A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1"

Transcrição

1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste bjet? B) Quantas arestas tem este bjet? C) Qual a área da superfície deste bjet? A) O vlume de cada blc é igual à área da base multiplicada pela altura, ist é, 4 = 4 cm 3. O vlume d bjet frmad pr estes blcs é igual à sma ds vlumes ds blcs, u seja, é 4 4 = 6 cm 3. Para apresentar a sluçã ds itens (b) e (c), vams imaginar bjet clcad sbre uma mesa, na psiçã indicada na figura. B) Cntams arestas em cntat cm a mesa, utras na parte superir d bjet e arestas perpendiculares à mesa, num ttal de + + = 36 arestas. C) A superfície d bjet em cntat cm a mesa cnsiste de quatr retânguls de área 4 = 4 cm cada um; mesm acntece cm a parte superir d bjet. As faces perpendiculares à mesa sã quatr retânguls de área 4 = 4 cm, utrs quatr de área 3 = 3 cm e quatr quadrads de área = cm. Assim, a área da superfície d bjet é = 64 cm. QUESTÃO. A seqüência 0, 3, 7, 0, 4, 7,,... é frmada a partir d numer 0 smand-se alternadamente 3 u 4 a term anterir, ist é: primeir term é 0, segund é 3 mais primeir, terceir é 4 mais segund, quart é 3 mais terceir, quint é 4 mais quart e assim sucessivamente. A) Escreva s 0 primeirs terms desta seqüência. B) Qual é 000 term desta seqüência? C) Algum term desta seqüência é igual a 000? Pr quê? A) Seguind a lei de frmaçã da seqüência, s 0 primeirs terms sã 0, 3, 7, 0, 4, 7,, 4, 8, 3, 35, 38, 4, 45, 49, 5, 56, 59, 63 e 66.

2 Para s itens (B) e (C), bservams que a seqüência dada pde ser decmpsta em duas seqüências, cm segue: (i) a seqüência I ds terms de rdem ímpar: 0, 7, 4,,. Esta seqüência cnsiste ds múltipls de 7; seu term geral é 7n para n 0. (ii) a seqüência P ds terms de rdem par: 3, 0, 7., 4,. Esta seqüência cnsiste ds múltipls de 7 smads cm 3; seu term geral é 7n + 3 para n 0. B) Cm 000 é par, vems que 000 term da seqüência riginal é 500 term da seqüência P. Este term crrespnde a n = 499, uma vez que primeir term de P crrespnde a n = 0. Lg, term prcurad é = C) Tems que 000 = Lg 000 nã pde ser escrit nem na frma 7n nem na frma 7 n + 3 para algum n 0, e prtant 000 nã é um term da seqüência, Outra maneira de reslver este item é ntar que as as sluções das equações 000 = 7n e 000 = 7n + 3 nã sã númers naturais. QUESTÃO 3. Numa certa cidade existem apenas duas empresas de táxi, a Dna Lepldina e a Dm Pedr II. A empresa Dna Lepldina cbra uma taxa fixa de R$3,00 reais mais R$0,50 pr quilômetr rdad. Já Dm Pedr II cbra uma taxa fixa de R$,00 mais R$0,75 pr quilômetr rdad. Os amigs Bent, Sfia e Helena trabalham nesta cidade e sempre vltam de taxi d trabalh para casa. Para pagar mens, Helena sempre usa s taxis da Dna Lepldina e, pel mesm mtiv, Bent só usa s da Dm Pedr II. Sfia usa s taxis das duas empresas, prque paga mesm preç em ambas. A) Quant Sfia paga para ir de táxi d trabalh para casa? B) Qual ds três amigs percrre, de táxi, a menr distância entre seu trabalh e sua casa? Segue imediatamente d enunciad que cust de uma crrida de x quilômetrs é 3 + 0,5x reais na Dna Lepldina e + 0,75x na Dm Pedr II. Um pnt a ser discutid aqui é se devems pensar em x cm um númer inteir u cm um númer real, pis taxímetr avança a cada quilômetr rdad, ignrand frações de quilômetr. A sluçã apresentada abaix supõe que x seja um númer real, u seja, que taxímetr rda cntinuamente, mas vale (cm pequenas mudanças) para cas em que restringims x as inteirs. A) Seja s a distância entre lcal de trabalh e a casa de Sfia. Cm Sfia paga mesm valr em ambas as empresas segue que 3 + 0,5 = + 0,75s, dnde s = 8. Lg Sfia paga 3 + 0,5 8 = 7 reais pela crrida. [Se pensarms em s cm um númer inteir, a cnclusã é que Sfia percrre de táxi pel mens 8 quilômetrs mas mens de 9 quilômetrs de seu trabalh até sua casa.] B) Sejam agra b e h, respectivamente, as distâncias entre lcal de trabalh e as casas de Bent e Helena. Cm Helena paga mens usand s táxis da Dna Lepldina, tems 3 + 0,5h < + 0, 75h, dnde 0,5h >, u seja, h > = 8. 0,5 Analgamente, cm Bent paga mens usand s táxis da Dm Pedr, tems 3 + 0,5b > + 0, 75b, e cncluíms que b < 8. Deste md, a crrida de Bent d trabalh para casa nã chega a 8 quilômetrs, e é ele quem percrre a menr distância

3 [Se pensarms em b e h cm númers inteirs, a cnclusã é que a crrida de táxi de Bent é de mens de 8 quilômetrs, enquant que a de Helena é de pel mens 9 quilômetrs.] QUESTÃO 4. Um prefeit quer cnstruir uma praça quadrada de 0m de lad, que terá canteirs triangulares de pedra e um canteir quadrad de grama, cm na figura. O prefeit ainda nã decidiu qual será a área d canteir de grama, e pr iss cmpriment deste segment AB está indicad pr x na figura. A) Calcule a área d canteir de grama para x =. B) Escreva a expressã sa área d canteir de grama em funçã de x. Sabe-se que canteir de grama custa R$ 4,00 pr metr quadrad e s canteirs de pedra custam R$ 3,00 pr metr quadrad. Use esta infrmaçã para respnder s dis itens a seguir:. C) Qual a menr quantia que prefeit deve ter para cnstruir s cincs canteirs? D) Se prefeit tem apenas R$358,00 para gastar cm s cincs canteirs, qual é a a área d mair canteir de grama que a praça pderá ter? A) Cada canteir triangular é um triângul retângul de catets x e 0 x ; quand x =, estes 8 catets valem e 8. Lg a área de cada canteir é = 8 m. Cm a área ttal da praça é 00 m segue que a área d canteir central é = 68 m. B) Cada canteir triangular é um triângul retângul de catets x e 0 x, tend assim área de x(0 x) m. Cm a área ttal da praça é 00 m, segue que a área d canteir central é 00 4 x (0 x) = x 0x + 00 m Pde-se também ntar que lad L d canteir de grama é a hiptenusa de um triângul retângul de catets x e 0 x. A área deste canteir é L. Pel terema de Pitágras, tems cm antes. C) O cust ttal ds canteirs é igual a O cust d canteir de grama é L = x + (0 x) = x x + x = x 0x + 00 cust d canteir de grama + 4 (cust de um canteir de pedra) 4(x 0x + 00) reais e de um canteir de pedra é 3 x(0 x) reais. Designand pr c(x) cust ttal ds canteirs em funçã de x, tems c ( x) = 4 (x 0x + 00) x(0 x) = x x + O gráfic da funçã c é a parábla representada a lad (atençã: este é apenas um esbç d gráfic, sem respeitar a escala a lng d eix ds y). O

4 valr mínim de c é assumid quand x = c(5) = = 350 reais. 0 = 5 ; cust mínim é entã D) Se prefeit cnstruir uma praça cuj canteir de grama tem área de a m, entã cust ttal da praça é 4 a + 3(00 a) = a reais. Vems assim que cust cresce quand a cresce, e deste md a área máxima d canteir de grama crrespnde a máxim que prefeit pde gastar, que é R$358,00. Neste cas tems a equaçã a = 58, dnde mair canteir de grama que prefeit pde cnstruir tem àrea de 58 m. QUESTÃO 5. Em um jg cada participante recebe um cartã cm 4 númers distints de a 0, dispsts em duas linhas e duas clunas. Os númers sã sucessivamente srteads de uma caixa que cntém 0 blas idênticas, que fram numeradas de a 0. Ganha participante que fr primeir a ter srteads dis númers de uma linha u dis númers de uma cluna. A) Os cartões 5 3 e 3 5 ganha também. Descreva tds s cartões equivalentes a sã equivalentes, prque se um deles ganha jg entã utr 5 B) Qual é a prbabilidade de que cartã ganhe lg na segunda bla srteada? 3 SOLUÇÃO: A) Dis cartões sã equivalentes quand suas linhas e clunas sã cmpstas pels mesms quatr 7 pares de númers. N cas d cartã, s quatr pares sã (7,), (,4), (4,9) e (9,7). Os utrs 9 4 cartões que pssuem estes mesms pares em suas linhas e clunas sã: ,,,,, e B) Sluçã : Existem 0 maneiras de srtear a primeira bla. Uma vez srteada a primeira bla, há 9 maneiras de srtear a segunda (pis nã há númers iguais ns cartões). Pel Princípi Fundamental da Cntagem, há 0 9 maneiras de srtear s dis primeirs númers. Este é 5 númer ttal de cass pssíveis para experiment. Para que cartã ganhe lg na 3 segunda bla srteada, s dis númers srteads devem frmar uma de suas linhas u clunas, em númer de quatr. Cm há duas maneiras de srtear uma linha u uma cluna, númer de 8 cass favráveis é 8. Lg, a prbabilidade pedida é = Sluçã : Para que cartã ganhe na segunda bla srteada, a primeira bla deve ter um ds 4 4 númers d cartã. Cm há 0 blas, a prbabilidade de ist crrer é =. Além diss, 0 5 númer da segunda bla deve ser um ds dis númers que estã na linha u na cluna d primeir; cm agra restam 9 blas na caixa, a prbabilidade dist crrer é 9. Assim, a prbabilidade d cartã ganhar lg na segunda bla srteada é =

5 Sluçã 3: Pdems pensar ns dis primeirs númers srteads cm um subcnjunt de dis 0 0! elements ds númers de a 0, que sã em númer de 0 9. Este é númer = =!8! ttal de cass pssíveis para este experiment. Pr utr lad, númer de cass favráveis é 4, que é númer de pares d cartã que estã na mesma linha u na mesma cluna. Deste md, a 4 prbabilidade pedida é = QUESTÃO 6. Capitu crtu uma flha de papel retangular em 9 quadrads de lads, 4, 7, 8, 9, 0, 4, 5 e 8 centímetrs cada um. a) Qual era a área da flha antes de ser crtada? b) Quais eram as medidas da flha antes de ser crtada? c) Capitu precisa mntar a flha de nv. Ajude-a mstrand, cm um desenh, cm fazer esta mntagem. A) A área da flha era igual a sma das áreas ds nve quadrads, que é = 056 cm B) Sejam a e b as dimensões da flha, cm a b. Cm a área de um retângul é prdut de suas dimensões, tems ab = 056. Além diss, cm as medidas ds lads ds quadrads sã númers inteirs, segue que a e b devem ser númers inteirs. Observams, finalmente, que a e b devem ser maires u iguais a 8, pis um ds quadrads em que a flha fi crtada tem lad cm esta medida. Cm a e b sã divisres de 056, a fatraçã em fatres prims 056 = 5 3 ns x y z mstra que a e b sã da frma 3, nde x, y e z sã inteirs tais que 0 x 5,0 y e 0 z. Lembrand que ab = 056 e que a e b sã maires que 8, btems s seguintes pssibilidades: a b = 4 3 = = 4 = 44 5 = 3 3 = 33 Tems agra que decidir quais destas pssibiliidades pdem crrer cm medidas da flha. Cm mair quadrad tem lad 8, que é menr que, 4 e 3, vems que nenhum quadrad pde encstar ns dis lads de cmpriment b da flha. Ist quer dizer que b pde ser express de duas maneiras cm uma sma na qual as parcelas sã medidas ds lads ds quadrads, send que (i) nã há parcelas repetidas em nenhuma das duas expressões e (ii) nã há parcelas cmuns às duas expressões. Este argument mstra que b , u seja, b 86. Lg b 43 e a única pssibilidade é b = 33. Segue que as dimensões da flha eram a = 3 e b = 33. Existem utras maneiras de eliminar s pares (,48) e (4,44), usand argument acima e mstrand, pr exempl, que nã existem duas maneiras de escrever e 4 cm sma ds lads ds quadrads de duas maneiras cm parcelas distintas e sem parcelas cmuns. Esta sluçã depende d fat de que, em qualquer decmpsiçã de um retângul em quadrads, s lads ds quadrads sã necessariamente paralels a um ds lads d retângul. Um argument intuitiv para demnstrar este fat cnsiste em selecinar um vértice d retângul e bservar que quadrad a qual este vértice pertence tem seus lads apiads sbre s lads d retângul. Qualquer quadrad que tca este primeir quadrad (mesm que em apenas um vértice) tem seus lads necessariamente paralels as lads d retângul, pis cas cntrári teríams

6 ânguls diferentes de 90 u 80 na decmpsiçã, e estes ânguls nã pdem ser preenchids cm quadrads. B) A única pssibilidade (a mens de rtações e simetrias) é mstrada abaix:

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

10. Escreva um programa que leia um texto e duas palavras e substitua todas as ocorrências da primeira palavra com a segunda palavra.

10. Escreva um programa que leia um texto e duas palavras e substitua todas as ocorrências da primeira palavra com a segunda palavra. Lista de Exercícis: Vetres, Matrizes, Strings, Pnteirs e Alcaçã Obs: Tdas as questões devem ser implementadas usand funções, pnteirs e alcaçã 1. Faça um prgrama que leia um valr n e crie dinamicamente

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

Lista de exercícios Conceitos Fundamentais

Lista de exercícios Conceitos Fundamentais Curs: Engenharia Industrial Elétrica Disciplina: Análise Dinâmica Prfessr: Lissandr Lista de exercícis Cnceits Fundamentais 1) Em um circuit trifásic balancead a tensã V ab é 173 0 V. Determine tdas as

Leia mais

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de

Leia mais

Seminários de Ensino de Matemática 25/08/09

Seminários de Ensino de Matemática 25/08/09 Semináris de Ensin de Matemática 25/08/09 Encntrand caminhs mínims cm blhas de sabã 1. O prblema da menr malha viária Jsé Luiz Pastre Mell jlpmell@ul.cm.br O caminh mais curt ligand dis pnts n plan euclidian

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

EB de. Nome. Data. Tarefa 1

EB de. Nome. Data. Tarefa 1 Tarefa 1 Material: Flha de papel cm a reprduçã de páginas de um livr de histórias (anex); Na flha de papel estã reprduzidas 4 páginas da história O Rapaz ds Hippótams. Observa essas páginas cm atençã e

Leia mais

As várias interpretações dos Números Racionais

As várias interpretações dos Números Racionais As várias interpretações ds Númers Racinais (Algumas das tarefas apresentadas a seguir fram retiradas u adaptadas da Tese de Dutrament de Maria Jsé Ferreira da Silva, cuj text se encntra n seguinte endereç:

Leia mais

, cujos módulos são 3N. Se F A

, cujos módulos são 3N. Se F A VTB 008 ª ETAPA Sluçã mentada da Prva de Física 0. nsidere duas frças, F A e F B, cujs móduls sã 3N. Se F A e F B fazem, respectivamente, ânguls de 60 e cm eix-x ( ângul é medid n sentid anti-hrári em

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

OBMEP NÍV. 6)A figura é composta de triângulos retângulos isósceles todos iguais. Qual é a área em 2. 30 cm

OBMEP NÍV. 6)A figura é composta de triângulos retângulos isósceles todos iguais. Qual é a área em 2. 30 cm NÍV NÍVEL 7 a Lista 1) Qual é mair ds númers? (A) 0 006 (B) 0+6 (C) + 0 006 (D) (0+ 6) (E) 006 0 + 0 6 ) O símbl representa uma peraçã especial cm númers. Veja alguns exempls = 10, 8 = 7, 7 = 11, 5 1 =

Leia mais

PAGQuímica 2011/1 Exercícios de Cinética Química

PAGQuímica 2011/1 Exercícios de Cinética Química PAGQuímica 211/1 Exercícis de Cinética Química 1 2. 3. 4. 5. Explique se cada uma das alternativas abaix é crreta u nã, para reações químicas que crrem sem que haja variaçã de temperatura e pressã: a)

Leia mais

111 OJ OJ. o que você entende por: "Fulano é um zero à esquerda"? OJOJ OJ. Cite situações em que contamos, fazendo agrupamentos diferentes de dez.

111 OJ OJ. o que você entende por: Fulano é um zero à esquerda? OJOJ OJ. Cite situações em que contamos, fazendo agrupamentos diferentes de dez. ite situações em que cntams, fazend agrupaments diferentes de dez. que vcê entende pr: "Fulan é um zer à esquerda"? screva númer que está representad em cada quadr. UBOS D 7 000 PLAAS D 700 BARRAS D 70

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

Rescisão Complementar

Rescisão Complementar Rescisã Cmplementar Cm gerar rescisã cmplementar n sistema? N menu Móduls\ Rescisã\ Rescisã Cmplementar estã dispníveis as rtinas que permitem cálcul da rescisã cmplementar. É pssível calcular cmplementar

Leia mais

Profa. Dra. Silvia M de Paula

Profa. Dra. Silvia M de Paula Prfa. Dra. Silvia M de Paula Espelhs Esférics Certamente tds nós já estivems diante de um espelh esféric, eles sã superfícies refletras que têm a frma de calta esférica. Em nss ctidian ficams diante de

Leia mais

Álgebra. Trigonometria. 8. Na figura abaixo, calcule x e y. 2. Um dos catetos de um triângulo retângulo

Álgebra. Trigonometria.  8. Na figura abaixo, calcule x e y. 2. Um dos catetos de um triângulo retângulo Trignmetria. Um ds catets de um triângul retângul mede 0cm, e utr é igual a d primeir. Calcule a medida da hiptenusa.. Um ds catets de um triângul retângul mede m e a sua prjeçã sbre a hiptenusa é igual

Leia mais

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas Apstila de Física MOVIMENTO DE QUEDA LIVRE (1 a versã - Versã prvisória - setembr/000) Prf. Petrôni Lbat de Freitas A Experiência de Galileu Observand a queda de um bjet pdems ntar que a sua velcidade

Leia mais

Exercícios de Java Aula 17

Exercícios de Java Aula 17 Exercícis de Java Aula 17 Link d curs: http://www.liane.cm/2013/10/curs-java-basic-java-se-gratuit/ 1. Faça um prgrama que peça uma nta, entre zer e dez. Mstre uma mensagem cas valr seja inválid e cntinue

