Resposta de Sistemas de 2 a Ordem à Excitação Periódica Não Harmônica

Tamanho: px
Começar a partir da página:

Download "Resposta de Sistemas de 2 a Ordem à Excitação Periódica Não Harmônica"

Transcrição

1 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 18 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 INTRODUÇÃO Muitas vezes, a excitação é uma fução periódica, porém ão harmôica. Por exemplo, um mecaismo biela-maivela, largamete utilizado em motores de combustão itera e em compressores alterativos, desevolve torques que são periódicos (cosiderado costate a velocidade de rotação da árvore de maivelas), porém ão harmôicos, coforme ilustra a fig. 1: Fig. 1 Qualquer fução periódica f(t) que satisfaça às chamadas Codições de Dirichlet: ter um úmero fiito de descotiuidades em um período, ter um úmero fiito de máximos e míimos em um período, ter a itegral τ f ( t) dt fiita (τ é o período da fução), 0 pode ser expadida em uma série trigoométrica ifiita de seos e cosseos, cuja soma dos termos reproduz a fução. Tal série deomia-se Série de Fourier. Os termos em seos e cosseos têm freqüêcias múltiplas da freqüêcia fudametal. Evidetemete, a prática, teremos que abadoar algus termos, retedo apeas os mais importates. Com isso, cometeremos um erro que será tato meor quato maior for a quatidade de termos retidos. A fig. ilustra uma fução periódica ão harmôica e a sua expasão em séries de Fourier. Podemos observar que, quato maior a quatidade de termos retidos, mais próxima da fução origial estará a expasão em série de Fourier.

2 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica Fig. Assim, dada uma excitação periódica ão harmôica, podemos desevolvê-la em série de Fourier e, para sistemas lieares, aplicar o Pricípio da Superposição dos Efeitos, ou seja, podemos cosiderar cada um dos termos em seos e cosseos da série como sedo uma excitação harmôica isolada e, de acordo com o estudado até agora, calcular a resposta idividual a cada uma dessas excitações isoladas. Fialmete, aplicado o citado Pricípio, podemos somar as respostas idividuais para obter a resposta total. DESENVOLVIMENTO DA EXCITAÇÃO EM SÉRIE DE FOURIER Cosideremos uma excitação periódica ão harmôica, f(t), a qual pode represetar uma força, um torque ou um deslocameto da base. A fig. 3 ilustra f(t), ode são mostrados 3 períodos τ: Fig. 3 Se f(t) satisfaz as codições de Dirichlet, etão ela pode ser expadida a série de Fourier

3 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 3 A (1) f(t) 0 + (A cos t B se t) ω + ω 1 ode o termo A 0 / é o termo médio da fução periódica f(t). A freqüêcia ω é deomiada freqüêcia fudametal ou 1 a harmôica, ω é a a harmôica, 3ω é a 3 a harmôica, etc. Na série descrita pela eq. (1), A e B são os coeficietes de Fourier, dados por () τ / A f(t) cosωtdt 0, 1,,... τ τ/ (3) τ / B f(t) seωtdt 1,,... τ τ/ Existem certos casos em que a série de Fourier pode ser simplificada. Assim, o caso de f(t) ser uma fução ímpar, isto é, uma fução em que (4) f(t) -f(-t) podemos mostrar que (5) A 0 0, 1,,... 4 (6) B τ / f(t) seωtdt τ 0 1,,... reduzido-se, assim, a eq. (1) à série de seos (7) f(t) B 1 seωt Um segudo caso que simplifica a série de Fourier é aquele em que f(t) é uma fução par, defiida como (8) f(t) f(-t) Nesse caso, podemos demostrar que (9) 4 τ / A f(t) cosωtdt τ 0 0, 1,,... (10) B 0 1,,... reduzido-se, assim, a eq. (1) à série de cosseos A0 (11) + f(t) A 1 cosωt Portato, a eq. (7) estabelece que uma fução periódica ímpar ão pode coter compoetes harmôicos pares (cosseos), equato que a eq. (11) mostra que uma fução periódica par ão pode coter compoetes harmôicos ímpares (seos).

