Resposta ao Impulso, ao Degrau e à Excitação Arbitrária

Tamanho: px
Começar a partir da página:

Download "Resposta ao Impulso, ao Degrau e à Excitação Arbitrária"

Transcrição

1 9 Resposta ao Impulso, ao Degrau e à Excitação Arbitrária INTRODUÇÃO Estuamos, até agora, a resposta e sistemas iâmicos às excitações harmôicas e perióicas, seo que essas últimas foram trasformaas, através e uma série e Fourier, em excitações harmôicas A questão que aturalmete surge é: como obtemos a resposta quao a excitação é arbitrária? É e se esperar, aliás, que a excitação arbitrária seja a mais comum, a prática Ates e iscutirmos a resposta à excitação arbitrária, vamos cosierar a resposta a ois tipos especiais e forçameto, as fuções impulso e egrau uitários Vamos utilizar como moelo, em osso estuo, sistemas mecâicos e a e a ores Obviamete, os resultaos obtios se aplicam aos emais tipos e sistemas físicos aálogos RESPOSTA AO IMPULSO O impulso uitário (ou fução Delta e Dirac) é efiio como seo a fução δ(t), tal que (a) δ(t - a) t a (b) coforme ilustra a fig : + δ( t a)t Fig A trasformaa e Laplace o impulso uitário é aa por () (s) e -as É muito comum, a prática, que o impulso ocorra o istate a Nesse caso: (3) (s)

2 Resposta ao impulso: é efiia como seo a resposta e um sistema ao impulso uitário aplicao o istate t, com coições iiciais ulas (sistema iicialmete em repouso) Evietemete, se o impulso uitário for aplicao um istate e tempo posterior, t a, a resposta será obtia eslocao-a para a ireita, ao logo o eixo o tempo, e um itervalo t a RESPOSTA DE SISTEMAS DE a ORDEM O moelo matemático para um sistema e a orem ilustrao a fig foi obtio ateriormete como seo Fig (4) c x(t) + kx(t) f(t) Substituio f(t) por δ(t) e tomao a trasformaa e Laplace para coições iiciais ulas: Isolao X(s) e teo em cota a eq (3): (5) (cs + k)x(s) (s) X(s) cs + k Teo em vista a efiição e costate e tempo e um sistema mecâico e a orem, aa por (6) τ c/k poemos rescrever a eq (5) como X(s) kτs + k kτ s + τ Voltao ao omíio o tempo, obtemos a resposta e um sistema e a orem ao impulso uitário: t t (7) x (t) e τ u(t) e τ δ u(t) kτ c oe x δ (t) simboliza a resposta ao impulso e u(t) é o egrau uitário, o qual multiplica a resposta porque ela eve ser ula para t < Por outro lao, a resposta e um sistema e a orem submetio a uma coição iicial x() x é aa, coforme já vimos, por: (8) x(t) x e -t/τ

3 3 Portato, comparao as eqs (7) e (8), cocluímos que a resposta ao impulso e um sistema e a orem equivale à resposta o mesmo a uma coição iicial No presete caso, a coição iicial é o eslocameto iicial ao por x() /c RESPOSTA DE SISTEMAS DE a ORDEM O moelo matemático para um sistema e a orem como o ilustrao a fig 3 é ao por Fig 3 (9) m x(t) + c x(t) + kx(t) f(t) Substituio f(t) por δ(t) e tomao a trasformaa e Laplace para coições iiciais ulas: (ms + cs + k)x(s) (s) Isolao X(s) e teo em cota a eq (3): () X(s) ms + cs + k Cosierao o sistema subamortecio e levao em cota que rescrever a eq () como () X(s) m(s + ςω s + ω ) k ω e que m ς c, poemos Para obter a trasformaa iversa e Laplace, é coveiete expair o membro ireito a eq () em frações parciais Deixamos a cargo o aluo mostrar que: () X(s) m(s s ) s s s s oe s e s são as raízes a equação s + ζω s + ω, aas por (3) s, -ζω ± iω e oe ω é a freqüêcia agular amortecia