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

S3 - Explicação sobre endereço e/ou número de telefone dos EUA

S3 - Explicação sobre endereço e/ou número de telefone dos EUA S3 - Explicaçã sbre endereç e/u númer de telefne ds EUA Nme Númer da Cnta (se huver) A preencher seu Frmulári W-8 d IRS, vcê afirma nã ser cidadã u residente ds EUA u utra cntraparte ds EUA para efeit

Leia mais

Actividade Laboratorial Física 12º Ano Condensador Plano

Actividade Laboratorial Física 12º Ano Condensador Plano Actividade Labratrial Física 12º An Cndensadr Plan 1. Questã prblema a. Verificar cm varia a capacidade de um cndensadr cm a distância entre as armaduras. b. Verificar cm varia a capacidade de um cndensadr

Leia mais

OBMEP. NÍVEL 2-1 a Lista. 1) Em 1998, a população do Canadá era de 30,3 milhões. Qual das opções abaixo representa a população do Canadá em 1998?

OBMEP. NÍVEL 2-1 a Lista. 1) Em 1998, a população do Canadá era de 30,3 milhões. Qual das opções abaixo representa a população do Canadá em 1998? NÍVEL - 1 a Lista NÍVEL 1 a Lista 1) Em 1998, a ppulaçã d Canadá era de 30,3 milhões. Qual das pções abaix representa a ppulaçã d Canadá em 1998? A) 30 300 000 B) 303000 000 C) 30 300 D) 303000 E) 30 300

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Instruções: Indique claramente as respstas ds itens de cada questã, frnecend as unidades, cas existam Apresente de frma clara e rdenada s passs utilizads na resluçã das questões Expressões incmpreensíveis,

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL. APOSTILA DE Álgebra Linear. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL. APOSTILA DE Álgebra Linear. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE Álgebra Linear Realizaçã: Frtaleza, Fevereir/21 Sumári 1. Matrizes... 3 1.1. Operações cm matrizes... 4 1.2.

Leia mais

Modulação em Amplitude de Pulso PAM

Modulação em Amplitude de Pulso PAM Mdulaçã em Amplitude de Puls PAM PRINCÍPIOS DE COMUNICAÇÃO II O sistema PAM é aquele nde se aplica diretamente cnceit de um sinal amstrad, pis sinal mdulad pde ser cmpreendid cm prdut d sinal mdulante

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

PROGRAMA NACIONAL DE GINÁSTICA AERÓBICA CÓDIGO BASE (ADAPTADO) 2015/2016. Versão 21 de janeiro Programa Nacional Código Base (Adaptado) 1

PROGRAMA NACIONAL DE GINÁSTICA AERÓBICA CÓDIGO BASE (ADAPTADO) 2015/2016. Versão 21 de janeiro Programa Nacional Código Base (Adaptado) 1 PROGRAMA NACIONAL DE GINÁSTICA AERÓBICA CÓDIGO BASE (ADAPTADO) 2015/2016 Versã 21 de janeir. 2016 Prgrama Nacinal Códig Base (Adaptad) 1 Índice Intrduçã... 3 1. Estrutura Técnica d Prgrama... 3 a) Temp

Leia mais

Esta aula nos dará conhecimento para análise e determinação do calor produzido ou absorvido em uma reação química.

Esta aula nos dará conhecimento para análise e determinação do calor produzido ou absorvido em uma reação química. Aula: 07 emática: ermquímica Esta aula ns dará cnheciment para análise e determinaçã d calr prduzid u absrvid em uma reaçã química. A termquímica é a investigaçã d calr prduzid u cnsumid nas reações químicas.

Leia mais

são as áreas dos retângulos brancos, Após o 5º. giro: 5

são as áreas dos retângulos brancos, Após o 5º. giro: 5 Sluçã da prva da 1ª Fase SOLUÇÕES 1ª FSE 2016 OMEP N2 2016 Nível 2 1 1 1 Cada faia da bandeira tem área igual a 300 cm 2. s partes brancas da faia superir têm, prtant, área igual a 150 cm 2. parte branca

Leia mais

Circuitos de Corrente Alternada I

Circuitos de Corrente Alternada I Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Circuits de Crrente Alternada I Nesta prática, estudarems circuits de crrente alternada e intrduzirems

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

Utilizando o Calculador Etelj Velocidade do Som no Ar

Utilizando o Calculador Etelj Velocidade do Som no Ar Utilizand Calculadr telj Velcidade d Sm n Ar Hmer Sette 8 0 0 ste utilitári permite cálcul da velcidade de prpagaçã d sm n ar C, em funçã da temperatura d ar, da umidade relativa d ar e da pressã atmsférica

Leia mais

Capítulo V. Técnicas de Análise de Circuitos

Capítulo V. Técnicas de Análise de Circuitos Capítul V Técnicas de Análise de Circuits 5.1 Intrduçã Analisar um circuit é bter um cnjunt de equações u valres que demnstram as características de funcinament d circuit. A análise é fundamental para

Leia mais

FKcorreiosg2_cp1 - Complemento Transportadoras

FKcorreiosg2_cp1 - Complemento Transportadoras FKcrreisg2_cp1 - Cmplement Transprtadras Instalaçã d módul Faça dwnlad d arquiv FKcrreisg2_cp1.zip, salvand- em uma pasta em seu cmputadr. Entre na área administrativa de sua lja: Entre n menu Móduls/Móduls.

