entre e - (b) rotação entre e 3.

9 7 7.4 PRINÍPIO DO TRABALHO E ENERGIA: SISTEMAS ONSERVATIVOS O princípio do trabalho e energia, dado e (7.7), pode ser odificado quando todas as forças atuantes nua partícula são forças conservativas. Lebrando que o trabalho total das forças conservativas pode ser dado por (7.8) V V onde V e V são, respectivaente, as energias potenciais do corpo rígido nos instantes t e t, e é a soa dos trabalhos de todas as forças conservativas aplicadas neste eso corpo. Podeos escrever o princípio (7.7), separando os trabalhos das forças conservativas e não conservativas coo T (7.9) T N Aplicando (7.8) e (7.9), obteos ou T (7.30) V V T N T (7.3) V T V N Se o sistea for conservativo, então T (7.3) V T V Esta igualdade é conhecida coo a conservação da energia ecânica. È ua fora particular do princípio do trabalho e energia para sisteas conservativos. Nestes casos a soa da energia cinética e da energia potencial é constante ao longo do tepo.

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo http://www.cce.ufes.

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo http://www.cce.ufes. PROBLEMAS RESOLVIDOS DE FÍSICA Prof. Anderson Coser Gaudio Departaento de Física Centro de Ciências Eatas Universidade Federal do Espírito Santo http://www.cce.ufes.br/anderson anderson@npd.ufes.br Últia

Leia mais

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico Construção de u sistea de Realidade Virtual (1 a Parte) O Engine Físico Roberto Scalco, Fabrício Martins Pedroso, Jorge Tressino Rua, Ricardo Del Roio, Wellington Francisco Centro Universitário do Instituto

Leia mais

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos ª aula Suário: licação da conservação da energia ecânica a ovientos e caos gravíticos. nergia oteial elástica. Forças não conservativas e variação da energia ecânica. licação da conservação da energia

Leia mais

Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m.

Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. Prof. André otta - ottabip@hotail.co Siulado 2 Física AFA/EFO 2012 1- Os veículos ostrados na figura desloca-se co velocidades constantes de 20 /s e 12/s e se aproxia de u certo cruzaento. Qual era a distância

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO IMPULSO E QUNTIDDE DE MOVIMENTO 1. Ua bolinha se choca contra ua superfície plana e lisa co velocidade escalar de 10 /s, refletindo-se e seguida, confore a figura abaixo. Considere que a assa da bolinha

Leia mais

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO 113 17 TEORA ELETRÔNCA DA MANETZAÇÃO Sabeos que ua corrente elétrica passando por u condutor dá orige a u capo agnético e torno deste. A este capo daos o noe de capo eletro-agnético, para denotar a sua

Leia mais

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da Universidade do Estado da Bahia UNEB Departaento de Ciências Exatas e da Terra DCET I Curso de Engenharia de Produção Civil Disciplina: Física Geral e Experiental I Prof.: Paulo Raos 1 1ª LISTA DE DINÂMICA

Leia mais

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante.

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante. Questão 01 - Alternativa B :: Física :: Coo a distância d R é percorrida antes do acionaento dos freios, a velocidade do autoóvel (54 k/h ou 15 /s) peranece constante. Então: v = 15 /s t = 4/5 s v = x

Leia mais

Série 3 Movimento uniformemente variado

Série 3 Movimento uniformemente variado Resoluções Segento: Pré-vestibular Coleção: Alfa, Beta e Gaa. Disciplina: Física Caderno de Exercícios 1 Unidade I Cineática Série 3 Moviento uniforeente variado 1. D Substituindo o valor de t = 4 s, na

Leia mais

A soma de dois números pares, obtém um resultado que também é par. Sendo, p=2q e r=2n, temos p+r = 2q+2n = 2(q+n) = 2k.

