Dispersão de um pacote de ondas livres

Tamanho: px
Começar a partir da página:

Download "Dispersão de um pacote de ondas livres"

Transcrição

1 Dispersão de u pacote de ondas livres Nos cursos introdutórios de ecânica quântica há sepre o problea da dispersão do pacote de ondas gaussiano para partícula livre, quando evolui segundo a equação de Schrödinger. Noralente, esse problea é abordado de fora uito superficial e rapidaente, pois requer uito trabalho algébrico para poder ser resolvido copletaente. Nesta postage vou apresentar todas as passagens do cálculo para o caso unidiensional. Minha intenção é que este aterial sirva de referência a você, estudante de ecânica quântica, eso quando for trabalhar e probleas correlatos ais avançados, coo é o caso da teoria de espalhaento, cujos livros-texto noralente faze uso dos resultados que aqui apresento, as apenas en passant. Seja u pacote de ondas gaussiano unidiensional, noralizado, dado por ψ p π / exp p p p, na representação de oentu. Para você conferir que a noralização da Eq. está correta, aplique o resultado da postage Integral da gaussiana à integral do quadrado do ódulo de ψ p : dp ψ p dp p exp π p p. Note que é ua constante e, portanto, não uda seu valor no integrando, confore a variável p vai sendo integrada. Você prontaente encontrará que o valor da integral na Eq. é igual a u. Coo exercío adicional, você pode verificar que o valor esperado do oentu, segundo a função de onda da Eq., é dado por: dp ψ p p. 3 A incerteza do oentu, de acordo co a função de onda definida pela Eq., tabé é facilente verificada coo sendo dada por: p p p dp p ψ p. Você pode estar se perguntando por que razão coecei co u pacote na representação de oentu. Coo é típico da teoria de colisões, ua partícula é preparada para atingir u alvo co u dado oentu inicial. Só que, coo tudo na vida, a preparação não é perfeita e, após esse processo,

2 a partícula acaba tendo u valor esperado de oentu,, co ua incerteza p. Para siplificar, aproxiaos esse estado inicial co ua gaussiana, e analogia ao Teorea Central do Liite. Tipicaente, e estatística, deonstraos que a édia aritética de ua longa sequência de valores de ua variável aleatória se distribui quase sepre coo ua gaussiana, eso que a particular distribuição da variável não seja gaussiana. Digo, quase sepre, porque a distribuição de probabilidade da variável aleatória deve ter todos os seus oentos finitos para o teorea valer. Veja, por exeplo, inha postage O teorea central do liite de distribuições probabilísticas. No entanto, dependendo do processo de preparação da partícula, o pacote de ondas não é, necessariaente, gaussiano. Ua vez dito isto, para siplificar vaos tratar o caso gaussiano, que é o elhor possível, pois é o pacote de ondas de ínia incerteza, coo pode ser visto, por exeplo, no link: u dia ainda faço essa conta explicitante aqui no Nerdyard. Outro exercício uito instrutivo para você fazer é ostrar que a transforada de Fourier da Eq. é dada por: ˆ + dp exp i pq ψ p π p exp i q q q, 5 onde q p. 6 Veja que a Eq. 6 é a relação de incerteza entre p e q para pacotes gaussianos, quando a igualdade vale. Veja tabé que os ebros da Eq. 5 não estão noralizados. Co a noralização de abos os ebros da Eq. 5 obteos: ψ q exp i q π / q exp q q, 7 onde usaos a Eq. 6 e definios a função de onda na representação da posição coo é usual: ψ q ˆ + π dp exp i pq ψ p. 8 Note a presença, na Eq. 7, da exponencial exp i q/, ultiplicando a gaussiana. Caso a partícula fosse preparada co valor esperado de oentu nulo, isto é, 0, esse fator exponencial não apareceria. Note que esse fator não é constante, pois a variável q, conjugada a p, aparece no arguento da exponencial. Outro fato digno de nota sobre o estado representado pela Eq. 8 é que não é u auto-estado da hailtoniana de partícula livre, coo podeos facilente

3 verificar. Para isso, basta toar a hailtoniana seguinte: H 0 P, 9 onde P é o operador oentu, e aplicá-la à esquerda do ket ψ, cuja projeção no ket q dá função de onda da Eq. 8, isto é, Então: q ψ ψ q. 0 H 0 ψ P ψ. Só para recordar você das sutilezas notacionais, P é o operador e p é seu autovalor no estado p. Olhando a Eq. 8, veos que a função de onda ψq é dada e teros de ua superposição linear das funções de onda plana: q p π exp isto é, podeos reescrever a Eq. 8 coo: ψ q i pq, dp q p ψ p, 3 usando a Eq.. Mas, segundo a Eq. 0, a Eq. 3 tabé pode ser rearranjada assi: q ψ q dp ψ p p. Coo a Eq. deve ser válida para todos os bras q, segue dessa equação que: ψ dp ψ p p. 5 Logo, substituindo a Eq. 5 na Eq. resulta e: H 0 ψ P dp ψ p p dp ψ p P p dp ψ p p p, 6 já que os kets p são auto-estados do operador P. Veja que os núeros p que aparecera no integrando da Eq. 6 não pode ser fatorados para a 3