4 4 (4) ω ω ζ Poemos, etão, voltar ao omíio o tempo achao as trasformaas iversas a eq (), obteo x(t) m(s s ) s t s t ( e e ) Substituio s e s aas pela eq (3) a equação acima, obtemos a resposta e um sistema e a orem ao impulso: ςωt (5) xδ (t) e se ωtu(t) oe x δ (t) simboliza a resposta ao impulso e u(t) é o egrau uitário Notemos que a resposta foi multiplicaa por u(t) teo em vista que ela eve ser ula para t < Por outro lao, a resposta e um sistema e a x () x é aa coforme já vimos, por: orem submetio às coições iiciais x() e ςω x x x t t (6) x(t) e ςω + x cos t se t ςω ω + ω e se ωt ω ω Portato, comparao as eqs (5) e (6), cocluímos que a resposta ao impulso e um sistema e a orem é equivalete à resposta o mesmo a uma coição iicial No presete caso, a coição iicial é a velociae iicial aa por x () x /m 3 RESPOSTA AO DEGRAU O egrau uitário, ilustrao a fig 4, é efiio matematicamete como (7) u(t - a) para para t < a t > a Fig 4 A trasformaa e Laplace o egrau uitário é aa por (8) U(s) e -as /s

5 5 É muito comum, a prática, que o egrau uitário ocorra o istate a Nesse caso: (9) U(s) /s Resposta ao egrau: é efiia como seo a resposta e um sistema ao egrau uitário aplicao o istate t, com coições iiciais ulas (sistema iicialmete em repouso) Evietemete, se o egrau uitário for aplicao um istate e tempo posterior, t a, a resposta será obtia eslocao-a para a ireita, ao logo o eixo os tempos, e um itervalo t a Vamos estuar, a seguir, a resposta e sistemas e a e a ores RESPOSTA DE SISTEMAS DE a ORDEM Coforme já vimos, o moelo matemático é ao pela eq (4), aqui repetia: (4) c x(t) + kx(t) f(t) Substituio f(t) por u(t) e tomao a trasformaa e Laplace para coições iiciais ulas: (cs + k)x(s) U(s) Isolao X(s) e teo em cota a eq (9): () X(s) s cs + k Teo em vista a efiição e costate e tempo e um sistema e a orem, aa pela eq (6), poemos substituir a eq () e expair a mesma em frações parciais, obteo: () X(s) k s s + τ Voltao ao omíio o tempo, obtemos a resposta ao egrau: () x (t) t u e τ u(t) k oe x u (t) simboliza a resposta ao egrau e u(t) é o egrau uitário Notemos que a resposta foi multiplicaa por u(t) teo em vista que ela eve ser ula para t < O gráfico a eq () está ilustrao a fig 5:

6 6 Fig 5 RESPOSTA DE SISTEMAS DE a ORDEM Comparao as eqs (3) e (9), cocluímos que o egrau uitário é a itegral o impulso uitário Se o sistema é liear, poemos aplicar o Pricípio a Superposição e estabelecer que a resposta ao egrau uitário é a itegral a resposta ao impulso uitário, ou, simbolicamete: (3) xu(t) xδ( ξ) ξ t oe ξ é uma variável mua Aplicao a proprieae acima, simplesmete substituímos x δ (t), aa pela eq (5), a eq (3): t xu(t) ςω ξ se ω ξu( ξ) ξ Teo em cota a efiição e egrau uitário, poemos rescrever a equação acima como t ςωξ (4) xu(t) ω ξ ξ ω e se m Usao a fórmula e Euler se ω ξ e iω ξ e i iω ξ a eq (4), e realizao a itegração, chegamos, após algum trabalho algébrico, à resposta ao egrau ςω t ςω (5) xu (t) e cos t se t u(t) k ω + ω ω cujo gráfico está ilustrao a fig 6, para ω ra/s e ζ,

7 7 Fig 6 oe cocluímos que a resposta ao egrau uitário é uma oscilação amortecia que ocorre em toro e /k, seo k a rigiez o sistema 4 RESPOSTA À EXCITAÇÃO ARBITRÁRIA INTEGRAL DE CONVOLUÇÃO Vamos, agora, cosierar o caso e uma excitação arbitrária (qualquer) Para achar a resposta a uma excitação essa atureza, utilizaremos o Métoo a Covolução, também cohecio como Métoo a Itegral e Duhamel Esse métoo se estaca por sua ampla aplicabiliae, servio para qualquer tipo e excitação, iclusive para aquelas já estuaas ateriormete Etretato, apreseta uma esvatagem cosierável pois, para fuções complicaas, ele se tora e ifícil aplicação, evio às itegrações trabalhosas que surgem Seja um sistema massa-mola-amorteceor, como o a fig 3, em que a fução e forçameto f(t) é geérica, como a ilustraa a fig 7 Fig 7 oe é usaa a variável mua τ para o tempo

