Seminários de Ensino de Matemática 25/08/09

Tamanho: px
Começar a partir da página:

Download "Seminários de Ensino de Matemática 25/08/09"

Transcrição

1 Semináris de Ensin de Matemática 25/08/09 Encntrand caminhs mínims cm blhas de sabã 1. O prblema da menr malha viária Jsé Luiz Pastre Mell jlpmell@ul.cm.br O caminh mais curt ligand dis pnts n plan euclidian é a linha reta, mas qual seria caminh mais curt ligand quatr pnts? D pnt de vista prátic, esse prblema pderia ser apresentad da seguinte frma: se quiserms cnstruir estradas ligand quatr cidades, qual é a cnfiguraçã da malha viária mais curta pssível? Para simplificar a análise d prblema, admitirems que cada cidade esteja lcalizada n vértice de um quadrad de lad unitári. A figura 1 indica seis pssíveis prjets de malha viária ligand as cidades A, B, C e D: N prjet (1) tems a malha cm as menres distâncias ligand duas cidades quaisquer, cntud, seu cmpriment ttal ( , 83 ) ainda pde ser sensivelmente reduzid. Na pçã (2), pr exempl, cnseguims reduzir cmpriment da malha para 2 ( 0,5. 2 ) 4, 44. Essa pçã pde ainda ser melhrada, cm mstra prjet (3), nde cmpriment ttal se reduz para 4 unidades. O prjet (4) cntinua garantind a ligaçã entre as quatr cidades e reduz cmpriment ttal da malha para 3 unidades. O prjet (5) nã reduz cmpriment da malha em relaçã a anterir, mas melhra sua eficiência, já que nele pde-se ir da cidade A para B percrrend um caminh mais curt d que em (4).

2 Ds seis prjets apresentads, (6) é de malha viária mais curta ( 2 2 2, 83 ), cntud ele nã cnstitui a sluçã d prblema apresentad inicialmente, cm verems a seguir. 2. A mais curta entre tdas as malhas pssíveis A figura 2 indica a cnfiguraçã da mais curta malha viária pssível (as duas malhas apresentadas nessa figura se diferem apenas pr uma rtaçã de 90 ): Antes de demnstrarms que tal malha cnstitui mais curt caminh pssível, vams calcular seu cmpriment ttal tmand cm referência a figura 3 O ABE é isósceles, cm ânguls da base medind 30º. Aplicand a lei ds sens, tems que 1 / sen120 AE/ sen30, u seja, AE= 3 / 3 (bserves nesta malha que AE=BE= =CF= DF). Cm AG=0,5 e AGE é retângul, GE=0,5.tg30º, u seja, GE= 3 / 6. Da figura cncluíse que EF=1 2GE, u seja, EF= ( 3 3) / 3. Cm a malha ttal mede 4AE+EF, seu cmpriment será igual a 1 3 2, 73. Esse resultad é 4% menr d que valr encntrad na malha (6) da figura Demnstraçã matemática da sluçã d prblema Jacb Steiner ( ), qualificad pr muits histriadres cm mair geômetra desde Aplôni, fi primeir a prpr prblema da cnexã de três u mais pnts n plan pr mei de um caminh ttal de cmpriment mínim. Cm Steiner fi recnhecidamente um geômetra que nã apreciava métd analític - cnsiderad pr

3 ele uma muleta para s espírits mens dtads - seus estuds sbre caminhs mínims sempre privilegiaram métd gemétric pur. O encaminhament que farems da sluçã d prblema da malha mínima ligand quatr pnts ns vértices de um quadrad ilustra, de maneira relativamente simples, alcance desse métd de investigaçã, cm verems a seguir. Chamems de caminh qualquer ligaçã que cnecte vértice A a C d quadrad. Para que exista um caminh que cnecte s quatr vértices d quadrad, B e D devem se cnectar a caminh. Chamarems s pnts de cnexã de B e D cm de X e Y, respectivamente (esses pnts sã chamads de pnts de Steiner). Observe que, dependend ds caminhs de B e D até, X e Y pdem ser dis pnts distints (exempl 1), pnts cincidentes (exempl 2), u ainda vértices d quadrad (exempl 3), cm mstra a figura 4: Cm estams interessads na malha ttal mais curta, devems bservar ainda que um caminh intermediári em linha reta ligand dis pnts será sempre mais curt d que um caminh em linha curva, cm ilustra a figura 5: Resumind as infrmações que tems até mment, é pssível cncluir que diagrama que reslve prblema é cmpst de cinc (u mens) caminhs intermediáris em linha reta, cm dis pnts de Steiner (u um). Se a sluçã d prblema fsse alguma cnfiguraçã de malha cm um únic pnt de Steiner, u seja, uma sluçã cm X=Y, a mais curta cnfiguraçã pssível seria aquela que analisams em (6) da figura 1. Cntud, a malha da figura 2 (e sua rtaçã de 90 ), que pssui dis pnts de Steiner, cnstitui uma cnfiguraçã mais curta d que a malha (6) da figura 1, que implica dizer que a cnfiguraçã da menr malha viária nã pde ter apenas um pnt de Steiner. Resta-ns prvar agra que entre tdas as malhas cm dis pnts de Steiner, a da figura 2 é a de menr cmpriment ttal.