4 esquerda do sinal de integração, no segundo ebro dessa equação. Portanto, não é possível escrever H 0 ψ coo ua constante ultiplicando o estado ψ, provando que este não é u auto-estado de H 0. Passeos agora à evolução teporal do estado ψ. Sabeos que o operador evolução é dado por: U t, t 0 exp i t t 0 H 0. 7 Então, aplicando o operador da Eq. 7 no estado da Eq. 5, ve: ψ t U t, t 0 ψ dp ψ p U t, t 0 p dp ψ p exp i t t 0 H 0 p. 8 Mas, você certaente se lebra que: exp i t t 0 H 0 p n0 n0 i t t 0 n! n! onde utilizaos a Eq. 9 e o fato de que cuja iteração repetida resulta e: i t t 0 P p p p, 0 P n p p n p. n H n 0 p n p n p, 9 A Eq. 9 pode ser reescrita e teros de ua exponencial, ao invés de u soatório, e, assi: exp i t t 0 H 0 p exp i t t 0 p p. A substituição da Eq. de volta na Eq. 8 fornece: ψ t dp ψ p exp i t t 0 p p. 3 Note que t 0 é o instante e que a evolução teporal, a partir do estado ψ, coeça. Para siplificar a notação, vaos definir a variável τ, dada por: τ t t 0.

5 A função de onda coo função do tepo é dada e teros das Eqs., 3 e coo: ˆ + ψ q, t q ψ t dp ψ p exp i τp π + ipq. 5 Substituindo a Eq. na Eq. 5 resulta na transforada de Fourier que precisaos calcular: ˆ + p ψ q, t π 3/ dp exp p p i τp + ipq. 6 Veja agora o arguento da função exponencial da Eq. 6: isto é, p p i τp + ipq p p i τp + ipq p p + p p p i τp + ipq, p + i τ p + p + i q p p, ou seja, p p i τp + ipq αp + βp p, 7 onde, para siplificar, definios as constantes coplexas: e α β p + i τ 8 p + i q. 9 Podeos ainda copletar o quadrado do segundo ebro da Eq. 7: p p i τp + ipq α p βα p p α p β α β α p, 5

6 isto é, p p i τp + ipq α p β + β α α p. 30 Colocando a Eq. 30 de volta na Eq. 6 ve: exp β α ψ q, t p π 3/ p dp exp α p β. 3 α O resultado da integral da Eq. 3 é análogo ao da integral real da postage Integral da gaussiana e, portanto, ficaos co: β ψ q, t π / exp α p α p. 3 Podeos explicitar as quantidades α e β no arguento da exponencial da Eq. 3 utilizando as Eqs. 8 e 9: β α p p p p + i q + i τ + i q p p p p + i τ + i τ. 33 Agora vaos ultiplicar o nuerador e o denoinador do quociente obtido na Eq. 33 pelo coplexo conjugado do denoinador, para obter: β α p + i q p p i τ 6 p + τ + τ p 6 p. 3 Estaos anipulando essas equações para fazer co que o resultado final, para o pacote de ondas, seja expresso coo é usual nos livros-texto, isto é, coo ua gaussiana que se desloca co velocidade /, ultiplicada por ua onda plana que se desloca co velocidade /. Enfi, co vistas a chegar nessa resposta convencional, vaos ultiplicar o nuerador e o denoinador da Eq. 3 por p, obtendo: β α p + iq p i p τ + p τ p τ p. 35 6

7 Efetuando alguas operações algébricas, é possível siplificar u pouco o nuerador da Eq. 35: β α + i q q i p τ p p p τ p + p τ p i q q + i q q i p τ p p p τ isto é: β α p i q p q i τ q τq p + τ + p τ p, + τq + i p τq τ, + p τ p + i p τq + τ p p + i q i τ p p, ou seja: β α p q τ + i p τq + i p q i τ p + τ p p q τ + i p τq + i p q τ + τ p p + τ i τ p q τ + i p q τ + i p τq + i τ i τ p p, + τ p p ou ainda: β α p q τ + i p τ q + i p + τ p p q τ q τ i p τ i p τ τq + τ + i p + τ p p q τ 7

8 q τ i p τ i τ p + τ p p + i p q τ q τ. 36 Finalente, a Eq. 36 pode ser siplificada para ficar na fora que procurávaos encontrar: β α q τ i p τ + i q τ p + τ p p q τ i p τ + i q τ τ p p Substituindo a Eq. 37 de volta na Eq. 3 fornece: { } exp i q τ q τ ψ q, t exp π / p + i τ p i p τ + τ p p + τ p p, 38 onde tabé usaos a Eq. 8 e τ t t 0, coo definido na Eq.. Só para verificar, veja que quando toaos t t 0 na Eq. 38, obteos novaente a Eq. 7, coo deveria ser. Toeos agora o ódulo ao quadrado da Eq. 38: ψ q, t Integrando a Eq. 39 dá: π / + tt0 p p dq ψ q, t π exp + tt0 p p q tt0 + tt0 p p π / p + tt0 p, 0 ostrando que está noralizada, tabé coo deveria ser. O pacote dependente do tepo se alarga, pois podeos ver que a incerteza associada co a variável q, coo função do tepo, é dada por: q t p + t t 0 p q + t t 0 p, 8. 39

9 onde usaos a Eq. 6. A distribuição gaussiana da Eq. 39 se propaga no sentido positivo de q, co velocidade de grupo dada por / supondo que > 0. Já a função de onda da Eq. 38 te u fator que é ua onda plana que se propaga co a velocidade de fase dada por /, confore já havíaos adiantado acia. Note tabé, na Eq., que a incerteza da variável q, ou posição, é ínia para t t 0, sendo que o pacote se dispersa tanto para t > t 0, coo para t < t 0. É relevante tabé encionar que o efeito do alargaento para tepos anteriores ao instante de preparação, t 0, é se significado, pois não havia pacote então. 9

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 5 Eduardo T. D. Matsushita

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 5 Eduardo T. D. Matsushita PGF51 - MECÂNICA QUÂNTICA I (1) Resolução Coentada da Lista de Probleas 5 Eduardo T. D. Matsushita 1. Considere ua partícula de carga e no capo elétrico de ua carga puntifore de carga igual a Ze. A hailtoniana

Leia mais

Representação De Modelos de Sistemas Dinâmicos:

Representação De Modelos de Sistemas Dinâmicos: Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos,

Leia mais

Prof. Carlos R. Paiva Departamento de Engenharia Electrotécnica e de Computadores Instituto Superior Técnico

Prof. Carlos R. Paiva Departamento de Engenharia Electrotécnica e de Computadores Instituto Superior Técnico Prof. Carlos R. Paiva Departaento de Engenharia Electrotécnica e de Coputadores Instituto Superior Técnico y b z a x Seja (, u ipulso à entrada z = do guia de secção rectangular operado no odo fundaental

Leia mais

LFEB notas de apoio às aulas teóricas

LFEB notas de apoio às aulas teóricas LFEB notas de apoio às aulas teóricas 1. Resolução de equações diferenciais lineares do segundo grau Este tipo de equações aparece frequenteente e sisteas oscilatórios, coo o oscilador harónico (livre

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 8 59117 Física II Ondas, Fluidos e Terodinâica USP Prof. Antônio Roque Oscilações Forçadas e Ressonância Nas aulas precedentes estudaos oscilações livres de diferentes tipos de sisteas físicos. E ua oscilação

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 9. Oscilações Forçadas e Ressonância (continuação)

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 9. Oscilações Forçadas e Ressonância (continuação) 597 ísica II Ondas, luidos e Terodinâica USP Prof. Antônio Roque Oscilações orçadas e Ressonância (continuação) Nesta aula, vaos estudar o caso que coeçaos a tratar no início da aula passada, ou seja,

Leia mais

m v M Usando a conservação da energia mecânica para a primeira etapa do movimento, 2gl = 3,74m/s.

m v M Usando a conservação da energia mecânica para a primeira etapa do movimento, 2gl = 3,74m/s. FÍSICA BÁSICA I - LISTA 4 1. U disco gira co velocidade angular 5 rad/s. Ua oeda de 5 g encontrase sobre o disco, a 10 c do centro. Calcule a força de atrito estático entre a oeda e o disco. O coeficiente

Leia mais

Escoamento Cruzado sobre Cilindros e Tubos Circulares

Escoamento Cruzado sobre Cilindros e Tubos Circulares Exeplo resolvido (Holan 5-7) Ar a 0 o C e 1 at escoa sobre ua placa plana a 35 /s. A placa te 75 c de copriento e é antida a 60ºC. Calcule o fluxo de calor transferido da placa. opriedades avaliadas à

Leia mais

Álgebra Linear I - Aula 1. Roteiro

Álgebra Linear I - Aula 1. Roteiro Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação

Leia mais

Cap. 7 - Corrente elétrica, Campo elétrico e potencial elétrico

Cap. 7 - Corrente elétrica, Campo elétrico e potencial elétrico Cap. - Corrente elétrica, Capo elétrico e potencial elétrico.1 A Corrente Elétrica S.J.Troise Disseos anteriorente que os elétrons das caadas ais externas dos átoos são fracaente ligados ao núcleo e por

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x MATEMATICA APLICADA A NEGÓCIOS 4,?? 200) Cálculo Cálculo Diferencial e Integral I TEOREMA DO SANDUICHE LIMITES FUNDAMENTAL Jair Silvério dos Santos * Teorea 0 Dadas f, g, h : A R funções e 0 ponto de acuulação

Leia mais

OBMEP ª FASE - Soluções Nível 3

OBMEP ª FASE - Soluções Nível 3 OBMEP 008 - ª FASE - Soluções Nível 3 QUESTÃO 1 a) Só existe ua aneira de preencher o diagraa, coo ostraos a seguir. O núero 9 não pode ficar abaixo de nenhu núero, logo deve ficar no topo. Acia do núero

Leia mais

II Matrizes de rede e formulação do problema de fluxo de carga

II Matrizes de rede e formulação do problema de fluxo de carga Análise de Sisteas de Energia Elétrica Matrizes de rede e forulação do problea de fluxo de carga O problea do fluxo de carga (load flow e inglês ou fluxo de potência (power flow e inglês consiste na obtenção

Leia mais

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

Movimento oscilatório forçado

Movimento oscilatório forçado Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N

Leia mais

Teorema Chinês dos Restos

Teorema Chinês dos Restos Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher

Leia mais

Capítulo 10. Excitação Senoidal e Fasores

Capítulo 10. Excitação Senoidal e Fasores Capítulo 0 Excitação Senoidal e Fasores 0. Propriedades das Senóides: Onda senoidal: ( t) sen( t) v ω Aplitude Freqüência angular ω [rad/s] - π/ω π/ω t Senóide é ua função periódica: Período: T π/ω Freqüência:

Leia mais

Quantidade de movimento ou momento linear Sistemas materiais

Quantidade de movimento ou momento linear Sistemas materiais Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas

Leia mais

Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional

Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional Caio Vaz Rímoli Resumo: Partículas Livres não relativísticas estão entre os sistemas mais básicos e mais

Leia mais

Exemplo de carregamento (teleférico): Exemplo de carregamento (ponte pênsil): Ponte Hercílio Luz (Florianópolis) 821 m

Exemplo de carregamento (teleférico): Exemplo de carregamento (ponte pênsil): Ponte Hercílio Luz (Florianópolis) 821 m Exeplo de carregaento (teleférico: Exeplo de carregaento (ponte pênsil: Ponte Hercílio Luz (Florianópolis 81 Exeplo de carregaento (ponte pênsil: Golden Gate (EU 737 (vão central 18 kashi-kaikyo (Japão

Leia mais

Eletromagnetismo I. Aula 9

Eletromagnetismo I. Aula 9 Eletroagnetiso I Prof. Dr. R.M.O Galvão - 2 Seestre 214 Preparo: Diego Oliveira Aula 9 Solução da Equação de Laplace e Coordenadas Cilínicas e Esféricas Vaos ver coo a Equação de Laplace pode ser resolvida

Leia mais

São ondas associadas com elétrons, prótons e outras partículas fundamentais.

São ondas associadas com elétrons, prótons e outras partículas fundamentais. NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL II (MAF 0) Coordenação: Prof. Dr. Elias Calixto Carrijo CAPÍTULO 7 ONDAS I. ONDAS

Leia mais

Mecânica Newtoniana: Trabalho e Energia

Mecânica Newtoniana: Trabalho e Energia Mecânica Newtoniana: Trabalho e Energia 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-ail: walter@azevedolab.net 1 Trabalho Realizado por Ua Força Constante Considereos o sistea

Leia mais

Dinâmica Estocástica. Instituto de Física, novembro de Tânia - Din Estoc

Dinâmica Estocástica. Instituto de Física, novembro de Tânia - Din Estoc Dinâica Estocástica Instituto de Física, novebro de 06 Tânia - Din Estoc - 06 Modelo de Glauber-Ising a capo nulo Siulações de Monte Carlo Teorea central do liite & Modelo de Glauber-Ising Tânia - Din

Leia mais

Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente

Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente Aula de Física Atômica e molecular Operadores em Mecânica Quântica Prof. Vicente Definição Seja f uma quantidade física que caracteriza o estado de um sistema quântico. Os valores que uma dada quantidade

Leia mais

Módulo 3 Trabalho e Energia

Módulo 3 Trabalho e Energia ódulo 3 Trabalho e Energia Objetio: Verificar a conseração da energia ecânica Até os dias de hoje, nenhu eperiento conseguiu erificar nenhua iolação, por enor que seja, da lei de conseração da energia.

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS NOTA DE AULA 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL II (MAF 0) Coordenador: Prof. Dr. Elias Calixto Carrijo CAPÍTULO 16 OSCILAÇÕES

Leia mais

Unidade II 3. Ondas mecânicas e

Unidade II 3. Ondas mecânicas e Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://www.uern.br

Leia mais

A equação 20.1 é bastante geral, mas é possível encontrar uma expressão mais simples (e mais útil) no caso de hamiltonianas que tenham a forma:

A equação 20.1 é bastante geral, mas é possível encontrar uma expressão mais simples (e mais útil) no caso de hamiltonianas que tenham a forma: Teoria Quântica de Campos I 21 A equação 20.1 é bastante geral, mas é possível encontrar uma expressão mais simples (e mais útil) no caso de hamiltonianas que tenham a forma: ( eq. 21.1) Neste caso temos:

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 719-1 01. Ua pequena coluna de ar de altura h = 76 c é tapada por ua coluna de ercúrio através de u tubo vertical de altura H =15 c. A pressão atosférica é de 10 5 Pa e a teperatura é de T 0 = 17

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

Cinética Michaeliana [E] [A] é difícil de determinar em muitas situações, pelo que se. ) pode ser ajustada a uma. . É o valor máximo de

Cinética Michaeliana [E] [A] é difícil de determinar em muitas situações, pelo que se. ) pode ser ajustada a uma. . É o valor máximo de Cinética Michaeliana Diz-se que u enzia apresenta ua cinética Michaeliana sepre que a variação da velocidade inicial edida (v i ) pode ser ajustada a ua expressão da fora: v [E] 0 0 Cinética Michaeliana

Leia mais

x = Acos (Equação da posição) v = Asen (Equação da velocidade) a = Acos (Equação da aceleração)

x = Acos (Equação da posição) v = Asen (Equação da velocidade) a = Acos (Equação da aceleração) Essa aula trata de ovientos oscilatórios harônicos siples (MHS): Pense nua oscilação. Ida e volta. Estudando esse oviento, os cientistas encontrara equações que descreve o dito oviento harônico siples

Leia mais

Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas:

Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas: Teoria Quântica de Campos II 13 ( eq. 13.1 ) Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: ( eq. 13.2 ) Paremos aqui um momento para notar duas coisas: (1) As equações 10.1

Leia mais

Matemática D Extensivo V. 5

Matemática D Extensivo V. 5 ateática D Extensivo V. 5 Exercícios 01 B I. Falso. Pois duas retas deterina u plano quando são concorrentes ou paralelas e distintas. II. Falso. Pois duas retas pode ser perpendiculares ou paralelas a

Leia mais

Cap 16 (8 a edição) Ondas Sonoras I

Cap 16 (8 a edição) Ondas Sonoras I Cap 6 (8 a edição) Ondas Sonoras I Quando você joga ua pedra no eio de u lago, ao se chocar co a água ela criará ua onda que se propagará e fora de u círculo de raio crescente, que se afasta do ponto de

Leia mais

z o z (a) a atmosfera pode ser tratada como um gás ideal;

z o z (a) a atmosfera pode ser tratada como um gás ideal; Notas de aula 6 Dedução da lei de Maxwell para a distribuição de velocidades e u gás (Boltzann, 1876) FMT0259 - Terodinâica II (2010) Caren P C Prado, abril de 2010 (aula 8) Boltzann deduziu a distribuição

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geoetria Analítica e Álgebra Linear Ale Nogueira Brasil Faculdade de Engenharia Mecânica Universidade de Itaúna http://www.alebrasil.eng.br brasil@uit.br 0 de fevereiro de 00 Geoetria Analítica e Álgebra

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação e Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-ail: ricardo.henriques@ufjf.edu.br Aula Núero: 18 Conceitos fundaentais e CA FORMAS

Leia mais

281 educação, ciência e tecnologia

281 educação, ciência e tecnologia 8 CONCEITOS TEÓRICOS SOBRE FIGURAS MULTIDIMENSIONAIS A MATEMÁTICA IMPLÍCITA DE PITÁGORAS A FERMAT HOMAM ASAFKAN * PARTE I INTRODUÇÃO Breve Histórico que nos Reete às Figuras Multidiensionais O ateático

Leia mais

Gabarito Lista 5. f(x)dx ponto-a-ponto denindo: x c. 1 se x c. x c. O monopolista irá cobrar a transferência que deixa o tipo x = c + 1 λ

Gabarito Lista 5. f(x)dx ponto-a-ponto denindo: x c. 1 se x c. x c. O monopolista irá cobrar a transferência que deixa o tipo x = c + 1 λ Professor: Lucas Maestri Microeconoia III Monitor: Pedro Solti EPGE / EBEF - 1 Gabarito Lista 1 O problea do onopolista é: ax Ix Ix x c 1 F x fxdx fx O onopolista axiiza escolhendo o valor da função Ix.

Leia mais

Conversão de Energia II

Conversão de Energia II Departaento de Engenharia Elétrica Aula 2.4 Máquinas Rotativas Prof. João Aérico Vilela Torque nas Máquinas Síncronas Os anéis coletores da áquina síncrono serve para alientar o enrolaento de capo (rotor)

Leia mais

Comecemos por recordar que neste jogo há um tabuleiro

Comecemos por recordar que neste jogo há um tabuleiro ATRACTOR O triângulo de Sierpinski e as Torres de Hanói No âbito de ua colaboração entre a Gazeta e o Atractor, este é u espaço da responsabilidade do Atractor, relacionado co conteúdos interativos do

Leia mais

2 Flambagem Viscoelástica

2 Flambagem Viscoelástica 2 Flabage Viscoelástica ste capítulo apresenta alguns conceitos relacionados à viscoelasticidade linear e à instabilidade de sisteas estruturais viscoelásticos. Co o eprego de exeplos siples, os conceitos

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 EXAME - ÉPOCA NORMAL 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 26 de Janeiro 2005 Duração: 2 horas + 30 in tolerância Indique

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos 1 P.380 Dados: t s; F 0 N Intensidade: I F t 0 I 40 N s Direção: a esa da força ertical Sentido: o eso da força de baixo para cia P.381 Dados: 0,6 kg; g 10 /s ; t 3 s P g 0,6 10 P 6 N Intensidade do ipulso:

Leia mais

Secção 3. Aplicações das equações diferenciais de primeira ordem

Secção 3. Aplicações das equações diferenciais de primeira ordem 3 Aplicações das equações diferenciais de prieira orde Secção 3 Aplicações das equações diferenciais de prieira orde (Farlow: Sec 23 a 26) hegou a altura de ilustrar a utilidade prática das equações diferenciais

Leia mais

MAT 130- EQUAÇÔES DIFERENCIAIS E APLICAÇÕES Professor Oswaldo Rio Branco de Oliveira Período: Primeiro Semestre de 2013

MAT 130- EQUAÇÔES DIFERENCIAIS E APLICAÇÕES Professor Oswaldo Rio Branco de Oliveira Período: Primeiro Semestre de 2013 MAT 130- EQUAÇÔES DIFERENCIAIS E APLICAÇÕES Professor Oswaldo Rio Branco de Oliveira Período: Prieiro Seestre de 2013 EQUAÇÕES DE ORDEM 2 E COEFICIENTES VARIÁVEIS - TEOREMAS DE EXISTÊNCIA E UNICIDADE.