8 8 Cosieremos que, urate um itervalo e tempo ifiitesimal τ, começao o istate t τ, a fução f(t), aquele poto, cosista e um impulso ifiitesimal e magitue f(τ)τ, mostrao a área hachuraa a figura A fução f(t) poe ser cosieraa, o itervalo e tempo fiito que vai e até t, como seo costituía por uma série esses impulsos ifiitesimais, caa um eles provocao uma variação ifiitesimal a quatiae e movimeto a massa m: f(τ) τ m ẋ f( τ) (6) x τ m Por outro lao, a resposta a caa impulso isolaamete é evia à aplicação as coições iiciais e eslocameto iicial ulo e velociae iicial ẋ Para escrever essa situação, já temos a eq (6), aqui repetia: x ςωt (6) x(t) e se ωt ω Aaptao para a simbologia atual e cosierao que a resposta ao impulso tem iício após a aplicação o mesmo, ou seja, após o istate t τ, poemos rescrever a eq (6) como x(t) x ω e ςω (t τ) se ω (t τ) Levao em cota a eq (6), obtemos x(t) f( τ) e ςω (t τ) se ω (t τ)τ Devio à coição e sistema liear, poemos aplicar o Pricípio a Superposição e afirmar que a resposta total à série e impulsos ifiitesimais ocorreo e t até t τ, é aa pela itegral a equação acima, o que costitui a chamaa Itegral e Duhamel: t ςω (t τ) (7) x(t) f( τ)e se ω(t τ)τ O métoo que acabamos e escrever também recebe o ome e Métoo a Covolução porque a eq (7) é uma forma especial a itegral e covolução (8) x(t) f( τ)g(t τ)τ f(t) * g(t) t

9 9 oe ςω (t τ) (9) g(t τ) e se ω(t τ) Na eq (8), a expressão f(t)*g(t) é lia como covolução e f(t) e g(t) ou f(t) covolução g(t) Teorema e Borel: estabelece que a covolução e uas fuções é igual à trasformaa iversa e Laplace o prouto e suas trasformaas e Laplace, ou seja (3) x(t) f(t)*g(t) - [f(s)g(s)] Esse teorema é e extrema importâcia prática, porque permite usar a trasformação e Laplace para solucioar problemas e trasietes Exemplo ilustrativo Um sistema massa-mola ecotra-se iicialmete em repouso e é submetio a um pulso retagular e magitue costate f urate t seguos Achar a resposta trasiete usao o Métoo a Covolução Solução: Como ão existe amortecimeto, ζ Levao a eq (7): x(t) t f( τ) se ω (t τ)τ t f se ω (t τ)τ Teo em vista que t ão epee e τ, t poe ser cosierao costate o processo e itegração: x(t) f m t [ cos ω (t τ ] ) ω e oe chegamos fialmete a f x(t) [ cos ω (t t ) cos t] ω

10 Exemplo ilustrativo Um sistema massa-mola ecotra-se iicialmete em repouso quao é submetio ao pulso triagular a figura 8 Achar a resposta o tempo x(t) Fig 8 Solução 8 Equação a excitação: f(τ) τ + τ t ςω (t τ) Itegral e Duhamel: x(t) f( τ)e se ω(t τ)τ Como ão há amortecimeto, ζ e ω ω, logo x(t) τ / 4 8 ( τ τ + ) se ω (t τ)τ Realizao o trabalho e itegração e teo em cota que k e que ω τ π, a expressão acima simplifica para: x(t) kπ [ se ω t + ( π) cos ω t]