A soma de dois números pares, obtém um resultado que também é par. Sendo, p=2q e r=2n, temos p+r = 2q+2n = 2(q+n) = 2k. Teoria dos Núeros Resuo do que foi estudado nas aulas de Teoria dos Núeros, inistradas pelo Prof. Dr. Antonio Sales. Acadêica: Sabrina Aori Araujo 20939 Núeros pares e ípares Coo saber se u núero é par

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão preliinar 7 de setebro de 00 Notas de Aula de ísica 05. LEIS DE NEWON... ONDE ESÃO AS ORÇAS?... PRIMEIRA LEI DE NEWON... SEGUNDA LEI DE NEWON... ERCEIRA LEI DE NEWON... 4 APLICAÇÕES DAS LEIS DE

Leia mais

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas www.engenhariafacil.weebly.co Resuo co exercícios resolvidos do assunto: Sisteas de Partículas (I) (II) (III) Conservação do Moento Centro de Massa Colisões (I) Conservação do Moento Na ecânica clássica,

Leia mais

FÍSICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

FÍSICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário FÍSICA Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Física - UFRGS/005 FÍSICA 01. Na teporada autoobilística de Fórula 1 do ano passado, os otores dos carros de corrida

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA ESOLUÇÃO D OV DE MTEMÁTIC DO VESTIUL 0 D FUVEST-FSE. O OF. MI NTÔNI C. GOUVEI M0 Dados e iteiros cosidere a ução deiida por para a No caso e que = = ostre que a igualdade se veriica. b No caso e que =

Leia mais

Integração Numérica. Cálculo Numérico

Integração Numérica. Cálculo Numérico Cálculo Nuérico Integração Nuérica Pro. Jorge Cavalcanti jorge.cavalcanti@univas.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ucg.edu.br/~cnu/ Integração Nuérica

Leia mais

Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente:

Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente: Questão 46 gasto pela pedra, entre a janela do 1 o piso e a do piso térreo, é aproxiadaente: A figura ostra, e deterinado instante, dois carros A e B e oviento retilíneo unifore. O carro A, co velocidade

Leia mais

CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS

CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS 1 CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS 1. Introdução Seja u vetor à nu sistea de coordenadas (x, y, z), co os versores T,], k, de odo que - - - A = A 1 i + A 2 j + A 3 k. A derivada

Leia mais

Neste capítulo iniciaremos a discussão sobre fenômenos ondulatórios. Vamos estudar os seguintes tópicos:

Neste capítulo iniciaremos a discussão sobre fenômenos ondulatórios. Vamos estudar os seguintes tópicos: Capítulo 16 - Ondas I Neste capítulo iniciareos a discussão sobre fenôenos ondulatórios. Vaos estudar os seguintes tópicos: Tipos de ondas. Aplitude, fase, frequência, período e velocidade de propagação.

Leia mais

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino MÓDULO DE WEIBULL F. Jorge Lino Departaento de Engenharia Mecânica e Gestão Industrial da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telf. 22508704/42,

Leia mais

Capítulo1 Tensão Normal

Capítulo1 Tensão Normal - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:

Leia mais

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída.

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída. Prof. Celso Módulo 0 83 SISTEMAS DE CONTOLE DE POSIÇÃO Objetivo: converter u coando de posição de entrada e ua resposta de posição de saída. Aplicações: - antenas - braços robóticos - acionadores de disco

Leia mais

5 Controle de Tensão através de Transformador com Tap Variável no Problema de Fluxo de Potência

5 Controle de Tensão através de Transformador com Tap Variável no Problema de Fluxo de Potência 5 Controle de Tensão através de Transforador co Tap Variável no Problea de Fluxo de Potência 5.1 Introdução E sisteas elétricos de potência, os ódulos das tensões sofre grande influência das variações

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

Revisões de análise modal e análise sísmica por espectros de resposta

Revisões de análise modal e análise sísmica por espectros de resposta Revisões de análise odal e análise sísica por espectros de resposta Apontaentos da Disciplina de Dinâica e Engenharia Sísica Mestrado e Engenharia de Estruturas Instituto Superior Técnico Luís Guerreiro

Leia mais

PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I

PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I PDRÃO DE RESPOST - FÍSC - Grupos H e a UESTÃO: (, pontos) valiador Revisor Íãs são frequenteente utilizados para prender pequenos objetos e superfícies etálicas planas e verticais, coo quadros de avisos