4 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 4 A expasão de fuções periódicas em série de Fourier é feita aplicado-se as fórmulas acima e é, em geral, um procedimeto trabalhoso, pois é muito comum termos que usar itegração por partes. O exemplo seguite ilustra uma situação bastate simples. Exemplo ilustrativo A pressão o iterior de um cilidro varia periodicamete, coforme o gráfico da fig. 4. Expadir a fução periódica p(t) em série de Fourier. Solução: Fig. 4

5 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica p (t) 5 + se πt + se3πt + se5πt +... [Kpa] π 3π 5π Na fig. 5 está represetada, em liha iterrompida, a expasão acima. Notemos que a fução origial somete será fielmete atigida quado a quatidade de termos retidos for ifiita. Fig. 5 A Tabela 1, o fial desta apostila, apreseta os desevolvimetos em série de Fourier de algumas fuções periódicas importates. 3 RESPOSTA À EXCITAÇÃO PERIÓDICA Coforme já foi cometado, o caso de um sistema liear podemos calcular a resposta idividual a cada termo da série e, após, somar essas respostas idividuais para obter a resposta total. Assim, com base o que já foi estudado ateriormete, dada a -ésima compoete da excitação (1) f c (t) A cosωt ode o ídice c sigifica a eé-sima compoete em cosseo, a resposta correspodete é dada por A (13) xc (t) (FA) cos(ωt + φ ) k ode (FA) é o fator de amplificação correspodete, dado por (14) (FA) [1 (ν) 1 ] + (ςν) e φ é o âgulo de fase correspodete, dado por ςν (15) φ arctg[ ] 1 (ν) Aalogamete, dada a -ésima compoete da excitação (16) f s (t) B seωt

6 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 6 ode o ídice s sigifica a -ésima compoete em seo, a resposta correspodete é dada por B (17) xc (t) (FA) se(ωt + φ ) k Notemos que o fator de amplificação e o âgulo de fase correspodetes são os mesmos já dados pelas eqs. (14) e (15). Quato à compoete média da excitação, A 0 /, a resposta à mesma é simplesmete a compoete estática da resposta, ou seja, A 0. k Assim, a resposta total será obtida aplicado o Pricípio da Superposição, ou seja: A0 1 (18) x(t) + [A (FA) cos(ωt + φ ) + B (FA) se(ωt + φ )] k k 1 É importate observar agora que, se uma das harmôicas se aproxima da freqüêcia atural do sistema, existirá risco de ressoâcia essa harmôica. Exemplo ilustrativo A fig. 6 mostra um pistão com massa 3,68 kg que se desloca detro de um cilidro de diâmetro 40 mm. A mola possui rigidez 84 N/m. O lado esquerdo do cilidro está aberto à atmosfera e o lado direito é submetido a uma pressão p(t), que varia periodicamete, coforme exemplo ilustrativo aterior. Determiar a resposta do pistão. Solução: Fig. 6

7 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 7 1,147x40 6,67x13,3 0,455x8 x(t) 0, se πt se3πt se5πt x84 3x84 5x84 ou, em mm: x(t) 110, ,5seπt 103,45se3πt,56se5πt +... Notemos que a terceira harmôica provoca uma amplitude relativamete grade. Isso se deve ao fato de que a mesma (3ω 3π 9,45 rad/s) está mais próxima da freqüêcia agular atural (ω 8,785 rad/s) do que as demais harmôicas. 4 INTEGRAÇÃO NUMÉRICA Em muitos casos, é praticamete impossível cohecer a fução de excitação f(t) sob forma aalítica, como os casos da Tab. 1. É mais comum que a excitação periódica seja dada sob forma de gráficos ou tabelas, como o caso de testes de motores de combustão itera em diamômetros, coforme ilustra a fig. 1. Nesses casos, é mais coveiete obter a expasão em série de Fourier através de uma técica de itegração umérica. Cosideremos a fig. 7, ode é mostrado um período τ de uma fução periódica y(t), a qual ão é cohecida aaliticamete. Etretato, é possível obter y(t) para uma certa quatidade de potos, seja através de uma tabela ou da leitura dos dados de um gráfico.