Leia mais

FORMAS DE ONDA E FREQÜÊNCIA

FORMAS DE ONDA E FREQÜÊNCIA A1 FORMAS DE ONDA E FREQÜÊNCIA Ua fora de onda periódica é ua fora de onda repetitiva, isto é, aquela que se repete após intervalos de tepo dados. A fora de onda não precisa ser senoidal para ser repetitiva;

Leia mais

Habilidades com Somatórios

Habilidades com Somatórios S E M I N O G A I D A Á L R I O Habilidades co Soatórios Luís Cruz-Filipe 5 o ano da LMAC Ciência da Coputação lcf@ath.ist.utl.pt 4 de Outubro de 000 Palavras Chave soatório, característica, notação de

Leia mais

Teoria Elementar da Fotodetecção 1

Teoria Elementar da Fotodetecção 1 Prof. Carlos R. Paiva Departaento de Engenharia Electrotécnica e de Coputadores Instituto Superior Técnico Março de 6 Teoria Eleentar da Fotodetecção. Introdução A fotodetecção é u dos processos fundaentais

Leia mais

Integral de Trajetória de Feynman

Integral de Trajetória de Feynman Teoria Quântica de Campos II 7 No estado fundamental, ou vácuo, defindo por a energia é: Energia de ponto zero ou do vácuo Podemos definir um hamiltoniano sem esta energia de ponto zero, definindo o ordenamento

Leia mais

O PROBLEMA DO MOVIMENTO

O PROBLEMA DO MOVIMENTO O PROBLEMA DO MOVIMENTO O problea do oiento pode se resuir na deterinação da elocidade e da direção de u objeto óel, nu deterinado instante. Você já está acostuado a deterinar a elocidade édia de u objeto

Leia mais

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos.

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos. Escala na Biologia Na natureza há ua grande variação dos taanhos dos seres vivos O copriento característico de u ser vivo é definido coo qualquer copriento conveniente para cálculos aproxiados Exeplos:

Leia mais

Níveis de Impureza em um Fio Quântico Cilíndrico com Barreira de Potencial Infinito na Presença de um Campo Magnético

Níveis de Impureza em um Fio Quântico Cilíndrico com Barreira de Potencial Infinito na Presença de um Campo Magnético Níveis de Ipureza e u Fio Quântico Cilíndrico co Barreira de Potencial Infinito na Presença de u Capo Magnético MOEIA, odrigo Alves; CUZ, Ana osa; MACHADO, Paulo César Miranda Escola de Engenharia Elétrica

Leia mais

1 [25] Fatos possivelmente úteis:

1 [25] Fatos possivelmente úteis: TT1 Mateática Aplicada II Curso de Engenharia Abiental Departaento de Engenharia Abiental UFPR P1, 18 Set 29 Prof. Nelson uís Dias GABARITO 1 [25] Fatos possivelente úteis: + = f Z (,y) (z) = f Z,X,Y (z,,

Leia mais

CONCURSO PÚBLICO EDITAL Nº 03 / 2016

CONCURSO PÚBLICO EDITAL Nº 03 / 2016 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA Avenida Rio Branco, 5 Santa Lúcia 956-55 Vitória ES 7 3357-75 CONCURSO PÚBLICO EDITAL Nº 3 / 16 Professor do Magistério do Ensino Básico,

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017 MESTRDO INTEGRDO EM ENG. INFORMÁTIC E COMPUTÇÃO 2016/2017 EIC0010 FÍSIC I 1o NO, 2 o SEMESTRE 30 de junho de 2017 Noe: Duração 2 horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Problema: incidência oblíqua de onda EM na interface entre dois meios - polarização paralela e perpendicular

Problema: incidência oblíqua de onda EM na interface entre dois meios - polarização paralela e perpendicular Problea: incidência oblíqua de onda EM na interface entre dois eios - polarização paralela e perpendicular Ua onda plana se propaga no ar (eio co fasor do capo elétrico definido por: Ei( xz ( Eix i_ Eiyj_

Leia mais

Força impulsiva. p f p i. θ f. θ i

Força impulsiva. p f p i. θ f. θ i 0.1 Colisões 1 0.1 Colisões Força ipulsiva 1. Ua pequena esfera de assa colide co ua parede plana e lisa, de odo que a força exercida pela parede sobre ela é noral à superfície da parede durante toda a

Leia mais

Dinâmica de um sistema de partículas

Dinâmica de um sistema de partículas Capítulo Dinâmica de um sistema de partículas. Colisões elásticas de duas partículas em duas dimensões O objetivo é aplicar os teoremas de conservação para o estudo das colisões elásticas de duas partículas.

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos 1 T.318 Resposta: b y E ec.(o) E ec.() 0 0 gh 0 gh gh h O 0 x Q 0 Q gh T.319 Resposta: e De E C, e: E C. Portanto: E C Q Sendo E C 0 J e Q 0 N s, resulta: 0 ( 0) 10 kg De Q, teos: 0 10,0 /s T.30 Resposta:

Leia mais

INTRODUÇÃO ÀS FINANÇAS TAXAS NOMINAIS vs EFECTIVAS TAXAS EQUIVALENTES PARA PERÍODOS DIFERENTES TAE E TAEG

INTRODUÇÃO ÀS FINANÇAS TAXAS NOMINAIS vs EFECTIVAS TAXAS EQUIVALENTES PARA PERÍODOS DIFERENTES TAE E TAEG INTRODUÇÃO ÀS FINANÇAS TAXAS NOMINAIS vs EFECTIVAS TAXAS EQUIVALENTES PARA PERÍODOS DIFERENTES TAE E TAEG 2006. António Goes Mota, Cleentina Barroso, Helena Soares e Luís Laureano. Taxas Noinais vs Efectivas

Leia mais

Olimpíada Brasileira de Física das Escolas Públicas 2013

Olimpíada Brasileira de Física das Escolas Públicas 2013 Olipíada Brasileira de Física das Escolas Públicas 013 1 Fase 1 e anos B.1) s t t 0, é a função horária da posição do M U V, onde s v s e a s 0 0 ; 0 0 / / e a partir dela sabeos que a função horária da

Leia mais

Quantização por Integrais de Trajetória:

Quantização por Integrais de Trajetória: Teoria Quântica de Campos I 14 Representações Fermiônicas: é possível mostrar que existem representações impossíveis de se obter através do simples produto de Λ s. Em especial o objeto: ( eq. 14.1 ) Matrizes

Leia mais

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.

Uma EDO Linear de ordem n se apresenta sob a forma: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6. 6. EDO DE ORDEM SUPERIOR SÉRIES & EDO - 2017.2 Ua EDO Linear de orde n se apresenta sob a fora: a n (x) y (n) + a n 1 (x) y (n 1) + + a 2 (x) y 00 + a 1 (x) y 0 + a 0 (x) y = b (x) ; (6.1) onde os coe

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016 UNIVESIDADE FEDEAL DO IO DE JANEIO INSTITUTO DE FÍSICA Fisica I 2016/1 Segunda Chaada (SC) 1/8/2016 VESÃO: SC As questões discursivas deve ser justificadas! Seja claro e organizado. Múltipla escolha (6

Leia mais

Capítulo I Noções básicas sobre incertezas em medidas (cont.) Capítulo II Propagação de erros

Capítulo I Noções básicas sobre incertezas em medidas (cont.) Capítulo II Propagação de erros Técnicas Laboratoriais de Física Lic. Física e Eng. Bioédica 2007/08 Capítulo I Noções básicas sobre incertezas e edidas (cont.) Discrepância entre duas edidas da esa grandeza Incerteza e edidas directas:

Leia mais

Rotação de Wick para o tempo Euclideano

Rotação de Wick para o tempo Euclideano Teoria Quântica de Campos I 81 só temos a parte de aniquilação no futuro livre é autovalor de Como verificamos que isto é o mesmo que as condições 75.1. O que ganhamos fazendo de novo este caminho? Para

Leia mais

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas.

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas. ONDAS I Cap 16: Ondas I - Prof. Wladiir 1 ONDAS l 16.1 Introdução Ondas são perturbações que se propaga transportando energia. Desta fora ua úsica a iage nua tela de tv a counicações utilizando celulares

Leia mais

III Introdução ao estudo do fluxo de carga

III Introdução ao estudo do fluxo de carga Análise de Sisteas de Potência (ASP) ntrodução ao estudo do fluxo de carga A avaliação do desepenho das redes de energia elétrica e condições de regie peranente senoidal é de grande iportância tanto na

Leia mais

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico 1 MECÂNICA CLÁSSICA AULA N o 5 Aplicações o Lagrangeano Trajetória no Espaço e Fases para o Pênulo Harônico Vaos ver três eeplos, para ostrar a aior faciliae a aplicação o Lagrangeano, quano coparaa ao

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Olimpíada Brasileira de Física das Escolas Públicas Fase

Olimpíada Brasileira de Física das Escolas Públicas Fase Olipíada rasileira de Física das Escolas Públicas 01 Resolução Coentada 1 Fase.1) Prieira para copreenderos elhor vaos localizar os dois óveis e na trajetória, confore as suas equações. at s s0 vat e s

Leia mais

Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N.

Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N. Questão 37 a) 0N. d) 5N. b) 15N. e),5n. c) 10N. U corpo parte do repouso e oviento uniforeente acelerado. Sua posição e função do tepo é registrada e ua fita a cada segundo, a partir do prieiro ponto à

Leia mais

Gabarito - Lista de Exercícios 2

Gabarito - Lista de Exercícios 2 Gabarito - Lista de Exercícios Teoria das Filas Modelos Adicionais. U escritório te 3 datilógrafas e cada ua pode datilografar e édia, 6 cartas por hora. As cartas chega para sere datilografadas co taxa

Leia mais

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são:

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são: MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 018/019 EIC0010 FÍSICA I 1º ANO, º SEMESTRE 18 de junho de 019 Noe: Duração horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Exame de Conhecimentos em Física

Exame de Conhecimentos em Física Prograa de Pós-Graduação Processo de Seleção 1 o Seestre de 01 Exae de Conhecientos e Física Candidato(a: Curso: Mestrado Doutorado Observações: O Exae de Conhecientos e Física consiste e 0 questões objetivas.