11 EXERCÍCIOS Deuzir a eq () Deuzir a eq () 3 Demostrar a eq (5) 4 Deuzir a eq () 5 Deuzir a eq (5) 6 Usao o VisSim, peem-se: ; kπ (a) plotar a resposta o exemplo ilustrativo, ou seja, x(t) [ se ω t + ( π) cos ω t] (b) resolver a EDOL o exemplo ilustrativo ; (c) comparar os gráficos obtios os ites (a) e (b) 7 Um sistema massa-mola ecotra-se iicialmete em repouso quao é submetio à excitação a figura Determiar a resposta o tempo x(t) Resp: x(t) F se ωt k π

12 8 Usao o VisSim, peem-se: F (a) plotar a resposta o exercício 7, ou seja, x(t) se ω t ; k π (b) resolver a EDOL o exercício 7; (c) comparar os gráficos obtios os ites (a) e (b) 9 O sistema a figura é submetio a uma força impulsiva f(t) f δ(t) oe f é o móulo o impulso Usao o VisSim, plotar o eslocameto a massa m em fução o tempo, resolveo umericamete a equação iferecial Daos: m kg; c Ns/m; f N

Laboratório de Dinâmica

Laboratório de Dinâmica UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório e Diâmica SEM 54 DINÂMICA ESTRUTURAL Ala # Resp.: Moelo Matemático Moelo e GDL com amortecimeto

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Resposta de Sistemas de 2 a Ordem à Excitação Periódica Não Harmônica

Resposta de Sistemas de 2 a Ordem à Excitação Periódica Não Harmônica Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 18 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 INTRODUÇÃO Muitas vezes, a excitação é uma fução periódica,

Leia mais

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

MÉTODOS DE DERIVAÇÃO

MÉTODOS DE DERIVAÇÃO MÉTODOS DE DERIVAÇÃO TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADA DE UMA FUNÇÃO CONSTANTE Uma ução costate ão apreseta variação, portato sua erivaa é ula ( c) 5 4 Por eemplo:

Leia mais

Aula 11. Separação de Variáveis em Coordenadas Esféricas. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira

Aula 11. Separação de Variáveis em Coordenadas Esféricas. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira Eletromagetismo I Prof. Ricaro Galvão - Semestre 05 Preparo: Diego Oliveira Aula Separação e Variáveis em Cooreaas Esféricas Em cooreaas esféricas, a Equação e Laplace é aa por φr,θ,ϕ) = 0 r r ) r φ r

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Diferecial Uma equação iferecial é uma epressão que relacioa uma fução escohecia (icógita) com suas erivaas É útil classificar os iferetes tipos e equações para um esevolvimeto sistemático a Teoria

Leia mais

VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE

VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 3. VIBRAÇÃO LIVRE Cofore ostrao o apítulo aterior, uitos sisteas iâios poe ser represetaos por ua equação ifereial e segua ore, liear, o oefiietes ostates

Leia mais

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:

Leia mais

ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves

ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves Nível Avaçao ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves Cotiuao com as iéias o artigo Itegrais iscretas (e Euaro Poço a Eurea úmero 7), vamos tetar escobrir fórmulas fechaas para algus somatórios

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS Aula # Revisão de Coceitos GDL Prof. Paulo S. Varoto . - Objetivos

Leia mais

CONCEITOS DE VIBRAÇÃO

CONCEITOS DE VIBRAÇÃO CONCEITOS DE VIBRAÇÃO Paulo S. Varoto 55 3.1 - Itrodução O objetivo pricipal desta secção é o de apresetar coceitos básicos da teoria de vibrações bem como iterpretá-los sob o poto de vista dos esaios

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS Aula # Revisão de Coceitos GDL Prof. Paulo S. Varoto As Rotas da Aálise

Leia mais

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental. Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

EES-49/2012 Resolução da Prova 1

EES-49/2012 Resolução da Prova 1 EES-49/ Resolução da Prova Obs: esta resolução tem explicações e passos itermediários para facilitar o etedimeto. Parte dessas explicações e os passos itermediários ão são cobrados a correção da prova.

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Considere uma placa retangular simplesmente apoiada nas bordas e submetida a um carregamento axial excêntrico na direção do eixo y.

Considere uma placa retangular simplesmente apoiada nas bordas e submetida a um carregamento axial excêntrico na direção do eixo y. 4 Controle Passivo com Carregamento Excêntrico 4.. Conceitos Básicos Neste capítulo é seguia a metoologia apresentaa anteriormente para controle e vibrações em placas por meio a aplicação e cargas e compressão.