4 Dada uma malha ligand s quatr vértices de um quadrad, uma reflexã sbre eix de simetria hrizntal (u vertical) d quadrad reduzirá, de frma eficiente, a malha para uma situaçã semelhante a (I) u a (II) da figura 6: Para ilustrar tal prcess, vams admitir a malha (I) da figura 7, nde AX DY e BX CY, e verificar cm ela pde ser substituída pr uma malha mais curta nde AX=DY e BX=CY: Partind de (I) na figura 7, dividims a malha em duas partes pel eix de simetria hrizntal d quadrad, fazend em seguida uma reflexã da metade menr da malha sbre a mair, cm em (II). O cmpriment da malha (II) pde ser reduzid ainda mais cm a substituiçã da ligaçã entre s dis pnts de Steiner pr uma linha reta, cm em (III). Observe que em (III) tems uma malha ttal mais curta d que em (I), e cm AX=DY e BX=CY. Prcess semelhante pderia ser feit, cm utras malhas, utilizand eix de simetria vertical d quadrad; neste cas a malha resultante teria AY=BX e DY=CX. Até este mment sabems que: i. A cnfiguraçã que reslve prblema pssui dis pnts de Steiner (X e Y); ii. Os cinc segments definids pr um diagrama cm dis pnts de Steiner devem ser linhas retas; iii. A cnfiguraçã da malha mínima ligand s vértices A, B, C e D d quadrad deverá ter AX=DY e BX=CY (u AY=BX e DY=CX).

5 Para demnstrar que a cnfiguraçã apresentada na figura 2 representa a sluçã d prblema d caminh mínim, precisams prvar que as três linhas que partem ds pnts X e Y frmam, em trn de X e de Y, três ânguls de 120. Para iss usarems seguinte terema: Se P e Q sã dis pnts de um lad da reta s, e R é um pnt de s tal que a sma PR+RQ seja mínima, entã s ânguls frmads entre PR e s, e RQ e s sã cngruentes. Demnstraçã: Inicialmente marcams pnt Q, resultad da reflexã de Q sbre s, cnfrme mstra a figura 8: Send T um pnt móvel sbre s, tds s pssíveis triânguls TQQ serã isósceles cm TQ=TQ, que implica dizer que PT+TQ é igual a PT+TQ. Segue que menr valr pssível para PT+TQ crrerá quand s pnts P, T e Q estiverem alinhads, u seja, quand pnt móvel T cincidir cm pnt R, garantind assim que s ânguls frmads entre PR e s, e RQ e s sejam cngruentes. Partind agra de um diagrama que atenda as cndições i, ii e iii, cm pr exempl a malha (I) da figura 6; e assumind que neste diagrama a medida AX=r seja a exata medida de AX n diagrama da mais curta malha ttal pssível, traçarems um círcul de rai r e centr A, e uma reta s tangente à circunferência n pnt X (figura 9): Para que diagrama represente a malha ttal mínima, u seja, a menr sma 2r+2p+2t, cm r dad, devems encntrar a menr sma 2p+2t, que é equivalente a prcurar uma cnfiguraçã de malha cm a menr sma p+t. Pel terema demnstrad, se p+t é mínim, entã ângul frmad entre p e s é cngruente a ângul frmad entre t e s, que implica dizer que AXY= BXA= BXY=120 na situaçã da malha de cmpriment mínim. Cm auxíli de um círcul de centr D e rai DY=r, resultad análg pde ser btid para s ânguls em trn de Y,