Leia mais

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C Questã 46 O ceficiente de atrit e índice de refraçã sã grandezas adimensinais, u seja, sã valres numérics sem unidade. Iss acntece prque a) sã definids pela razã entre grandezas de mesma dimensã. b) nã

Leia mais

Informática II INFORMÁTICA II

Informática II INFORMÁTICA II Jrge Alexandre jureir@di.estv.ipv.pt - gab. 30 Artur Susa ajas@di.estv.ipv.pt - gab. 27 1 INFORMÁTICA II Plan Parte I - Cmplementar cnheciment d Excel cm ferramenta de análise bases de dads tabelas dinâmicas

Leia mais

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica Cartgrafia e Geprcessament Parte 2 Prjeçã Cartgráfica Recapituland... Geide; Datum: Planimétrics e Altimétrics; Tpcêntrics e Gecêntrics. Data ficiais ds países; N Brasil: Córreg Alegre, SAD69 e SIRGAS

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

Os antigos gregos acreditavam que quanto maior fosse a massa de um corpo, menos tempo ele gastaria na queda. Será que os gregos estavam certos?

Os antigos gregos acreditavam que quanto maior fosse a massa de um corpo, menos tempo ele gastaria na queda. Será que os gregos estavam certos? Lançament vertical e queda livre Se sltarms a mesm temp e da mesma altura duas esferas de chumb, uma pesand 1 kg e utra kg, qual delas chegará primeir a chã? Os antigs gregs acreditavam que quant mair

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha.

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha. Aula: 25 Temática: Ptenciais da Pilha Vams estudar as características e determinações d ptencial da pilha e ds ptenciais padrões d eletrd e da pilha. Uma pilha na qual a reaçã glbal ainda nã tenha atingid

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Modulação Angular por Sinais Digitais

Modulação Angular por Sinais Digitais Mdulaçã Angular pr Sinais Digitais Cm n cas da mdulaçã em amplitude, também para a mdulaçã angular se desenvlveu uma nmenclatura especial quand se trata de sinais digitais na entrada. N cas da mdulaçã

Leia mais

Construção de funções a partir de problemas geométricos

Construção de funções a partir de problemas geométricos Construção de funções a partir de problemas geométricos Atividade introdutória M. Elisa. E. L. Galvão IME-USP/UNIBAN Problema: entre todos os retângulos de mesmo perímetro, qual é o de maior área? Como

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 4.ED., LTC, RIO DE JANEIRO,

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 4.ED., LTC, RIO DE JANEIRO, HAIDAY, SNICK, WAK, UNDAMNOS D ÍSICA, 4.D., C, IO D JANIO, 996. ÍSICA CAPÍUO 9 MPAUA 5. Um termômetr de resistência é aquele que utiliza a variaçã da resistência elétrica cm a temperatura de uma substância.

Leia mais

Pontifícia Universidade Católica do RS Faculdade de Engenharia

Pontifícia Universidade Católica do RS Faculdade de Engenharia Pntifícia Universidade Católica d S Faculdade de Engenharia LABOATÓO DE ELETÔNCA DE POTÊNCA EXPEÊNCA 4: ETFCADO TFÁSCO COM PONTO MÉDO ( PULSOS) OBJETO erificar qualitativa e quantitativamente cmprtament

Leia mais

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO Última Revisã: 02/06/2014 1. RESUMO CADASTRO Cliente preenche Frmulári de Cadastr CONFIRMAÇÃO DE CADASTRO A FH envia um e-mail de cnfirmaçã de cadastr para cliente

Leia mais

GUIA DO USUÁRIO. Termômetros Portáteis. Modelos TM20, TM25 e TM26. Termômetro TM20 Sonda Padrão. Termômetro TM25 Sonda de Penetração.

GUIA DO USUÁRIO. Termômetros Portáteis. Modelos TM20, TM25 e TM26. Termômetro TM20 Sonda Padrão. Termômetro TM25 Sonda de Penetração. GUIA DO USUÁRIO Termômetrs Prtáteis Mdels TM20, TM25 e TM26 Termômetr TM20 Snda Padrã Termômetr TM25 Snda de Penetraçã Termômetr TM26 Snda de Penetraçã cm Certified NSF Refletr de Sm Intrduçã Obrigad pr

Leia mais

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara Institut de Física USP Física V - Aula 10 Prfessra: Mazé Bechara Material para leitura na Xerx d IF 1. Prduçã e ransfrmaçã de Luz; Albert instein (1905); Artig 5 d Livr O an Miraculs de instein (traduçã

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Australe Jrnal Pessal de Astrnmia, Física e Matemática - Prduzid pr Irineu Gmes Varella Criad em 1995 Retmad em Junh de 01 An III Nº 01 - Junh de 01 REFRAÇÃO ATMOSFÉRICA - I Prf. Irineu Gmes Varella,

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONIFÍCIA UNIVERSIDADE CAÓLICA DE GOIÁS DEPARAMENO DE MAEMÁICA E FÍSICA Prfessres: Edsn Vaz e Renat Medeirs ELERICIDADE E MAGNEISMO NOA DE AULA II Giânia 2014 1 ENERGIA POENCIAL ELÉRICA E POENCIAL ELÉRICO

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

Aula 03 Circuitos CA

Aula 03 Circuitos CA Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Elements de Circuits n dmíni de Fasres Intrduçã Para cmpreender a respsta de dispsitivs básics

Leia mais

Neste capítulo será demonstrado como analisar e construir estratégias em jogos. Para tanto é necessário definir um jogo com estratégias na linguagem

Neste capítulo será demonstrado como analisar e construir estratégias em jogos. Para tanto é necessário definir um jogo com estratégias na linguagem 6 Análise e Cnstruçã de Estratégias Neste capítul será demnstrad cm analisar e cnstruir estratégias em jgs. Para tant é necessári definir um jg cm estratégias na linguagem RllGame (seçã 4.5) e utilizar

Leia mais

Capacitância e Capacitores

Capacitância e Capacitores Nessa prática, farems um estud sbre capacitres. erá intrduzid cnceit de capacitância e estudarems as leis de carga e descarga de capacitres, bem cm as regras de assciaçã desses elements de circuit. empre

Leia mais

nddcargo Manual de Utilização Portal Gratuito

nddcargo Manual de Utilização Portal Gratuito nddcarg 4.2.6.0 Manual de Utilizaçã Prtal Gratuit Históric de alterações Data Versã Autr Descriçã 15/04/2014 1 Deiviane F. R. de Suza Criaçã d dcument. 2 1. Intrduçã... 4 2. Funcinalidades d Prtal nddcarg...

Leia mais

O uso de amostras. Desvantagens: Perda no nível de confiança; Diminuição da precisão dos resultados. POPULAÇÃO (N) AMOSTRA(n)

O uso de amostras. Desvantagens: Perda no nível de confiança; Diminuição da precisão dos resultados. POPULAÇÃO (N) AMOSTRA(n) Amstragem O us de amstras POPULAÇÃO (N) AMOSTRA(n) Desvantagens: Perda n nível de cnfiança; Diminuiçã da precisã ds resultads. Vantagens: Cust; Temp; Acessibilidade; O us de amstras Pssibilidade de mair

Leia mais

FICHA TÉCNICA DE PRODUTO Folha: 1/5

FICHA TÉCNICA DE PRODUTO Folha: 1/5 FICHA TÉCNICA DE PRODUTO Flha: 1/5 Divisã: Varej e Última Revisã: é um verniz impermeabilizante inclr, que frma uma barreira cm acabament brilhante, que pssui alta resistência a abrasã, pressões hidrstáticas

Leia mais

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E NOTAÇÕES C é cnjunt ds númers cmplexs. R é cnjunt ds númers reais. N {,,,...}. i denta a unidade imaginária, u seja, i. z é cnjugad d númer cmplex z. Se X é um cnjunt, P(X) denta cnjunt de tds s subcnjunts

Leia mais

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é.

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é. 1) (OBM) O retângul a lad está dividid em 9 quadrads, A, B, C, D, E, F, G, H e I. O quadrad A tem lad 1 e quadrad B tem lad 9. Qual é lad d quadrad I? Quadriláters b) Cnsidere dis plinômis, f(x) e g(x),

Leia mais

UTLIZAÇÃO DOS TESTES DE HIPÓTESES PARA A MÉDIA NA TOMADA DE DECISÃO RESUMO. Palavras-chave: Testes de Hipótese. Decisão. Estatística.

UTLIZAÇÃO DOS TESTES DE HIPÓTESES PARA A MÉDIA NA TOMADA DE DECISÃO RESUMO. Palavras-chave: Testes de Hipótese. Decisão. Estatística. UTLIZAÇÃO DOS TESTES DE HIPÓTESES PARA A MÉDIA NA TOMADA DE DECISÃO RESUMO Nil A de S. Sampai 1 Rbert Camps Leni 2 Este artig trata ds cnceits que envlvem s Testes de Hipótese e suas aplicações em na tmada

Leia mais

Terremotos e Ressonância

Terremotos e Ressonância Ntas d Prfessr Terremts e Ressnância Pergunta em fc Cm mviment d sl causad pr um terremt afeta a estabilidade de edifícis de diferentes alturas? Ferramentas e materiais Dis pedaçs quadrads de madeira,