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Vibrações de sistemas com um grau de liberdade 1

Vibrações de sistemas com um grau de liberdade 1 Vibrações de sistemas com um grau de liberdade 1 DEFINIÇÕES Vibração mecânica movimento de uma partícula ou de um corpo que oscila em torno de uma posição de equilíbrio. Período de vibração intervalo de

Leia mais

Controle de Processos Aula: Sistemas de 1ª e 2ª ordem

Controle de Processos Aula: Sistemas de 1ª e 2ª ordem 107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A Uiversidade Federal do Rio Grade do Sul Escola de Egeharia Departameto de Sistemas Elétricos de Automação e Eergia ENG0026 Robótica A Itrodução Cotrole Idepedete por Juta Prof. Walter Fetter Lages 9 de

Leia mais

Aula 06. Transformadas z

Aula 06. Transformadas z Aula 06 Trasformadas Trasformadas Na aálise de sistemas cotíuos por vees é mais vatajoso o uso da frequêcia complexa s. No caso de sistemas discretos, uma ferrameta bastate comum usada para passar um sial

Leia mais

Aula 06 Transformadas z

Aula 06 Transformadas z Aula 06 Trasformadas Trasformadas Na aálise de sistemas cotíuos por vees é mais vatajoso o uso da frequêcia complexa s. No caso de sistemas discretos, uma ferrameta bastate comum usada para passar um sial

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ELE228 Robótica A

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ELE228 Robótica A Uiversidade Federal do Rio Grade do Sul Escola de Egeharia Departameto de Sistemas Elétricos de Automação e Eergia ELE228 Robótica A Itrodução Cotrole Idepedete por Juta Prof. Walter Fetter Lages 9 de

Leia mais

Processamento Digital de Sinais Lista de Exercícios Suplementares 3-1 quad. 2012

Processamento Digital de Sinais Lista de Exercícios Suplementares 3-1 quad. 2012 Processameto Digital de Siais - Lista de Exercícios Suplemetares 3- Marcio Eisecraft abril 01 Processameto Digital de Siais Lista de Exercícios Suplemetares 3-1 quad 01 1 (1041) [OPPENHEIM, p 603] Supoha

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

SINAIS E SISTEMAS DE TEMPO DISCRETO

SINAIS E SISTEMAS DE TEMPO DISCRETO SINAIS E SISTEMAS DE TEMPO DISCRETO SINAIS DE TEMPO DISCRETO Fução de uma variável idepedete iteira. Não é defiido em istates etre duas amostras sucessivas. É icorreto pesar que é igual a zero se ão é

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Representação De Modelos de Sistemas Dinâmicos:

Representação De Modelos de Sistemas Dinâmicos: Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos,

Leia mais

Estabilidade quase uniforme de um problema termoeástico semi linear

Estabilidade quase uniforme de um problema termoeástico semi linear Artigo Origial DOI:.59/7946X64 Ciêcia e Natura, Sata Maria, v. 36 E. Especial II, 4, p. 35 358 evista o Cetro e Ciêcias Naturais e Exatas - UFSM ISSN impressa: -837 ISSN o-lie: 79-46X Estabiliae quase

Leia mais

UNIDADE 2 - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE

UNIDADE 2 - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE Uiae - Vibrações Livres e Sisteas e U Grau e Liberae UNIDADE - VIBRAÇÕES LIVRES DE SISTEMAS DE UM GRAU DE LIBERDADE. - Itroução A oção e vibração coeça co a iéia o uilíbrio. U sistea está e uilíbrio quao

Leia mais

3 0 Exercício Programa de PMR 2420 Data de entrega: 21/06/2012 (até as 17:00hs) Método de Elementos Finitos (MEF)

3 0 Exercício Programa de PMR 2420 Data de entrega: 21/06/2012 (até as 17:00hs) Método de Elementos Finitos (MEF) ,3 m,8 m 3 Exercício Programa de PMR 242 Data de etrega: 21/6/212 (até as 17:hs) Método de Elemetos Fiitos (MEF) 1) Cosidere a estrutura da figura abaixo sujeita a uma carga cocetrada F 3 variado o tempo

Leia mais

Estacionariedade e correlação temporal em dados financeiros

Estacionariedade e correlação temporal em dados financeiros Estacioariedade e correlação temporal em dados fiaceiros Hoje em dia há uma quatidade imesa de dados fiaceiros sedo armazeados, egócio a egócio, pelo mudo afora. Gratuitamete, é possível coseguir facilmete

Leia mais

Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados Gabarto a sta e Iterpolação e Métoo os Mímos Quaraos ercíco : a cos Prmera orma: Iterpolação e agrage 8 5 P cos5 P - 89765 6 5 85 5 5 5 P 5 : : rro Portato 6 cos9 9 ; -5 6 9-9 - 6 5 5 5 85 cos6 6 ; 5 9

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 5 Professora: Mazé Bechara Paulo Vazolii - cietista e compositor Aula 5 Aida o átomo de H. A proposta de de Broglie de caráter dual das partículas materiais 1. Aida

Leia mais

A Transformada de Laplace

A Transformada de Laplace MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

4. FREQUÊNCIAS NATURAIS E CARGAS CRÍTICAS

4. FREQUÊNCIAS NATURAIS E CARGAS CRÍTICAS 4. FREQUÊNCIAS NATURAIS E CARGAS CRÍTICAS O presente capítulo apresenta a análise linear e vigas e seção aberta e parees elgaas simplesmente apoiaas, mostrano o processo e iscretização por Galerkin e as

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Análise e Controle de Sistemas Lineares

Análise e Controle de Sistemas Lineares Aálise e Cotrole de Sistemas Apostila de Aálise e Cotrole de Sistemas Prof Valdemir Carrara wwwcarraraus val08@carraraus Aálise e Cotrole de Sistemas 3 Aálise e Cotrole de Sistemas Ídice Cap Coceitos

Leia mais

F F F F. Equilíbrio de um Corpo Rígido Cap. 5. Condições para o equilíbrio em duas dimensões: Condições para o equilíbrio em duas dimensões:

F F F F. Equilíbrio de um Corpo Rígido Cap. 5. Condições para o equilíbrio em duas dimensões: Condições para o equilíbrio em duas dimensões: bjetivos - Equilíbrio em Duas Dimensões EÂNI - ESTÁTI Equilíbrio e um orpo ígio ap. 5 Desenvolver as equações e equilíbrio para um corpo rígio. Introuzir o conceito e iagrama e corpo livre para um corpo

Leia mais

Matemática II º Semestre 2ª Frequência 14 de Junho de 2011

Matemática II º Semestre 2ª Frequência 14 de Junho de 2011 Matemática II 00-0 º Semestre ª Frequêcia de Juho de 0 Pedro Raposo; Maria João Araújo; Carla Cardoso; Vasco Simões O teste tem a duração de :0 horas Deve resolver os grupos em folhas separadas Grupo I

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletromagetismo 1 o Semestre de 7 Noturo - Prof. Alvaro Vaucci 1 a aula 7/fev/7 ivros-texto: eitz-milford Griffiths Vamos relembrar as 4 equações básicas do Eletromagetismo 1 a ) ei de Gauss: O Fluxo do

Leia mais

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Transformada de Laplace Definição da Transformada de Laplace Propriedades da Transformada

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Séries de Fourier AM3D. Generalidades sobre funções periódicas

Séries de Fourier AM3D. Generalidades sobre funções periódicas 11 1 Séries de Fourier AM3D Geeralidades sobre fuções periódicas Defiição 1 Seja f uma fução da variável real. Diz-se que f é periódica de período T > se x D f, f(x+t = f(x. Exemplo As fuções seo e co-seo

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

II. REVISÃO DE FUNDAMENTOS

II. REVISÃO DE FUNDAMENTOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de Mecatrônica

Leia mais

Sistemas de Controle

Sistemas de Controle Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 2 - Transformada de Laplace e Função Transferência Sistemas de Controle p. 1/27 Função Impulso Unitário Função pulso com área unitária: f(t)

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR CAPÍTUO DEPENDÊNCIA INEAR Comiação iear Defiição: Seja V um espaço etorial sore um orpo K Um etor omiação liear os etores que u a a a De forma areiaa poe-se esreer: u a i i i u V é ito uma V se existem

Leia mais

MODELO DE LINHAS DE TRANSMISSÃO COM DIFERENTES ESTRUTURAS BÁSICAS APLICADAS EM SIMULAÇÕES DE TRANSITÓRIOS ELETROMAGNÉTICOS

MODELO DE LINHAS DE TRANSMISSÃO COM DIFERENTES ESTRUTURAS BÁSICAS APLICADAS EM SIMULAÇÕES DE TRANSITÓRIOS ELETROMAGNÉTICOS MODELO DE LINHAS DE TRANSMISSÃO OM DIFERENTES ESTRUTURAS BÁSIAS APLIADAS EM SIMULAÇÕES DE TRANSITÓRIOS ELETROMAGNÉTIOS LUIS H. JUS, AGHATTA. MOREIRA, MELISSA O. SANTOS, THAINÁ G. PEREIRA, AFONSO J. PRADO,

Leia mais

MOVIMENTO DE TRANSLAÇÃO: A PARTÍCULA EM UMA CAIXA

MOVIMENTO DE TRANSLAÇÃO: A PARTÍCULA EM UMA CAIXA MOVIMNTO D TRANSAÇÃO: A PARTÍCUA M UMA CAIA Prof. Harle P. Martis Filo Partícula livre oveo-se e ua iesão Ae ik Be ik k Não á restrições às soluções a equação e Scröiger A e B poe assuir qualquer valor

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

2. Modelos Lineares de Espaço de Estados. e resposta ao impulso. Método para o cálculo das soluções: através do uso de transformadas de Laplace

2. Modelos Lineares de Espaço de Estados. e resposta ao impulso. Método para o cálculo das soluções: através do uso de transformadas de Laplace 2.3 - Solução das equações de espaço de estados, função de transferência e resposta ao impulso Método para o cálculo das soluções: através do uso de transformadas de Laplace Transformadas de Laplace f

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

Lista de Exercícios Método de Newton

Lista de Exercícios Método de Newton UNEMAT Uiversidade do Estado de Mato Grosso Campus Uiversitário de Siop Faculdade de Ciêcias Eatas e Tecológicas Curso de Egeharia Civil Disciplia: Cálculo Diferecial e Itegral I Lista de Eercícios Método

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Vibrações de Estacas Parcialmente Enterradas em uma Base Elástica

Vibrações de Estacas Parcialmente Enterradas em uma Base Elástica Vibrações e Estacas Parcialmete Eterraas em uma Base Elástica toio Euaro G. Sampaio E-mail: aesampaio@hotmail.com Paulo Batista Goçalves Depto e Eeharia Civil, PUC-Rio Rua Marquês e São Vicete, 5 53-9,

Leia mais

VESTIBULAR 2012 / 3º DIA

VESTIBULAR 2012 / 3º DIA VESTIBULAR 01 / 3º DIA ÍSICA 33. Consiere um rio e margens paralelas, cuja istância entre as margens é e 140 m. A velociae a água em relação às margens é e 0 m/s. Um bote cuja velociae em relação à água

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

3. Meios não-lineares e conversão de freqüências

3. Meios não-lineares e conversão de freqüências 67. Meios ão-lieares e coversão e freqüêcias Toos os cristais ão-lieares utilizaos para coversão e frequêcias são meios ielétricos. Também chamaos e isolates, os ielétricos são materiais cujas cargas omiates

Leia mais

13 Funções de Teste. Simulação no VisSim 1 INTRODUÇÃO 2 IMPULSO UNITÁRIO (DELTA DE DIRAC)

13 Funções de Teste. Simulação no VisSim 1 INTRODUÇÃO 2 IMPULSO UNITÁRIO (DELTA DE DIRAC) Funções de Teste. Simulção no VisSim 1 13 Funções de Teste Simulação no VisSim 1 INTRODUÇÃO As funções de teste formam a base para a análise e a simulação de sistemas lineares no domínio do tempo e são

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Capítulo 2 Dinâmica de Sistemas Lineares

Capítulo 2 Dinâmica de Sistemas Lineares Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Estabilidade de sistemas de controle lineares invariantes no tempo

Estabilidade de sistemas de controle lineares invariantes no tempo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2.1 Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no tempo.

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

Controle de Processos Aula: Estabilidade e Critério de Routh

Controle de Processos Aula: Estabilidade e Critério de Routh 107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)

Leia mais