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

CALORIMETRIA. Relatório de Física Experimental III 2004/2005. Engenharia Física Tecnológica

CALORIMETRIA. Relatório de Física Experimental III 2004/2005. Engenharia Física Tecnológica Relatório de Física Experiental III 4/5 Engenharia Física ecnológica ALORIMERIA rabalho realizado por: Ricardo Figueira, nº53755; André unha, nº53757 iago Marques, nº53775 Grupo ; 3ªfeira 6-h Lisboa, 6

Leia mais

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS CICUIOS EÉICOS EGIME PEMANENE SENOIDA, EPESENAÇÃO FASOIA E As análises de circuitos até o presente, levou e consideração a aplicação de fontes de energia elétrica a u circuito e conseqüente resposta por

Leia mais

Física Geral 2010/2011

Física Geral 2010/2011 ísica Geral / 6 Energia otencial: té agora estudámos o conceito de energia cinética, associada ao movimento, e energia interna, associada á presença de forças de atrito. Vamos agora estudar o conceito

Leia mais

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno Aula 1. Introdução Hoje e dia teos a educação presencial, sei-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontra sepre nu local, chaado sala

Leia mais

21/06/2012 ENERGIA. Solar

21/06/2012 ENERGIA. Solar 1/06/01 NRGIA Solar 1 1/06/01 létrica 1/06/01 Nuclear ó l i c a 3 1/06/01 Mecânica energia cinética e potencial - É ua grandeza física associada à capacidade que u corpo possui de fazer algo acontecer

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:18. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:18. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor e Física pela Universidade Ludwig Maxiilian de Munique, Aleanha Universidade Federal da

Leia mais

1) Durante a noite a temperatura da Terra não diminui tanto quanto seria de esperar

1) Durante a noite a temperatura da Terra não diminui tanto quanto seria de esperar Escola ásica e Secundária Gonçalves Zarco Física e Quíica A, º ano Ano lectivo 006 / 00 Ficha de rabalho nº 8 - CORRECÇÃO Noe: n.º aluno: ura: 1) Durante a noite a teperatura da erra não diinui tanto quanto

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 05

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 05 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experiental para Engenharia I LISTA 05 Rotação de corpos rígidos 1. A hélice de u avião gira a 1900 rev/in. (a) Calcule a velocidade

Leia mais

Resolução Comentada Fuvest - 1ª fase 2014

Resolução Comentada Fuvest - 1ª fase 2014 Resolução Comentada Fuvest - 1ª fase 2014 01 - Em uma competição de salto em distância, um atleta de 70kg tem, imediatamente antes do salto, uma velocidade na direção horizontal de módulo 10m/s. Ao saltar,

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

UMC/ACET/ Wilson Yamaguti/Edson Gusella Jr. 6.1 Lab. Telecomunicações 2010. EXPERIÊNCIA 6 MODULAÇÃO PWM e PCM

UMC/ACET/ Wilson Yamaguti/Edson Gusella Jr. 6.1 Lab. Telecomunicações 2010. EXPERIÊNCIA 6 MODULAÇÃO PWM e PCM UMC/ACET/ Wilson Yaaguti/Edson Gusella Jr. 6.1 Lab. Telecounicações 21 1. Introdução EXPERIÊNCIA 6 MODULAÇÃO PWM e PCM Nesta experiência pretende-se conhecer a odulação PWM ou PDM couente usados no controle

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

5 de Fevereiro de 2011

5 de Fevereiro de 2011 wwq ELECTRÓNICA E INSTRUMENTAÇÃO º Exae 010/011 Mestrado Integrado e Engenharia Mecânica Licenciatura e Engenharia e Arquitectura Naval 5 de Fevereiro de 011 Instruções: 1. A prova te a duração de 3h00

Leia mais

Componentes de um sistema de realidade virtual

Componentes de um sistema de realidade virtual p prograação Coponentes de u sistea de realidade virtual Neste artigo apresenta-se a idéia de u projeto que perite a siulação de u passeio ciclístico utilizando a realidade virtual. Os sentidos do ciclista