Leia mais

Docente Marília Silva Soares Ano letivo 2012/2013 1

Docente Marília Silva Soares Ano letivo 2012/2013 1 Ciências Físico-quíicas - 9º ano de Unidade 1 EM TRÂNSITO 1 Movientos e suas características 1.1. O que é o oviento 1.2. Grandezas físicas características do oviento 1.3. Tipos de Moviento COMPETÊNCIAS

Leia mais

Oscilações e Ondas Oscilações forçadas

Oscilações e Ondas Oscilações forçadas Oscilações e Ondas Oscilações forçadas Oscilações e Ondas» Oscilações forçadas 1 Oscilações livres e forçadas Exainaos até aqui a dinâica de osciladores harônicos e oviento a partir de ua condição inicial

Leia mais

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012 Fenôenos de Transporte Aula 1 do segundo seestre de 01 Para calcularos a aceleração da gravidade pode-se recorrer a fórula: g 980,616,598cos 0,0069 latitude e graus H altitude e quilôetros g aceleração

Leia mais

Exercícios de Telecomunicações 2

Exercícios de Telecomunicações 2 Departaento de Engenharia Electrotécnica e de Coputadores Exercícios de Telecounicações (004-005) Sílvio A. Abrantes Foratação de fonte (aostrage e PCM) 1.1. A densidade espectral de potência de ua ensage

Leia mais

DISTORÇÕES PROVOCADAS POR AGRUPAR ATIVIDADES E RECURSOS NO SISTEMA ABC

DISTORÇÕES PROVOCADAS POR AGRUPAR ATIVIDADES E RECURSOS NO SISTEMA ABC DISTORÇÕES PROVOCADAS POR AGRUPAR ATIVIDADES E RECURSOS NO SISTEMA ABC Edson de Oliveira Paplona, Dr. Escola Federal de Engenharia de Itajubá, Departaento de Produção - Av. BPS, 1303 - Itajubá-MG CEP:

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

Exs.: 3, 4, 5, 8, 11, 19, 41, 42, 47, 51, 53, 55, 56, 58, 59

Exs.: 3, 4, 5, 8, 11, 19, 41, 42, 47, 51, 53, 55, 56, 58, 59 CAPÍTULO 30: Física Nuclear Alguas Propriedades dos Núcleos Carga e Massa O Taanho dos Núcleos stabilidade Nuclear nergia de Ligação Radioatividade Os Processos de Decaiento Radioativo O Decaiento Alfa,

Leia mais

Propagação de erros. independentes e aleatórios

Propagação de erros. independentes e aleatórios TLF 010/11 Capítulo V Propagação de erros independentes e aleatórios 5.1. Propagação da Incerteza na Soa ou Dierença. Liite superior do Erro. 50 5.. Propagação da Incerteza no Produto ou Diisão. Liite

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

TÓPICOS. Matriz pseudo-inversa. 28. Quadrados mínimos e projecção num subespaço. 1 W. , temos, neste caso,

TÓPICOS. Matriz pseudo-inversa. 28. Quadrados mínimos e projecção num subespaço. 1 W. , temos, neste caso, Note be: a leitura destes apontaentos não dispensa de odo algu a leitura atenta da bibliografia principal da cadeira Chaa-se a atenção para a iportância do trabalho pessoal a realizar pelo aluno resolvendo

Leia mais

Astrophysical Quantities by Allen, C-W, the Athlone Press, Univ. of London Prof. Sing IAG USP. ε m ke sec

Astrophysical Quantities by Allen, C-W, the Athlone Press, Univ. of London Prof. Sing IAG USP. ε m ke sec Astrophysical Quantities by Allen, C-W, the Athlone Press, Univ of London 1973 Prof Sing IAG USP esi 160217733 10 19 1 coul 729705322 10 3 ε 0 8854187817 10 12 farad p 167261 10 27 kg 137041620754 e 91093897

Leia mais

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P3 DE ELETROMAGNETISMO 7..0 quarta-feira Noe : Assinatura: Matrícula: Tura: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é peritido destacar folhas da prova

Leia mais

O poço de potencial finito

O poço de potencial finito O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para

Leia mais

11. Indutância Auto-Indutância Circuitos RL Energia num Campo Magnético Indutância Mútua

11. Indutância Auto-Indutância Circuitos RL Energia num Campo Magnético Indutância Mútua 11. Indutância 11.1. Auto-Indutância 11.. Circuitos 11.3. Energia nu Capo Magnético 11.4. Indutância Mútua 9 Induze-se correntes e fes, nu circuito, quando o φ através do circuito varia co o tepo. Auto-indução:

Leia mais

Unidade II - Oscilação

Unidade II - Oscilação Unidade II - Oscilação fig. II.1. Exeplos de oscilações e osciladores. 1. Situando a Teática O propósito desta unidade teática é o de introduzir alguas ideias sobre oscilação. Estudareos o oviento harônico

Leia mais

Força Magnética ( ) Gabarito: Página 1. F = -k x F = -k (C 0) F = -5 C. II. F tem o mesmo sentido do vetor campo

Força Magnética ( ) Gabarito:  Página 1. F = -k x F = -k (C 0) F = -5 C. II. F tem o mesmo sentido do vetor campo orça Magnética -k x -k (C ) -5 C II Gabarito: O gráfico registra essas forças, e função do deslocaento: Resposta da questão : Coo as partículas estão etrizadas positivaente, a força étrica te o eso sentido

Leia mais