Leia mais

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2 (9) 35-0 www.elitecampinas.cm.br O ELITE RESOLVE A UNICAMP 005 SEGUNDA FASE MATEMÁTICA MATEMÁTICA ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever apenas resultad

Leia mais

MS-PAINT. PAINT 1 (Windows7)

MS-PAINT. PAINT 1 (Windows7) PAINT 1 (Windws7) O Paint é uma funcinalidade n Windws 7 que pde ser utilizada para criar desenhs numa área de desenh em branc u em imagens existentes. Muitas das ferramentas utilizadas n Paint estã lcalizadas

Leia mais

2. A programação completa e mais informações estarão disponíveis no site www.gar.esp.br.

2. A programação completa e mais informações estarão disponíveis no site www.gar.esp.br. REGULAMENTO 1. Sbre Event 1. A Gramad Adventure Running é uma prva de revezament junt à natureza que será realizada n dia 09/05/2015 (Sábad) em Gramad, n Estad d Ri Grande d Sul, cm participaçã de ambs

Leia mais

PADRÃO DE RESPOSTA. Pesquisador em Informações Geográficas e Estatísticas A I PROVA 3 FINANÇAS PÚBLICAS

PADRÃO DE RESPOSTA. Pesquisador em Informações Geográficas e Estatísticas A I PROVA 3 FINANÇAS PÚBLICAS Questã n 1 Cnheciments Específics O text dissertativ deve cmtemplar e desenvlver s aspects apresentads abaix. O papel d PPA é de instrument de planejament de médi/lng praz que visa à cntinuidade ds bjetivs

Leia mais

Figura Diagrama unifilar de uma instalação eléctrica.

Figura Diagrama unifilar de uma instalação eléctrica. 9. Exempl 7 Cnsiderems a rede de distribuiçã representada na Figura 9.1. A canalizaçã QGBT-A é cnstituída pr um cab VAV 3x7+35 mm 2. A canalizaçã S1 alimenta um prédi nde existem 2 habitações cm ptência

Leia mais

Dissídio Retroativo. Cálculos INSS, FGTS e geração da SEFIP

Dissídio Retroativo. Cálculos INSS, FGTS e geração da SEFIP Dissídi Retrativ Cálculs INSS, FGTS e geraçã da SEFIP A rtina de Cálcul de Dissídi Retrativ fi reestruturada para atender a legislaçã da Previdência Scial. A rtina de Aument Salarial (GPER200) deve ser

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

Design Patterns ABSTRACT FACTORY EMERSON BARROS DE MENESES

Design Patterns ABSTRACT FACTORY EMERSON BARROS DE MENESES Design Patterns ABSTRACT FACTORY EMERSON BARROS DE MENESES 1 Breve Históric Sbre Design Patterns A rigem ds Design Patterns (Padrões de Desenh u ainda Padrões de Prjet) vem d trabalh de um arquitet chamad

Leia mais

Novo Sistema Almoxarifado

Novo Sistema Almoxarifado Nv Sistema Almxarifad Instruções Iniciais 1. Ícnes padrões Existem ícnes espalhads pr td sistema, cada um ferece uma açã. Dentre eles sã dis s mais imprtantes: Realiza uma pesquisa para preencher s camps

Leia mais

CATÁLOGO DE APLICAÇÕES Geração de Guias para ST, DIFAL e FCP

CATÁLOGO DE APLICAÇÕES Geração de Guias para ST, DIFAL e FCP CATÁLOGO DE APLICAÇÕES Geraçã de Guias para ST, DIFAL e FCP 1. Objetivs Gerar títuls n cntas a pagar cm ttal de ICMS-ST, DIFAL e/u FCP das ntas fiscais de saída. Página 2 de 6 2. Requisits 2.1. RF01 Geraçã

Leia mais

Introdução às Redes e Serviços de Telecomunicações

Introdução às Redes e Serviços de Telecomunicações Capítul 1 Intrduçã às Redes e Serviçs de Telecmunicações 1.1 Intrduçã Neste capítul apresenta-se a resluçã de alguns prblemas e prpõem-se alguns exercícis adicinais referentes à matéria d capítul 1 de

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

Mestrado Profissional em Ensino das Ciências na Educação Básica Área de Concentração: Matemática ALEX DE BRITO COELHO

Mestrado Profissional em Ensino das Ciências na Educação Básica Área de Concentração: Matemática ALEX DE BRITO COELHO Mestrad Prfissinal em Ensin das Ciências na Educaçã Básica Área de Cncentraçã: Matemática ALEX DE BRITO COELHO Prdut Final da Dissertaçã apresentada à Universidade d Grande Ri Prf. Jsé de Suza Herdy em

Leia mais

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES Matrizes e Determinantes Depis de estudad uma matéria em matemática é imprtante que vcê reslva um númer significativ de questões para fiaçã de cnteúd.

Leia mais