Leia mais

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn IV Método Sibólico Versus Método Diagraas de Euler E Diagraas de Venn - 124 - Método Sibólico Versus Método Diagraas de Euler e Diagraas de Venn Para eplicar o que é o Método Sibólico e e que aspecto difere

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

INTRODUÇÃO À MECÂNICA CLÁSSICA. Folhas de Problemas

INTRODUÇÃO À MECÂNICA CLÁSSICA. Folhas de Problemas INTRODUÇÃO À MECÂNIC CLÁSSIC 2001/2002 Folhas de Probleas Paulo Sá, Maria Inês Carvalho e níbal Matos (recolha de probleas de diversas fontes) Bibliografia principal. Bedford, W. Fowler, Engineering Mechanics

Leia mais

MEMORIAL DESCRITIVO E DE CÁLCULO, DAS ESTRUTURAS DE AÇO PARA COBERTURAS DA PROMOTORIA DE JUSTIÇA DE SORRISO-MT

MEMORIAL DESCRITIVO E DE CÁLCULO, DAS ESTRUTURAS DE AÇO PARA COBERTURAS DA PROMOTORIA DE JUSTIÇA DE SORRISO-MT MEMORIAL DESCRITIVO E DE CÁLCULO, DAS ESTRUTURAS DE AÇO PARA COBERTURAS DA PROMOTORIA DE JUSTIÇA DE SORRISO-MT CUIABÁ-MT AGOSTO/11 Características gerais As estruturas e aço para as coberturas das Prootorias

Leia mais

que faz a velocidade angular de um corpo mudar. Como, então, explicar que a velocidade angular do martelo dessa Figura permanece constante?

que faz a velocidade angular de um corpo mudar. Como, então, explicar que a velocidade angular do martelo dessa Figura permanece constante? Exercícios Sears & Zeanski, Young & Freedan Física 0ª Edição Editora Pearson Capítulo 0 Torque e Moento angular QUESTÕES PAA DISCUSSÃO Q0. Ao apertar os parafusos da cabeça do otor de u autoóvel, a grandeza

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

F 105 Física da Fala e da Audição

F 105 Física da Fala e da Audição F 105 Física da Fala e da Audição Prof. Dr. Marcelo Knobel Instituto de Física Gleb Wataghin (IFGW) Universidade Estadual de Capinas (UNICAMP) knobel@ifi.unicap.br Vibrações e Ondas Variações teporais

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Entender os princípios de funcionamento do voltímetro, amperímetro e ohmímetro, bem como montá-los e utilizá-los.

Entender os princípios de funcionamento do voltímetro, amperímetro e ohmímetro, bem como montá-los e utilizá-los. Laboratório de Física 3 OLTÍMETO, AMPEÍMETO E OHMÍMETO: PNCÍPOS DE FUNCONAMENTO 3.1 - Objetivos Entender os princípios de funcionaento do voltíetro, aperíetro e ohíetro, be coo ontá-los e utilizá-los.

Leia mais

CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA

CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA Problemas deste tipo têm aparecido nas provas do ITA nos últimos dez anos. E por ser um assunto simples e rápido de ser abrodado, não vale apena para o aluno deiar

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

Gás Real -Fator de Compressibilidade Z > 1: Z < 1: Menor compressibilidade Forças repulsivas. Maior compressibilidade Forças atrativas

Gás Real -Fator de Compressibilidade Z > 1: Z < 1: Menor compressibilidade Forças repulsivas. Maior compressibilidade Forças atrativas Disciplina de Físico Quíica I - Diagraa de fases- Liquefação de gases. Prof. Vanderlei Inácio de Paula contato: vanderleip@anchieta.br Gás Real -Fator de Copressibilidade pv Z Z > 1: Menor copressibilidade

Leia mais

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb uso e Física Básica - H Mosés Nussenzveig Resolução o Volue III apítulo A Lei e oulob - Moste que a azão a atação eletostática paa a atação gavitacional ente u eléton e u póton é inepenente a istância

Leia mais

3.3. O Ensaio de Tração

3.3. O Ensaio de Tração Capítulo 3 - Resistência dos Materiais 3.1. Definição Resistência dos Materiais é u rao da Mecânica plicada que estuda o coportaento dos sólidos quando estão sujeitos a diferentes tipos de carregaento.

Leia mais

Campo Magnético. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br

Campo Magnético. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Campo Magnético Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br O Magnetismo O magnetismo é um efeito observado e estudado há mais de 2000 anos. O magnetismo descreve o comportamento de objetos

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Aula 6 Primeira Lei da Termodinâmica

Aula 6 Primeira Lei da Termodinâmica Aula 6 Prieira Lei da Terodinâica 1. Introdução Coo vios na aula anterior, o calor e o trabalho são foras equivalentes de transferência de energia para dentro ou para fora do sistea. 2. A Energia interna

Leia mais

Lista de Exercícios 3ª Série Trabalho, Potência e Energia

Lista de Exercícios 3ª Série Trabalho, Potência e Energia 1) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em,0 min, ela realizaria um trabalho a) duas vezes

Leia mais

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem.

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem. POTÊNCIA EM CARGAS GENÉRICAS Prof. Antonio Sergio C. de Menezes. Depto de Engenharia Elétrica Muitas cargas nua instalação elétrica se coporta de fora resistiva ou uito aproxiadaente coo tal. Exeplo: lâpadas

Leia mais

WWW.escoladoeletrotecnico.com.br

WWW.escoladoeletrotecnico.com.br CURSO PREPARATÓRO PARA COCURSOS EM ELETROTÉCCA CPCE ELETRCDADE AULA TRASFORMADOR: Polaridade de u enrolaento Enrolaento e série e e paralelo Ensaio a vazio e e curto-circuito Ligações de u transforador

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

CORTESIA Prof. Renato Brito

CORTESIA Prof. Renato Brito INSTITUTO TECNOÓGICO DE AERONÁUTICA VESTIBUAR 987/988 PROVA DE FÍSICA 0. (ITA- 88 ) U disco gira, e torno do seu eixo, sujeito a u torque constante. Deterinando-se a velocidade angular édia entre os instante

Leia mais

MODULAÇÃO EM AMPLITUDE

MODULAÇÃO EM AMPLITUDE RINCÍIOS DE COMUNICAÇÃO II MODULAÇÃO EM AMLITUDE Vaos iniciar o rocesso a artir de ua exressão que define sinais de tensão cossenoidais no teo, exressos genericaente or : e () t = E cos ω () t x x x onde

Leia mais

SOBRE O PROBLEMA DA VARIAÇÃO DE TEMPERATURA DE UM CORPO

SOBRE O PROBLEMA DA VARIAÇÃO DE TEMPERATURA DE UM CORPO 44 SOBRE O PROBLEMA DA VARIAÇÃO DE TEMPERATURA DE UM CORPO Resuo Jair Sandro Ferreira da Silva Este artigo abordará a aplicabilidade das Equações Diferenciais na variação de teperatura de u corpo. Toareos

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

1.1 - Movimento Periódico: Todo movimento onde uma mesma situação se repete em intervalos de tempo iguais. No movimento periódico, definem-se:

1.1 - Movimento Periódico: Todo movimento onde uma mesma situação se repete em intervalos de tempo iguais. No movimento periódico, definem-se: TEXTO DE REVISÃO de Moviento Harônico Siples - MHS Caro aluno (a) : No livro texto (Halliday) o cap.16 Oscilações introduz alguns conceitos uito iportantes, que serão retoados ao longo dos capítulos 17

Leia mais

A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash.

A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash. Teoria dos Jogos. Introdução A Teoria dos Jogos é devida principalente aos trabalhos desenvolvidos por von Neuann e John Nash. John von Neuann (*90, Budapeste, Hungria; 957, Washington, Estados Unidos).