8 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 8 Fig. 7 O período τ pode ser dividido em N partes iguais, tal que (19) τ N t sedo a freqüêcia fudametal dada por (0) ω π/τ Substituido as eqs. (19) e (0) as eqs. () e (3), podemos trabalhar com somatórios o lugar de itegrais: N π N ti πt i (1) A y(ti )cos t y(ti )cos 0, 1,,... τ τ N i 1 i 1 τ () N π N ti πt i B y(ti )se t y(ti )se 1,,... τ τ N τ i 1 i 1 ode i deota o i-ésimo itervalo e y(t i ) é o valor da fução o i-ésimo itervalo. Obviamete, quato maior o úmero N de itervalos usados, maior a precisão obtida. Uma vez determiados os coeficietes de Fourier, usamos a série da eq. (1) ormalmete. A seguir, um exemplo que esclarecerá o método. Exemplo ilustrativo O torque de saída de um motor de combustão itera de 6 cilidros, ciclo Otto, de 4 tempos, é dado pela tabela e gráfico mostrados a fig. 8. Desevolver T(t) em série de Fourier. Fig. 8

9 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 9 Solução: No caso, temos N 4 potos. Do gráfico, tiramos τ 0,018 s, logo, ω π/0, ,1 rad/s. Problemas desse tipo têm suas soluções facilitadas com o uso de uma plailha como a que aparece a seguir, a qual é de fácil implemetação em uma liguagem de computador, tal como BASIC, FORTRAN, PASCAL, etc., ou em uma plailha eletrôica, como o EXCEL. i t i [s] T i [N.m] 1 3 A B A B A B 1 0, ,03 0, ,73 3 0, ,13 4 0, ,00 5 0, ,76 6 0, , ,53 8 0, , Σ ,0 98,08 13,96-86,08 65,56 65,6 Da tabela acima, tiramos os valores dos coeficietes de Fourier, usado as eqs. (1) e (): A /1 110 A 1-691,0/1-4,7 B 1 98,08/1 77,34 A 13,96/1 11,08 B -86,08/1-71,84 A 3 65,56/1,13 B 3 65,56/1,13 Logo, substituido a eq. (1), chegamos fialmete a T(t) 605 4,7cos349,10t + 77,34se349,10t ,08 cos698,14t 71,84se698,14t + +,13 cos1047,1t +,13se1047,1t

10 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 10 5 ESPECTRO DISCRETO DE FOURIER O espectro discreto de Fourier é um gráfico, o domíio da freqüêcia, que mostra o grau de participação das várias harmôicas a excitação f(t) e a resposta x(t). Tal gráfico também é cohecido como espectro de freqüêcias. Quado f(t) é periódica, o seu espectro de freqüêcias cosiste de compoetes harmôicas com freqüêcias discretas, ou seja, ω, ω, 3ω, etc. Assim, o espectro de Fourier tem as abcissas as freqüêcias discretas ω, ω, 3ω, etc., e as ordeadas os valores das amplitudes de cada harmôica, dadas por (3) D A + B Para o exemplo aterior, teremos os seguites valores para as amplitudes do torque: D 0 A N.m D A + B ( 4,7) + 77,34 37,3 N.m D A + B 11,08 + ( 71,84) 7,69 N.m D A + B,13 +,13 31,30 N.m com os quais podemos traçar o espectro de Fourier das amplitudes: Amplitudes Espectro Discreto de Fourier Harmôicas Examiado o gráfico ao lado vemos que, esse caso, a cotribuição de cada harmôica vai dimiuido sigificativamete à medida que aumeta a ordem da harmôica, sedo importates apeas as duas primeiras harmôicas.

11 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 11 Tab. 1 EXERCÍCIOS

12 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 1 Desevolver em série de Fourier a excitação periódica da figura. A fução é ímpar com período τ 0,04 s, logo B B τ 4 τ π [ cos 50 πt] 4 0, 0, π Solução 0000 Podemos ver que B 0 para par e B π Portato, o desevolvimeto em série de Fourier fica π π ω 50π rad/s. Também A 0 e τ 0, f(t) se ωtdt 5000 se 50πtdt π 0, 0 0 (cos π 1 ) π para ímpar 0, 0 0 (1 cos π) 50π se 50πtdt f(t) 0000 π 1,3, se 50πt Determiar os coeficietes de Fourier para a excitação periódica da figura 000 π 000 π Resp.: A N A se B (1 cos ) π π