6 Se prvarms agra que r=p (u seja, que AX=DY=BX=CY), cncluirems que a cnfiguraçã apresentada na figura 2 representa a malha d menr cmpriment pssível. Supnd inicialmente r<p, cm mstra a figura 10, terems 1 30 e 2 30, implicand 3 60 ; e 4 30 e 5 30, implicand 6 60, que caracteriza uma cntradiçã, já que a sma ds ânguls interns d quadriláter BCXY deve ser 360. Pr racicíni análg também nã pderems ter r>p, que garante r=p e reslve definitivamente prblema da malha mínima. 5. Uma demnstraçã experimental da sluçã O prblema que acabams de reslver matematicamente pde também ser slucinad cm auxíli de uma experiência cm blhas de sabã. Se mergulharms em uma sluçã cm água e sabã um dispsitiv cm duas chapas paralelas fixadas pr quatr pins de cmpriment h frmand um quadrad, a retirarms dispsitiv da água, a blha de sabã frmada terá superfície mínima (devid a equilíbri termdinâmic), que eqüivale n plan bidimensinal a sluçã d prblema que acabams de reslver (figura 11): Bibligrafia recmendada: [1] COURANT, R., ROBBINS H. O que é matemática? Ri de Janeir: Editra Ciência Mderna, 2000 (capítul 7, pág ). [2] EVES, H. Intrduçã à história da matemática. Campinas: Editra da Unicamp, 1995 (pág. 593). [3] GARDNER, M. As últimas recreações. Lisba: Gradiva, 2002 (pág ). [4] ISENBERG, C. The science f sap films and sap bubbles. New Yrk: Dver, 1992 (pág ). [5] TANTON, J. S. Slve This: Math Activities fr Students and Clubs. Washingtn: The Mathematical Assciatin f America, 2001 (pág ).

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156 MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã à Gemetria II. Ângul III. Paralelism Páginas: 145 à 156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias

Leia mais

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156 MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã àgemetria II. Ângul III. Paralelism Páginas: 145 à156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias

Leia mais

Aluno(a): Código: 04. Sabendo que log 2 = x e log 3 = y, calcule o valor de: a) log 120. b) log 3 2 5

Aluno(a): Código: 04. Sabendo que log 2 = x e log 3 = y, calcule o valor de: a) log 120. b) log 3 2 5 lun(a): Códig: Série: 1ª Turma: Data: / / 01. Se lg 2 = a e lg 3 = b, calcule valr de: a) lg 30 04. Sabend que lg 2 = x e lg 3 = y, calcule valr de: a) lg 120 b) lg 0,75 b) lg 3 2 5 02. Eles têm certeza

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes

4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes 4 Extensã d mdel de Misme e Fimbel ra a determinaçã da distribuiçã cumulativa da atenuaçã diferencial entre dis enlaces cnvergentes 4.. Distribuiçã cumulativa cnjunta das atenuações ns dis enlaces cnvergentes

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

Matemática B Extensivo V. 1

Matemática B Extensivo V. 1 Matemática Etensiv V. Eercícis 0 5 60 0) m 0) E sen cs tan Seja a medida entre prédi mair e a base da escada que está apiada. Também, seja y a medida da entre a base d prédi menr e a base da escada nele

Leia mais

34

34 01 PQ é a crda um de duas circunferências secantes de centrs em A e B. A crda PQ, igual a, determina, nas circunferências, arcs de 60 º e 10 º. A área d quadriláter cnve APBQ é : (A) 6 (B) 1 (C) 1 6 0

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20

01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM 2009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui, n sentid

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de 1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100.

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100. Questã 1: Em uma festa de aniversári, deseja-se frmar 10 casais para a valsa. A aniversariante cnvidu 10 garts e 9 gartas. a) Quants casais diferentes pderã ser frmads? b) Sabend-se que 4 das meninas sã

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM) . Cnsidere a PG:, 9, 7, 8, 4,... A partir dela vams cnstruir a seqüência:, 6, 8, 4, 6,..., nde primeir term cincide cm primeir term da PG, e a partir d segund, n-ésim é a diferença entre n-ésim e (n-)-ésim

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

t e os valores de t serão

t e os valores de t serão A prva tem valr ttal de 48 pnts equivalentes as it (8) questões esclhidas pels aluns. A sma ds itens para cada questã é sempre igual a seis (6). d t 5 =. V m = =,5m / s, cnsiderand que carr desacelera

Leia mais

Matemática D Extensivo V. 1

Matemática D Extensivo V. 1 Matemática Etensiv V. Eercícis 0) 0 0 0 + 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0) h 0 Pnteir pequen (hras) 0 hra 0 minuts? 0 0 min Prtant, hmin 0) 0 h0min 0 0 Lembrand que cada hra é equivalente a 0. 0 + 0

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

Matemática E Extensivo V. 2

Matemática E Extensivo V. 2 Matemática E Etensiv V. Eercícis 0) a) d) n 8!! 8...!! 8.. (n )!! n n b) 0 0) A 0! 9! 0. 9! 9! 0 c) 00! 00 d) 9! 9. 8...! 9 8... 9..!!...!.. 0) a) ( + )! ( + )( )! +!! b) n 0 nn ( )( n )! ( n )! ( n )!

Leia mais

Administração AULA- 6. Economia Mercados [2] Oferta & Procura. Pressupostos do conflito: Rentabilidade em sua atividade

Administração AULA- 6. Economia Mercados [2] Oferta & Procura. Pressupostos do conflito: Rentabilidade em sua atividade Administraçã AULA- 6 1 Ecnmia [2] Oferta & Prcura Prf. Isnard Martins Bibligrafia: Rsseti J. Intrduçã à Ecnmia. Atlas 2006 Rbert Heilbrner Micr Ecnmia N.Gregry Mankiw Isnard Martins Pag - 1 2 Mecanisms

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

1. A figura representa uma peça de madeira que é metade de um cilindro. Determine: a) a área total da peça. b) o seu volume.

1. A figura representa uma peça de madeira que é metade de um cilindro. Determine: a) a área total da peça. b) o seu volume. Ficha de Trabalh Módul inicial 1. A figura representa uma peça de madeira que é metade de um cilindr. Determine: a) a área ttal da peça. b) seu vlume. Matemática A - 10ºan. Observe relógi de mesinha de

Leia mais

cos. sen = ; tg 2x

cos. sen = ; tg 2x Resluções das atividades adicinais Capítul Grup A. alternativa E Sabems que: tg 0 tg 0 sen 0 sen 0 cs 0 cs 0 Dessa frma: + +. alternativa E Tems: sen + cs + cs cs Cm ;, cs < 0. Lg cs. Entã: sen sen cs

Leia mais

ESCOLA SECUNDÁRIA DR. JOSÉ AFONSO

ESCOLA SECUNDÁRIA DR. JOSÉ AFONSO ESCOLA SECUNDÁRIA DR. JOSÉ AFONSO Matemática A 10ºD 21/01/2011 Ficha detrabalh Nº8 Generalidades sbre Funções 1. Intrduçã a cnceit de funçã Um aviã descla d aerprt das Lajes, na ilha Terceira, ns Açres,

Leia mais

Administração AULA- 7. Economia Mercados [3] Oferta & Procura

Administração AULA- 7. Economia Mercados [3] Oferta & Procura Administraçã AULA- 7 1 Ecnmia Mercads [3] Oferta & Prcura Prf. Isnard Martins Bibligrafia: Rsseti J. Intrduçã à Ecnmia. Atlas 06 Rbert Heilbrner Micr Ecnmia N.Gregry Mankiw Isnard Martins Pag - 1 Oferta,

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 O gráfic mstra, aprimadamente, a prcentagem de dmicílis n Brasil que pssuem certs bens de cnsum. Sabe-se que Brasil pssui aprimadamente 50 milhões de dmicílis, send 85% na zna urbana e 15% na

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

MAT 11A AULA ,7x + 0,2(0,3x) = ,7x + 0,06x = ,76x = x = R$ 5 000, , = 69,75 30.

MAT 11A AULA ,7x + 0,2(0,3x) = ,7x + 0,06x = ,76x = x = R$ 5 000, , = 69,75 30. MAT 11A AULA 0 0.01 0,7x + 0,(0,x) = 800 0,7x + 0,06x = 800 0,76x = 800 x = 5 000 R$ 5 000,00 0.0 0,5 79 = 69,75 0.0 (V) Nv preç = (1 0,11)x Nv preç = 0,89x (F) Nv preç = (1 + 0,5)x Nv preç = 1,5x (F)

Leia mais

FÍSICA III NOTA DE AULA II

FÍSICA III NOTA DE AULA II FÍSICA III NOTA DE AULA II Giânia - 018 1 ENERGIA POTENCIAL ELÉTRICA E POTENCIAL ELÉTRICO Se a funçã energia ptencial de um crp tiver valr UA, uand crp estiver num pnt A, e valr UB, uand ele está num pnt

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

ww.marcioqueirozmat.com.br

ww.marcioqueirozmat.com.br Cmplexs, Plinômis e Trignmetria 01 (UNICAMP-SP) A declar, um aviã deixa sl cm um ângul cnstante de 1 A 3,8 km da cabeceira da pista existe um mrr íngreme A figura abaix ilustra a declagem, fra de escala

Leia mais

Matemática B Extensivo V. 2

Matemática B Extensivo V. 2 Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:

Leia mais

POLÍGONOS DE REULEAUX E A GENERALIZAÇÃO DE PI

POLÍGONOS DE REULEAUX E A GENERALIZAÇÃO DE PI artig POLÍGONOS DE REULEAUX E A GENERALIZAÇÃO DE PI Jsé Luiz Pastre Mell Sã Paul SP Um mecanism muit cnhecid desde s temps antigs para transprtar blcs de pedra cnsiste em apiá-ls sbre cilindrs rlantes.

Leia mais

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é.

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é. 1) (OBM) O retângul a lad está dividid em 9 quadrads, A, B, C, D, E, F, G, H e I. O quadrad A tem lad 1 e quadrad B tem lad 9. Qual é lad d quadrad I? Quadriláters b) Cnsidere dis plinômis, f(x) e g(x),

Leia mais

Estudo do efeito de sistemas de forças concorrentes.

Estudo do efeito de sistemas de forças concorrentes. Universidade Federal de Alagas Faculdade de Arquitetura e Urbanism Curs de Arquitetura e Urbanism Disciplina: Fundaments para a Análise Estrutural Códig: AURB006 Turma: A Períd Letiv: 2007 2007-2 Prfessr:

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

4 MÉTODO DE CONTROLE DE CUSTOS

4 MÉTODO DE CONTROLE DE CUSTOS 4 MÉTODO DE CONTROLE DE CUSTOS 4.1 Métds de cntrle de custs O sistema de custs para atendiment das necessidades infrmativas scietárias e fiscais deve utilizar a mensuraçã ds recurss cm base em valres histórics

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA A.M.A. Taeira A.C.M. Barreir V.S. Bagnat Institut de Físic-Química -USP Sã Carls SP Atraés d lançament de prjéteis pde-se estudar as leis

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I Cálcul Diferencial e Integral II Página 1 Universidade de Mgi das Cruzes UMC Camps Villa Lbs Cálcul Diferencial e Integral II Parte I Engenharia Civil Engenharia Mecânica marilia@umc.br 1º semestre de

Leia mais

Cálculo do Valor Acrescentado (VA) no Aves

Cálculo do Valor Acrescentado (VA) no Aves Cálcul d Valr Acrescentad (VA) n Aves Cnceiçã Silva Prtela Faculdade de Ecnmia e Gestã Universidade Católica Prtuguesa csilva@prt.ucp.pt pt Prgrama AVES Avaliaçã de Externa Esclas de Esclas cm Ensin Secundári

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

TÉCNICAS NÃO-PARAMÉTRICAS

TÉCNICAS NÃO-PARAMÉTRICAS TÉCNICAS NÃO-PARAMÉTRICAS O pass inicial de qualquer análise estatística cnsiste em uma descriçã ds dads através de análise descritiva (tabelas, medidas e gráfics). Cm a presença de censura invalida esse

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 ANO DO ENSINO MÉDIO DATA: 9/0/09 PROFESSOR: CARIBÉ Td mund quer ajudar a refrescar planeta. Viru mda falar em aqueciment glbal. É precis nã esquecer que s recurss

Leia mais

UML. Diagrama de Classes de Projeto e Diagrama de Objetos Análise e Projeto de Software. Profª. Cibele da Rosa Christ

UML. Diagrama de Classes de Projeto e Diagrama de Objetos Análise e Projeto de Software. Profª. Cibele da Rosa Christ UML Diagrama de Classes de Prjet e Diagrama de Objets Análise e Prjet de Sftware Prfª. Cibele da Rsa Christ cibele@senacrs.cm.br SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL FACULDADE DE TECNOLOGIA SENAC

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

Proposta de teste de avaliação 4 Matemática 9

Proposta de teste de avaliação 4 Matemática 9 Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

Aula 8. Transformadas de Fourier

Aula 8. Transformadas de Fourier Aula 8 Jean Baptiste Jseph Furier (francês, 768-830) extracts ds riginais de Furier Enquant que as Séries de Furier eram definidas apenas para sinais periódics, as sã definidas para uma classe de sinais

Leia mais

= mgh, onde m é a massa do corpo, g a

= mgh, onde m é a massa do corpo, g a Escreva a resluçã cmpleta de cada questã de Física n espaç aprpriad. Mstre s cálculs u racicíni utilizad para chegar a resultad final. Questã 09 Duas irmãs, cada uma cm massa igual a 50 kg, decidem, num

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em Escla Secundária cm 3º cicl D. Dinis 1º An de Matemática A Tema II Intrduçã a Cálcul Diferencial II TPC nº 8 entregar em 17-0-01 1. Jã é cleccinadr de chávenas de café. Recebeu cm prenda um cnjunt de 10

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6 MATEMÁTICA 0) Respsta: A Cx, Ax, = 0x + 0 x! x! = 0x + 0!( x )! ( x )! xx ( )( x )( x )! xx ( )( x )( x )! =0( x ) ( x )! ( x )! xx ( )( x ) x( x )( x ) =0( x ) Cm x, dividims ambs s lads pr (x ) e btems:

Leia mais

Matemática Elementar B Lista de Exercícios 2

Matemática Elementar B Lista de Exercícios 2 Ministéri da Educaçã Diretria de Graduaçã e Educaçã Prfissinal Departament Acadêmic de Matemática Matemática Elementar B Lista de Exercícis 0 Transfrme s ânguls a seguir de graus para radians a) 0º b)

Leia mais

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha.

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha. Aula: 25 Temática: Ptenciais da Pilha Vams estudar as características e determinações d ptencial da pilha e ds ptenciais padrões d eletrd e da pilha. Uma pilha na qual a reaçã glbal ainda nã tenha atingid

Leia mais

Mapeando caminhos e caminhando com mapas.

Mapeando caminhos e caminhando com mapas. TÍTULO DO PROGRAMA Exploradores Urbanos Série: Vivendo na Cidade SINOPSE DO PROGRAMA Exploradores Urbanos é um episódio da série Vivendo na Cidade, que nos mostra os processos e meios que utilizamos para

Leia mais

Cartografia e Geoprocessamento Parte 1. Geoide, Datum e Sistema de Coordenadas Geográficas

Cartografia e Geoprocessamento Parte 1. Geoide, Datum e Sistema de Coordenadas Geográficas Cartgrafia e Geprcessament Parte 1 Geide, Datum e Sistema de Crdenadas Gegráficas Cartgrafia e Geprcessament qual a relaçã? Relaçã através d espaç gegráfic; Cartgrafia representa espaç gegráfic; Geprcessament

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

Helio Marcos Fernandes Viana

Helio Marcos Fernandes Viana 1 UNtas de aulas de Estradas (parte 6) Heli Marcs Fernandes Viana UCnteúd da parte 6 Exercícis 1. ) Pede-se deterinar s eleents da curva circular hrizntal: T, D, E, 0, d, d, E(PC) e E(PT). Ainda, pede-se

Leia mais

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica Cartgrafia e Geprcessament Parte 2 Prjeçã Cartgráfica Recapituland... Geide; Datum: Planimétrics e Altimétrics; Tpcêntrics e Gecêntrics. Data ficiais ds países; N Brasil: Córreg Alegre, SAD69 e SIRGAS

Leia mais

Nome dos membros do grupo: Data de realização do trabalho:

Nome dos membros do grupo: Data de realização do trabalho: Escla Secundária de Laga Física e Química A 10º An Paula Mel Silva Identificaçã d trabalh (Capa) Relatóri Simplificad AL 1.2 Mviment vertical de queda e de ressalt de uma bla: transfrmações e transferências

Leia mais

Indução de Regras. Indução de Regras. Regra. Regra de Classificação. Complexo. Uma regra de classificação assume a forma restrita de uma regra

Indução de Regras. Indução de Regras. Regra. Regra de Classificação. Complexo. Uma regra de classificação assume a forma restrita de uma regra Jsé August Baranauskas Departament de Física e Matemática FFCLRP-USP Induçã de Regras A induçã de árvres de decisã recursivamente divide s exempls em subcnjunts menres, tentand separar cada classe das

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Avenida Prfessr Mell Mraes, nº 1. CEP 05508-900, Sã Paul, SP. PME 100 MECÂNICA A Terceira Prva 11 de nvembr de 009 Duraçã da Prva: 10 minuts (nã é permitid us de calculadras) 1ª Questã (,5 pnts): Um sólid

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

VOLUMES: - Folha Informativa -

VOLUMES: - Folha Informativa - VOLUMES: - Flha Infrmativa - Para medir vlume de qualquer figura tridimensinal é necessári medir espaç que ela cupa. Assim, ter-se-á que esclher uma unidade de vlume que, pr cnveniência, pderá ser um cub

Leia mais

BOA PROVA! Carmelo, 27 de setembro de Prova Experimental A

BOA PROVA! Carmelo, 27 de setembro de Prova Experimental A Carmel, 27 de setembr de 2016 Prva Experimental A O temp dispnível é 2½ hras. Pedir mais flhas se tal fr necessári. Pdem-se utilizar tdas as flhas de rascunh que frem necessárias. Cntud estas nã se devem

Leia mais

Conteúdo A parte principal de um relatório de auditoria, mas não a única, é a parte dos desvios encontrados. O que é que constitui um desvio?

Conteúdo A parte principal de um relatório de auditoria, mas não a única, é a parte dos desvios encontrados. O que é que constitui um desvio? AUDITORIAS INTERNAS, RELATÓRIO DE AUDITORIA INTERNAL AUDITS, AUDIT REPORT Intrduçã O relatóri de auditria é dcument que resulta da atividade de auditria. Qualquer labratóri que cumpra cm s requisits da

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Australe Jrnal Pessal de Astrnmia, Física e Matemática - Prduzid pr Irineu Gmes Varella Criad em 1995 Retmad em Junh de 01 An III Nº 01 - Junh de 01 REFRAÇÃO ATMOSFÉRICA - I Prf. Irineu Gmes Varella,

Leia mais

y x. Fazendo uma transformação ao gráfico

y x. Fazendo uma transformação ao gráfico Escla Secundária cm 3º cicl D. Dinis 10º An de Matemática A TEMA Funções e Gráfics Generalidades. Funções plinmiais. Funçã módul. Tarefa nº 8 1. Em cada um ds gráfics estã representadas duas funções quadráticas,

Leia mais

Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores controlados por tensão.

Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores controlados por tensão. 1 Osciladres Capítul Cntrlads pr Tensã Meta deste capítul Entender princípi de funcinament de sciladres cntrlads pr tensã. bjetivs Entender princípi de funcinament de sciladres cntrlads pr tensã; Analisar

Leia mais

MATRIZES E SISTEMAS DE EQUAÇÕES

MATRIZES E SISTEMAS DE EQUAÇÕES CAPÍTUL MATRIZES E SISTEMAS DE EQUAÇÕES Prvavelmente prblema mais imprtante em matemática é reslver um sistema de equações lineares. Mais de 75% de tds s prblemas matemátics encntrads em aplicações científicas

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 B

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 B Tarefa intermédia nº B. N referencial da figura estã parte das representações gráficas das funções f e g, de dmíni IR. Sabe-se que f ( ) = + e g( ) =.. Seja A pnt de interseçã ds gráfics das funções f

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

Matemática B Semi-Extensivo V. 1. Exercícios

Matemática B Semi-Extensivo V. 1. Exercícios Matemática B Semi-Etensiv V. Eercícis 0) E Cm DBC é isósceles, tems DC 8. Em ADC sen 60º AC DC 0) B sen 60º 6 cs 60º y y y 6 Perímetr + 6 + 6 8 + 6 6( + ) 0) AC 8 AC 6 tg y y y tg 0) D 8. h 8 h 6 d 8 +

Leia mais

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara Institut de Física USP Física V - Aula 10 Prfessra: Mazé Bechara Material para leitura na Xerx d IF 1. Prduçã e ransfrmaçã de Luz; Albert instein (1905); Artig 5 d Livr O an Miraculs de instein (traduçã

Leia mais