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Walter Francisco HurtaresOrrala 1 Sílvio de Souza Lima 2 Resumo A determinação automatizada de diagramas

Leia mais

Estática do Ponto Material e do Corpo Rígido

Estática do Ponto Material e do Corpo Rígido CAPÍTULO I Estática do Ponto Material e do Corpo Rígido SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/7 Capitulo I Estática do Ponto Material e do Corpo Rígido Este capítulo tem por objectivo a familiarização

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

b) Dalton proporções definidas. c) Richter proporções recíprocas. d) Gay-Lussac transformação isobárica. e) Proust proporções constantes.

b) Dalton proporções definidas. c) Richter proporções recíprocas. d) Gay-Lussac transformação isobárica. e) Proust proporções constantes. APRFUDAMET QUÍMIA 2012 LISTA 9 Leis ponderais e voluétricas, deterinação de fórulas, cálculos quíicos e estudo dos gases. Questão 01) A Lei da onservação da Massa, enunciada por Lavoisier e 1774, é ua

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 3ª Etapa 2014 Disciplina: Física Série: 1ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

EQUILÍBRIO DA PARTÍCULA

EQUILÍBRIO DA PARTÍCULA Questão 1 - As cordas A, B e C mostradas na figura a seguir têm massa desprezível e são inextensíveis. As cordas A e B estão presas no teto horizontal e se unem à corda C no ponto P. A corda C tem preso

Leia mais

3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo

3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo Nome 3º Ensino Médio Trabalho de Física Data /08/09 Professor Marcelo Em física, corrente elétrica é o movimento ordenado de partículas portadoras de cargas elétricas. Microscopicamente as cargas livres

Leia mais

Sistemas de Vírgula Flutuante

Sistemas de Vírgula Flutuante Luiz C. G. Lopes Departamento de Matemática e Engenharias Universidade da Madeira MAT 2 05 2007/08 Definição. Diz-se que um número real x R\{0} é um número de vírgula flutuante normalizado se forem verificadas

Leia mais

COLÉGIO NOSSA SENHORA DE LOURDES 9º ANO Ensino Fundamental -2015. Roteiro de estudos para recuperação trimestral Matemática Ticiano Azevedo Bastos

COLÉGIO NOSSA SENHORA DE LOURDES 9º ANO Ensino Fundamental -2015. Roteiro de estudos para recuperação trimestral Matemática Ticiano Azevedo Bastos COLÉGIO NOSSA SENHORA DE LOURDES 9º ANO Ensino Fundaental -2015 Disciplina: Professor (a): Roteiro de estudos para recuperação triestral Mateática Ticiano Azevedo Bastos Conteúdo: Referência para estudo:

Leia mais

Física C. Milan Lalic

Física C. Milan Lalic Física C Milan Lalic São Cristóvão/SE 11 Física C Elaboração de Conteúdo Milan Lalic Projeto Gráfico e Capa Hereson Alves de Menezes Copyright 11, Universidade Federal de Sergipe / CESAD. Nenhua parte

Leia mais

A Unicamp comenta suas provas COMISSÃO PERMANENTE PARA OS VESTIBULARES

A Unicamp comenta suas provas COMISSÃO PERMANENTE PARA OS VESTIBULARES A Unicap coenta suas provas COMISSÃO PERMANENTE PARA OS VESTIBULARES As questões de Física do Vestibular Unicap versa sobre assuntos variados do prograa (que consta do Manual do Candidato). Elas são foruladas

Leia mais

Resolução Comentada Unesp - 2013-1

Resolução Comentada Unesp - 2013-1 Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um

Leia mais

Aula de Exercícios Recuperação Paralela (Leis de Newton)

Aula de Exercícios Recuperação Paralela (Leis de Newton) Aula de Exercícios Recuperação Paralela (Leis de Newton) Exercício 1. (TAUBATÉ) Um automóvel viaja com velocidade constante de 72km/h em trecho retilíneo de estrada. Pode-se afirmar que a resultante das

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

A lei de Coulomb descreve a força elétrica (em Newtons) entre dois corpos carregados com carga Q 1 e Q 2 (em Coulombs) da seguinte maneira: =

A lei de Coulomb descreve a força elétrica (em Newtons) entre dois corpos carregados com carga Q 1 e Q 2 (em Coulombs) da seguinte maneira: = A lei de Coulomb descreve a força elétrica (em Newtons) entre dois corpos carregados com carga Q 1 e Q 2 (em Coulombs) da seguinte maneira: = sendo d a distância (em metros) entre os centros dos corpos

Leia mais

Posição Angular. Dado um corpo rígido executando um movimento circular em torno de um eixo fixo: Unidades: [θ]=rad. πrad=180.

Posição Angular. Dado um corpo rígido executando um movimento circular em torno de um eixo fixo: Unidades: [θ]=rad. πrad=180. Moimento Circular Restrições ao moimento: Rotação de corpo rígido; Rotação em torno de um eio fio. Estudo: Posição, elocidade e aceleração angular; Grandezas angulares e lineares; Inércia de Rotação e

Leia mais

Estudo da Resistividade Elétrica para a Caracterização de Rejeitos de Minério de Ferro

Estudo da Resistividade Elétrica para a Caracterização de Rejeitos de Minério de Ferro Estudo da Resistividade Elétrica para a Caracterização de Rejeitos de Minério de Ferro Hector M. O. Hernandez e André P. Assis Departaento de Engenharia Civil & Abiental, Universidade de Brasília, Brasília,

Leia mais

INTRODUÇÃO. Noções preliminares. Um pouco de matemática. 100 Pb

INTRODUÇÃO. Noções preliminares. Um pouco de matemática. 100 Pb INTRODUÇÃO Este artigo pretende criar no leitor uma percepção física do funcionamento de um controle PID, sem grandes análises e rigorismos matemáticos, visando introduzir a técnica aos iniciantes e aprimorar

Leia mais

LOCALIZAÇÃO ÓTIMA DE ATUADORES E SENSORES EM ESTRUTURAS INTELIGENTES

LOCALIZAÇÃO ÓTIMA DE ATUADORES E SENSORES EM ESTRUTURAS INTELIGENTES XIV CONRESSO NACIONAL DE ESUDANES DE ENENHARIA MECÂNICA Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica LOCALIZAÇÃO ÓIMA DE AUADORES E SENSORES EM ESRUURAS INELIENES Sione Nishioto

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Mecânica Geral. Apostila 1: Momento Linear. Professor Renan Faria

Mecânica Geral. Apostila 1: Momento Linear. Professor Renan Faria Mecânica Geral Apostila 1: Momento Linear Professor Renan Faria Impulso Como já vimos, para que um corpo entre em movimento, é necessário que haja um interação entre dois corpos. Se considerarmos o tempo

Leia mais

Aparelho de elevação ABS 5 kn

Aparelho de elevação ABS 5 kn 1 597 0503 PT 01.2013 pt Instruções de ontage e de serviço Tradução das instruções originais www.sulzer.co Instruções de ontage e de serviço Instruções de ontage e de serviço para aparelho de elevação

Leia mais

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

MODULAÇÃO EM FREQUÊNCIA E FASE

MODULAÇÃO EM FREQUÊNCIA E FASE MODULAÇÃO EM FREQUÊNCIA E FASE 1. Introdução Existe várias aneiras de se odular u sinal senoidal. De ua ora geral esse sinal senoidal a ser odulado é chaado de portadora, e pode ser expresso por : e (

Leia mais

= C. (1) dt. A Equação da Membrana

= C. (1) dt. A Equação da Membrana A Equação da Mebrana Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura

Leia mais

FÍSICA III Lista de Problemas 10 Momento de dipolo magnético e torque; lei de Faraday

FÍSICA III Lista de Problemas 10 Momento de dipolo magnético e torque; lei de Faraday FÍSICA III Lista de Problemas 10 Momento de dipolo magnético e torque; lei de Faraday A C Tort 5 de Junho de 2008 Problema 1 O campo de um dipolo elétrico é dado por, veja suas notas de aula: E = 1 4πǫ

Leia mais