13 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 13 3 A variação da pressão ao logo do tempo em uma liha hidráulica é dada pela tabela seguite, observado-se uma periodicidade a cada 0,4 s: t [s] p [Pa] 0 0 0,0 10,4 0,04 5,7 0,06 8,6 0,08 31,5 0,10 46,8 0,1 57, 0,14 46,8 0,16 31,5 0,18 8,6 0,0 5,7 0, 10,4 0,4 0 Desevolver p(t) em série de Fourier até a 3 a harmôica e traçar o seu espectro de Fourier. Resp.: p(t) 8,6 1,01cos6,18t 7,6cos78,54t 4 Desevolver um programa de computador (em BASIC ou Excel), geérico, que calcule umericamete os coeficietes de Fourier e trace o espectro de amplitudes. 5 Uma plaia limadora vertical de massa 00 kg está motada sobre isoladores de borracha que defletiram mm quado da motagem. A plaia tem uma velocidade máxima de 5 rpm. Determiar a resposta permaete da plaia para a excitação da figura, dada em N, a qual a seguda harmôica origia-se do mecaismo de recuo rápido da máquia. Resp.: x(t) 0,4 cos ωt + 0,119 cos ωt [mm]

14 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 14 6 Uma máquia alterativa trabalha com rotação costate de 86 rpm, gerado uma força desbalaceadora, em N, que pode ser represetada aaliticamete por f(t) se 9t - 3 se 18t - se 7t Dispõe-se de tipos de isoladores, A e B, os quais defletem, respectivamete, e 0 mm quado a máquia é colocada sobre eles. Cosiderado ulo o amortecimeto, determiar a força trasmitida por cada um deles à fudação. Qual deve ser escolhido? Solução Como ão existe amortecimeto, a força trasmitida à fudação é dada por f f tr tr ω f f1 f f3 f0 + se ωt + se ωt + se 3ωt 1 ν 1 (ν) 1 (3ν) tr + g δ 9,81 (a) Isolador A: 70,04 rad / s 9 70,04 ν 3 est x10 ω ,185 ω g δ Nesse caso, a força trasmitida será: 3 se 9t + se 18 t + 1 (x0,185 ) 1 (3x0,185 ) f tr 9,81 ω... 0, ,33 se 9t 3,1 se 18 t,35 se 7t (b) Isolador B:,15 rad / s 9,15 ν 3 est 0x10 ω , 4064 Nesse caso, a força trasmitida será: 3 se 9t + se 18 t + 1 (x0, 4064) 1 (3x0, 4064) f tr ω 0, ,96 se 9t 8,84 se 18 t + 4,11 se 7t se 7t se 7t Portato, devemos escolher o isolador A, que trasmite meor força à fudação. 7 O oscilador liear da figura é excitado pela oda quadrada de amplitude f 0 e período ajustável τ. Para que valores de τ podemos esperar ocorrêcia de ressoâcia? Resp.: τ π m k, 1,,...

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Série Trigonométrica de Fourier

Série Trigonométrica de Fourier studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS 4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS Muitas vezes os experimetos requerem medidas de gradezas físicas que variam com o tempo. Para a correta medição destas gradezas, é ecessário cohecer as propriedades

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Prof. Celso Módulo 12 Resposta em freqüência-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST

Prof. Celso Módulo 12 Resposta em freqüência-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST Prof. Celso Módulo Resposta em freqüêcia-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST O diagrama de Nyquist ou diagrama polar é um gráfico do módulo de G pelo âgulo de fase de G em coordeadas

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Método dos Mínimos Quadrados. Julia Sawaki Tanaka

Método dos Mínimos Quadrados. Julia Sawaki Tanaka Método dos Míimos Quadrados Julia Sawaki Taaka Diagrama de Dispersão iterpolação ajuste ou aproximação O Método dos Míimos Quadrados é um método de aproximação de fuções. É utilizado quado: Cohecemos potos

Leia mais

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói CES Cetro de Esio Superior de C. Lafaiete Faculdade de Egeharia Elétrica Física II Prof. Aloísio Elói Superposição e Odas Estacioárias Resumo Serway & Jewett, capítulo 14. 1. Pricípío da superposição:

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8.

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8. MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de 6 - a Lista de exercícios. Obter uma expressão das somas das séries abaixo e os respectivos raios de covergêcia, usado derivação e itegração

Leia mais

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos MÉTODO DOS MOMETOS - MOM Prof. Erivelto Geraldo epomuceo PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA ELÉTRICA UIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CETRO FEDERAL DE EDUCAÇÃO TECOLÓGICA

Leia mais

CONCEITOS DE VIBRAÇÃO

CONCEITOS DE VIBRAÇÃO CONCEITOS DE VIBRAÇÃO Paulo S. Varoto 55 3.1 - Itrodução O objetivo pricipal desta secção é o de apresetar coceitos básicos da teoria de vibrações bem como iterpretá-los sob o poto de vista dos esaios

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Estacionariedade e correlação temporal em dados financeiros

Estacionariedade e correlação temporal em dados financeiros Estacioariedade e correlação temporal em dados fiaceiros Hoje em dia há uma quatidade imesa de dados fiaceiros sedo armazeados, egócio a egócio, pelo mudo afora. Gratuitamete, é possível coseguir facilmete

Leia mais

; 2N 2N.! " j %.(1 & q)2 N & j.q j. j!(2n & j)!

; 2N 2N.!  j %.(1 & q)2 N & j.q j. j!(2n & j)! DERIVA GENÉTICA Seja uma população de tamaho fiito N, costate ao logo das gerações; sejam aida p e q as freqüêcias dos alelos A e a de um loco autossômico a geração ; como o tamaho da população é costate,

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS Aula # Revisão de Coceitos GDL Prof. Paulo S. Varoto . - Objetivos

Leia mais

APROXIMAÇÕES AO FILTRO IDEAL

APROXIMAÇÕES AO FILTRO IDEAL APROXIMAÇÕE AO FILTRO IDEAL INTRODUÇÃO No capítulo estudaram-se vários tipos de fuções de trasferêcia de primeira e de seguda ordem, que são ecessárias para realizar qualquer fução de trasferêcia Neste

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Método alternativo para calcular a constante de Apéry

Método alternativo para calcular a constante de Apéry SCIENTIA PLENA VOL. 7, NUM. 4 0 www.scietiaplea.org.br Método alterativo para calcular a costate de Apéry S. R. Cruz; J. B. Oliveira; D. T. Feitosa; C. M. Silva Departameto de Matemática, Uiversidade de

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

Notas de aula- Física II Profs. Amauri e Ricardo 1 SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS. e y2

Notas de aula- Física II Profs. Amauri e Ricardo 1 SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS. e y2 Notas de aula- Física II Profs. Amauri e Ricardo SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Superposição de Odas O pricípio de superposição é uma propriedade do movimeto odulatório. Este pricípio afirma

Leia mais

CF358 Física BásicaExperimental I

CF358 Física BásicaExperimental I CF358 Física BásicaExperimetal I CONFIGURAÇÃO MÓDULO TEÓRICO MÓDULO EXPERIMENTAL => BLOCO 1-4 EXPERIMENTOS => BLOCO 2-4 EXPERIMENTOS PRESENÇA (muito importate) NO MÍNIMO 75% AVALIAÇÃO 01 PROVA -BLOCO TEÓRICO

Leia mais

4 Teoria da Probabilidade

4 Teoria da Probabilidade 48 4 Teoria da Probabilidade Apresetam-se este capítulo coceitos de probabilidade e de estimação de fuções desidade de probabilidade ecessários ao desevolvimeto e compreesão do modelo proposto (capítulo

Leia mais

SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS

SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Notas de aula- Física II Profs. Amauri e Ricardo SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Superposição de Odas O pricípio de superposição é uma propriedade do movimeto odulatório. Este pricípio afirma

Leia mais

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:

Leia mais

Características dinâmicas

Características dinâmicas Características diâmicas As características diâmicas, descrevem o seu comportameto durate o itervalo de tempo em que a gradeza medida varia até o mometo em que o seu valor medido é apresetado. Resposta

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ELE228 Robótica A

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ELE228 Robótica A Uiversidade Federal do Rio Grade do Sul Escola de Egeharia Departameto de Sistemas Elétricos de Automação e Eergia ELE228 Robótica A Itrodução Cotrole Idepedete por Juta Prof. Walter Fetter Lages 9 de

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

Resposta ao Impulso, ao Degrau e à Excitação Arbitrária

Resposta ao Impulso, ao Degrau e à Excitação Arbitrária 9 Resposta ao Impulso, ao Degrau e à Excitação Arbitrária INTRODUÇÃO Estuamos, até agora, a resposta e sistemas iâmicos às excitações harmôicas e perióicas, seo que essas últimas foram trasformaas, através

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT46 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental. Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Processamento Digital de Sinais Lista de Exercícios Suplementares 3-1 quad. 2012

Processamento Digital de Sinais Lista de Exercícios Suplementares 3-1 quad. 2012 Processameto Digital de Siais - Lista de Exercícios Suplemetares 3- Marcio Eisecraft abril 01 Processameto Digital de Siais Lista de Exercícios Suplemetares 3-1 quad 01 1 (1041) [OPPENHEIM, p 603] Supoha

Leia mais

Séries de Fourier AM3D. Generalidades sobre funções periódicas

Séries de Fourier AM3D. Generalidades sobre funções periódicas 11 1 Séries de Fourier AM3D Geeralidades sobre fuções periódicas Defiição 1 Seja f uma fução da variável real. Diz-se que f é periódica de período T > se x D f, f(x+t = f(x. Exemplo As fuções seo e co-seo

Leia mais

Medidas de Posição. É igual ao quociente entre a soma dos valores do conjunto e o número total dos valores.

Medidas de Posição. É igual ao quociente entre a soma dos valores do conjunto e o número total dos valores. Medidas de Posição São as estatísticas que represetam uma série de dados orietado-os quato à posição da distribuição em relação ao eixo horizotal do gráfico da curva de freqüêcia As medidas de posições

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A Uiversidade Federal do Rio Grade do Sul Escola de Egeharia Departameto de Sistemas Elétricos de Automação e Eergia ENG0026 Robótica A Itrodução Cotrole Idepedete por Juta Prof. Walter Fetter Lages 9 de

Leia mais

A DESIGUALDADE DE CHEBYCHEV

A DESIGUALDADE DE CHEBYCHEV A DESIGUALDADE DE CHEBYCHEV Quado se pretede calcular a probabilidade de poder ocorrer determiado acotecimeto e se cohece a distribuição probabilística que está em causa o problema, ão se colocam dificuldades

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

GRUPO I Duração: 50 minutos

GRUPO I Duração: 50 minutos Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA SEM 5766 ANÁLISE MODAL DE ESTRUTURAS Aula # Revisão de Coceitos GDL Prof. Paulo S. Varoto As Rotas da Aálise

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012 Prova Parcial Aluo(a): Data: 8/2/202. (,5p) Use regras de iferêcia para provar que os argumetos são válidos. (usar os símbolos proposicioais idicados): A Rússia era uma potêcia superior, e ou a Fraça ão

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral IV para Engenharia 2a. Prova - 2o. Semestre /10/2014

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral IV para Engenharia 2a. Prova - 2o. Semestre /10/2014 Turma A a Questão: Istituto de Matemática e Estatística da USP MAT455 - Cálculo Diferecial e Itegral IV para Egeharia a. Prova - o. Semestre 4-3//4 a, poto Seja fx + x 3. Calcule f 3. b Obteha uma expressão

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

GABARITO DO GE5 ONDAS ESTACIONÁRIAS, BATIMENTOS E EFEITO DOPPLER

GABARITO DO GE5 ONDAS ESTACIONÁRIAS, BATIMENTOS E EFEITO DOPPLER GABARTO DO GE ONDAS ESTACONÁRAS, BATMENTOS E EFETO DOPPLER.9 Exercícios de Fixação G.E..9.1) Duas odas 1 e estão presetes em uma corda: y 1 (3 mm) se [(, rad/m)x - (1,7 rad/s)t] y (3 mm) se [(, rad/m)x

Leia mais

δ de L. Analogamente, sendo

δ de L. Analogamente, sendo Teoremas fudametais sobre sucessões Teorema das sucessões equadradas Sejam u, v e w sucessões tais que, a partir de certa ordem p, u w v lim u = lim v = L (fiito ou ão), a sucessão w também tem limite,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Cotrole de Sistemas Desempeho de Sistemas de Cotrole Reato Dourado Maia Uiversidade Estadual de Motes Claros Egeharia de Sistemas Aálise da Resposta Temporal A resposta temporal de um sistema de cotrole

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais