QUESTÕES DISCURSIVAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "QUESTÕES DISCURSIVAS"

Transcrição

1 QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr seria debitad da quantia emprestada, a títul de cust administrativ a) Que prcentagem d capital emprestad deveria ser cust administrativ para banc cmpensar a reduçã da taa de jurs neste empréstim? b) Que prcentagem da quantia paga pel cliente deveria ser cust administrativ, se este fsse cbrad n final d períd d empréstim? 0,15C = 0,1C, que crrespnde a 1% d 1 + 0,5 capital emprestad b) Em ambs s cass, banc deve receber um ttal de 1,4C A diferença 1,4C 1,5C = 0,15C deve ser paga agra a títul de "cust administrativ" a final d períd d empréstim Nesse cas, essa quantia crrespnde a 0,15C = 1% d 1,5C valr cbrad pel empréstim e 0,15C 10,% 1,4C d valr ttal a ser pag Questã Determine as crdenadas d pnt (, y), eqüidistante ds pnts (0, 0), (, ) e (, 5) Há duas maneiras de interpretar a "cmpensaçã" da reduçã da taa de jurs: Uma é, descntand "cust administrativ" da quantia emprestada, bter uma quantia que crrespnda a cbrar uma taa de jurs de 40% Outra, é banc aplicar valr cbrad a títul de "cust administrativ" para manter valr final btid n negóci Reslverems prblema em ambs s cass Seja C valr emprestad antes d débit d "cust administrativ" a) Uma interpretaçã: seja P "cust administrativ" Assim, após débit, cliente tem C P A reduçã da taa é cmpensada se, e smente se, (C P)1,40 = 1,5C P 0,10C, que equivale a 10,% d capital emprestad antes d débit e P = 1% d capital emprestad depis d C P débit Outra interpretaçã: daqui a um an, banc deseja receber 1,4C e cliente, pagar 1,5C Supnd que banc aplique valr cbrad a títul de "cust administrativ" a % a an, para cmpensar a diferença de 1,4C 1,5C = 0,15C, cliente deve pagar hje 0,15C Se banc 1 + % cnseguir = 5, cliente deve pagar hje Sejam A = (0; 0), B = (; ) e C = (; 5) O pnt O eqüidistante desses três pnts dads é circuncentr d triângul ABC, qual é pnt de intersecçã das mediatrizes ds lads AB e AC Uma equaçã da mediatriz de AB é: ( 0) + (y 0) = ( ) + (y )

2 matemática + y = y 4y y 1 = 0 E uma equaçã da mediatriz de AC é: ( 0) + (y 0) = ( ) + (y 5) + y = y 10y y 9 = 0 Prtant as crdenadas de O (; y) satisfazem: = 6 + 4y 1 = y 9 = 0 61 y = = O ; 61 Questã Jã deseja adquirir um telefne celular Dis plans lhe sã ferecids: I Plan alfa: Se cnsum nã ultrapassar 100 minuts, preç pr minut será de R$0,0 Se cnsum ultrapassar 100, mas nã fr mair que 400 minuts, preç pr minut terá um descnt de R$0,001 (um milésim de real) multiplicad pel númer de minuts que eceder cnsum de 100 minuts Se cnsum ultrapassar 400 minuts, preç pr minut será de R$0,40 II Plan beta: Há um preç fi de R$50,00, cm direit de us de minuts (franquia) de ligaçã, e minut ecedente custará R$0,0 Para quants minuts de ligaçã plan beta é mais vantajs? Sejam P(t) 1 valr gast para quem adquiriu plan α e P (t) para quem adquiriu plan β, ambs pel cnsum de t minuts Entã: 0,0t para t 100 P(t) 1 = (0,0 0,001(t 100))t para 100 < t 400 0,40t para t > 400 e 50 para t P (t) = 50 + (t ) 0,0 para t > 0,t para t 100 P(t) 1 = 0,t 0,001t para 100 < t 400 0,4t para t > 400 e 50 para t P (t) = 0,t 19,6 para t > O plan β é mais vantajs que plan α quand P (t) < P 1(t) Vams analisar s seguintes intervals: t P (t) < P 1(t) 50 < 0,t t > 1,4 O plan β é mais vantajs para 1,4 < t < t 100 P (t) < P 1(t) 0,t 19,6 < 0,t t < 196 O plan β é mais vantajs para < t < t 400 P (t) < P 1(t) 0,t 19,6 < 0,t 0,001t t < 140 O plan β é mais vantajs para100 < t < 140 t > 400 P (t) < P 1(t) 0,t 19,6 < 0,4t t < 49 O plan β nã é mais vantajs n interval t > 400 Resumind, plan β é mais vantajs para 1,4 < t < 140 Se cnsiderarms t inteir, β é mais vantajs de minuts a 19 minuts Questã 4 Duas rdas gigantes dispstas uma de frente para a utra, cnfrme a figura abai, têm rais que medem, respectivamente, 0 m e 10 m A mair gira 0, rtações pr minut (rpm) e a menr, 0,5 rpm Se as duas cmeçam a se mver n mesm instante, qual menr temp necessári para que s pnts A e B, mstrads abai, vltem a ficar nessa mesma psiçã inicial? A rda gigante mair cmpleta uma vlta em 1 rtaçã 5 = min e a rda gigante menr cmpleta uma vlta em 1 rtaçã 0 0, rpm = min 0,5 rpm

3 matemática Assim, send = e 0 1 = 0,s pnts A e B vltam a ficar na psiçã inicial em 1 0 m mc(5, 0) = min Há utras interpretações para "rtações pr minut", embra nã usuais Pr eempl cm velcidade escalar em metrs pr min Nesse cas, a rda gigante mair cmpleta uma vlta em 0 = 00 minuts e a rda gigante menr 0, cmpleta uma vlta em = minuts 0,5 Assim, s pnts A e B vltarã às mesmas psições iniciais quand a rda gigante mair percrrer vltas em 00 min = 400 minuts e a rda gigante menr percrrer vltas em 400 = 400 minuts, u seja, após 6 hras e 40 minuts Prém, esta segunda interpretaçã é descartável: a rda gigante mair levaria 00 min = h0min para dar uma vlta, um valr que nã é razável Questã 5 Uma caia aberta, em frma de cub cm 0 cm de aresta, está cheia de esferas de 1 cm de diâmetr Estime quantas esferas cntém essa caia Já que diâmetr de cada esfera é de 1 cm e a aresta d cub é de 0 cm, vams supr inicialmente que eistam 0 0 = 400 esferas em cada fileira hrizntal Terems assim 0 fileiras de 400 esferas ttalizand = 000 esferas Há ainda várias utras maneiras de estimarms a quantidade de esferas na caia Uma frma é a seguinte: as esferas cupam a caia em camadas, cm esferas alternadamente frmand quadrads de lads 0 cm e 19 cm Tirand as das brdas, cada esfera é tangente a utras quatr da camada abai de si, de md que a distância entre duas camadas vizinhas é igual à altura h de uma pirâmide regular de base quadrada e arestas medind 1 cm Send O centr da base, triângul AOD é retângul em O Send OD = BD = cm, tems h = AD OD = 1 = cm Assim, cnsiderand ainda as camadas inferires e superires e send n númer máim de camadas, 0,5 + (n 1) + 0,5 0 n =, u seja, há 14 camadas de 0 e 1 camadas de 19, ttalizand = 10 9 esferas Questã 6 Um fi de 10 metrs é crtad em dis pedaçs, de frma que primeir defina perímetr de um quadrad e segund, de um triângul eqüiláter Determine tamanh de cada um ds pedaçs, de md que a área d quadrad seja igual à área d triângul multiplicada pr = 1, Sejam e10 s cmpriments ds dis pedaçs d fi O pedaç que mede define um quadrad de lad e pedaç que mede (10 ) 4 define um triângul eqüiláter de lad 10 Para que a área d quadrad seja igual à área d triângul multiplicada pr, devems ter: 10 = = = 0 = 40 ± 0 Cm < 10, tems = ,4 m Assim s tamanhs ds pedaçs sã aprimadamente 5,4 m e 4,6 m

4 matemática 4 Questã Questã Determine a área da regiã limitada pelas curvas: f( ) = 1 1 e g ( ) = Um jgadr apsta sempre mesm valr de $1 numa jgada cuja chance de ganhar u perder é a mesma Se perder, perderá valr apstad, se ganhar, receberá $1 além d valr apstad Se ele cmeça jg cm $ n bls, jga três vezes e sai, cm que valr é mais prvável que ele saia? Cnsidere diagrama de árvre a seguir: Para 1, f() = e para 1, f() = = = Lg, esbçand s gráfics de f() e g() num mesm sistema de eis, tems: y = O pnt A é sluçã d sistema y = = 4 y = 4 y = O pnt B é sluçã d sistema y = = y = A área destacada é igual à área d triângul AOE mens as áreas ds triânguls OCD e DBE, u seja, = Lg ele sai cm: $6, cm prbabilidade 1 1 = ; 1 $4, cm prbabilidade = ; 1 $, cm prbabilidade = ; $0, cm prbabilidade 1 1 = Prtant s valres mais prváveis cm que ele saia sã 4 e

5 matemática 5 Questã 9 Abai está representad um sistema de transmissã, cmpst pr duas plias e uma crreia As dimensões sã mstradas na figura: L = 10 L = O ângul β é igual a 4 = 16, lg: L4 = L 4 = O cmpriment da crreia é L = L 1 + L + L 4 L = 59, , b) Cm as plias estã acpladas pr uma crreia, tems 500 = 10 = 50 rtações pr minut Questã 10 a) Determine cmpriment da crreia Dads: = 5,4 = 5, b) Sabend que a plia menr faz 500 rtações pr minuts e que tracina a plia mair, determine cm quantas rtações pr minut a plia mair irá girar a) A crreia tem cmpriment L = L 1 + L + L + L 4 cm L1 = L N ΔABC: (AC) = (AB) + (BC) L1 = + 0 L1 = 91 L1 = 91 L1 = Usand as aprimações dadas, L1 = 5,4 5, = 9,4 O ângul α é igual a 60 4 = 19, lg: Numa fila de it pessas, três pretendem vtar n candidat A e cinc, n candidat B a) A entrevistar as três primeiras pessas da fila, qual a prbabilidade de resultad desta amstra ser favrável a candidat A? b) Qual a prbabilidade de dar empate, se as quatr primeiras pessas frem entrevistadas nessa mesma fila? a) O resultad dessa amstra será favrável a candidat A se, e smente se: As três primeiras pessas da fila vtarem em A, que crre cm prbabilidade 1 1 = 56 ; Ou duas vtarem em A e uma em B Há! = rdens nas quais esses três vts pdem ser dads Lg a prbabilidade dessa situa-!1! çã crrer é 5 15 = A prbabilidade pedida é, prtant, + = = b) Haverá empate se, e smente se, dentre as quatr primeiras pessas da fila, duas vtarem em A e duas vtarem em B Há 4! = 6 rdens!! nas quais esses quatr vts pdem ser dads A prbabilidade é, entã, =

Confiraseoseu nomeergestãocorretos. Nãoépermitidoousode calculadoras. Aprovapoderáserescritaalápisou caneta (azuloupreta).

Confiraseoseu nomeergestãocorretos. Nãoépermitidoousode calculadoras. Aprovapoderáserescritaalápisou caneta (azuloupreta). Confiraseoseu nomeergestãocorretos. Nãoépermitidoousode calculadoras. Aprovapoderáserescritaalápisou caneta (azuloupreta). Nãohaverásubstituiçãodocadernode questões em casode rasura. Ocandidatoéresponsável

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 ANO DO ENSINO MÉDIO DATA: 9/0/09 PROFESSOR: CARIBÉ Td mund quer ajudar a refrescar planeta. Viru mda falar em aqueciment glbal. É precis nã esquecer que s recurss

Leia mais

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO Última Revisã: 02/06/2014 1. RESUMO CADASTRO Cliente preenche Frmulári de Cadastr CONFIRMAÇÃO DE CADASTRO A FH envia um e-mail de cnfirmaçã de cadastr para cliente

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Instruções: Indique claramente as respstas ds itens de cada questã, frnecend as unidades, cas existam Apresente de frma clara e rdenada s passs utilizads na resluçã das questões Expressões incmpreensíveis,

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

Lista de Exercícios Funções

Lista de Exercícios Funções PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática Departament de Matemática Cálcul Dierencial e Integral I Lista de Eercícis Funções ) O gráic abai epressa a temperatura em

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)...

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)... Questã 46 A partir de um bjet real de altura H, dispst verticalmente diante de um instrument óptic, um artista plástic necessita bter uma imagemcnjugadadealturaigualah.nesse cas, dependend das cndições

Leia mais

_ z~ '--z7-70. ----- 7ã ~ 174. 26. Observe o gráfico abaixo. MATEMÁTICA. 10... it

_ z~ '--z7-70. ----- 7ã ~ 174. 26. Observe o gráfico abaixo. MATEMÁTICA. 10... it MATEMÁTICA 26. Observe gráfic abai. TRANSPlAtms IlEAUZADOS NORSEM lols,alíluuto I - RLA DE ESPERA POR TRANSPlANJE EM.uut NO AS 305 ----- 7ã ~ 174 '--z7-70 10... it _ z~ Fnte: Jmal Zer Hra Nele está retratad

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2 (9) 35-0 www.elitecampinas.cm.br O ELITE RESOLVE A UNICAMP 005 SEGUNDA FASE MATEMÁTICA MATEMÁTICA ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever apenas resultad

Leia mais

Circuitos de Corrente Alternada I

Circuitos de Corrente Alternada I Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Circuits de Crrente Alternada I Nesta prática, estudarems circuits de crrente alternada e intrduzirems

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

Álgebra. Trigonometria. 8. Na figura abaixo, calcule x e y. 2. Um dos catetos de um triângulo retângulo

Álgebra. Trigonometria.  8. Na figura abaixo, calcule x e y. 2. Um dos catetos de um triângulo retângulo Trignmetria. Um ds catets de um triângul retângul mede 0cm, e utr é igual a d primeir. Calcule a medida da hiptenusa.. Um ds catets de um triângul retângul mede m e a sua prjeçã sbre a hiptenusa é igual

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A Questã TIPO DE PROVA: A Um bjet é vendid em uma lja pr R$ 6,00. O dn da lja, mesm pagand um impst de 0% sbre preç de venda, btém um lucr de 0% sbre preç de cust. O preç de cust desse bjet é: a) R$ 6,00

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

S3 - Explicação sobre endereço e/ou número de telefone dos EUA

S3 - Explicação sobre endereço e/ou número de telefone dos EUA S3 - Explicaçã sbre endereç e/u númer de telefne ds EUA Nme Númer da Cnta (se huver) A preencher seu Frmulári W-8 d IRS, vcê afirma nã ser cidadã u residente ds EUA u utra cntraparte ds EUA para efeit

Leia mais

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é.

Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é. 1) (OBM) O retângul a lad está dividid em 9 quadrads, A, B, C, D, E, F, G, H e I. O quadrad A tem lad 1 e quadrad B tem lad 9. Qual é lad d quadrad I? Quadriláters b) Cnsidere dis plinômis, f(x) e g(x),

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA A.M.A. Taeira A.C.M. Barreir V.S. Bagnat Institut de Físic-Química -USP Sã Carls SP Atraés d lançament de prjéteis pde-se estudar as leis

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Avenida Prfessr Mell Mraes, nº 1. CEP 05508-900, Sã Paul, SP. PME 100 MECÂNICA A Terceira Prva 11 de nvembr de 009 Duraçã da Prva: 10 minuts (nã é permitid us de calculadras) 1ª Questã (,5 pnts): Um sólid

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

VOLUMES: - Folha Informativa -

VOLUMES: - Folha Informativa - VOLUMES: - Flha Infrmativa - Para medir vlume de qualquer figura tridimensinal é necessári medir espaç que ela cupa. Assim, ter-se-á que esclher uma unidade de vlume que, pr cnveniência, pderá ser um cub

Leia mais

Comunicado Cetip n 091/ de setembro de 2013

Comunicado Cetip n 091/ de setembro de 2013 Cmunicad Cetip n 091/2013 26 de setembr de 2013 Assunt: Aprimrament da Metdlgia da Taxa DI. O diretr-presidente da CETIP S.A. MERCADOS ORGANIZADOS infrma que, em cntinuidade às alterações infrmadas n Cmunicad

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

10. Escreva um programa que leia um texto e duas palavras e substitua todas as ocorrências da primeira palavra com a segunda palavra.

10. Escreva um programa que leia um texto e duas palavras e substitua todas as ocorrências da primeira palavra com a segunda palavra. Lista de Exercícis: Vetres, Matrizes, Strings, Pnteirs e Alcaçã Obs: Tdas as questões devem ser implementadas usand funções, pnteirs e alcaçã 1. Faça um prgrama que leia um valr n e crie dinamicamente

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

Seminários de Ensino de Matemática 25/08/09

Seminários de Ensino de Matemática 25/08/09 Semináris de Ensin de Matemática 25/08/09 Encntrand caminhs mínims cm blhas de sabã 1. O prblema da menr malha viária Jsé Luiz Pastre Mell jlpmell@ul.cm.br O caminh mais curt ligand dis pnts n plan euclidian

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

PAGQuímica 2011/1 Exercícios de Cinética Química

PAGQuímica 2011/1 Exercícios de Cinética Química PAGQuímica 211/1 Exercícis de Cinética Química 1 2. 3. 4. 5. Explique se cada uma das alternativas abaix é crreta u nã, para reações químicas que crrem sem que haja variaçã de temperatura e pressã: a)

Leia mais

As várias interpretações dos Números Racionais

As várias interpretações dos Números Racionais As várias interpretações ds Númers Racinais (Algumas das tarefas apresentadas a seguir fram retiradas u adaptadas da Tese de Dutrament de Maria Jsé Ferreira da Silva, cuj text se encntra n seguinte endereç:

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

são as áreas dos retângulos brancos, Após o 5º. giro: 5

são as áreas dos retângulos brancos, Após o 5º. giro: 5 Sluçã da prva da 1ª Fase SOLUÇÕES 1ª FSE 2016 OMEP N2 2016 Nível 2 1 1 1 Cada faia da bandeira tem área igual a 300 cm 2. s partes brancas da faia superir têm, prtant, área igual a 150 cm 2. parte branca

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

EB de. Nome. Data. Tarefa 1

EB de. Nome. Data. Tarefa 1 Tarefa 1 Material: Flha de papel cm a reprduçã de páginas de um livr de histórias (anex); Na flha de papel estã reprduzidas 4 páginas da história O Rapaz ds Hippótams. Observa essas páginas cm atençã e

Leia mais

CURSO de ENGENHARIA QUÍMICA - Gabarito

CURSO de ENGENHARIA QUÍMICA - Gabarito UNIVERSIDADE FEDERAL FLUINENSE TRANSFERÊNCIA semestre letiv de 008 e 1 semestre letiv de 009 CURSO de ENGENHARIA QUÍICA - Gabarit INSTRUÇÕES AO CANDIDATO Veriique se este cadern cntém: PROVA DE REDAÇÃO

Leia mais

Física A Extensivo V. 8

Física A Extensivo V. 8 Física Extensi V. 8 esla ula 9 9.) E Cnseraçã da quantidade de miment m. + m. = m. + m. m. + m. = m. + m. + = + + = + + = (I) Clisã perfeitamente elástica e = = + = (II) Mntand-se um sistema cm I e II,

Leia mais

Torneio da Família e Amigos

Torneio da Família e Amigos Trnei da Família e Amigs 29 de Outubr de 2016 Regulament 1. Participantes: Prva aberta a tds (as) sócis (as) e a nã sócis (as), cm Handicap EGA actualizad até a máxim de 28,0 (Hmens) e 36,0 (Senhras).

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

Questão 13. Questão 14. Resposta

Questão 13. Questão 14. Resposta Questã Uma empresa imprime cerca de.000 páginas de relatóris pr mês, usand uma impressra jat de tinta clrida. Excluind a amrtizaçã d valr da impressra, cust de impressã depende d preç d papel e ds cartuchs

Leia mais

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB Mdulaçã AM - DSB Sinal Mdulante DC + = et = E kem cs ωmt * cs ω AM + t () ( ) ( ) x k = Eficiência d mduladr AM - DSB Sinal Prtadr Espectr d AM-DSB Sinal mdulante cssenidal et ( ) = cs ( ) * cs ( ) = AM

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

ACUMULADOR DE PRESSÃO. Linha de produto 9.1. Pré-seleção

ACUMULADOR DE PRESSÃO. Linha de produto 9.1. Pré-seleção ACUMULADOR DE PRESSÃO Linha de prdut Préseleçã 9.1 Acumuladr de pressã cm diafragma Acumuladr D,725 Acumuladr D,75 Acumuladr D,1625 Acumuladr D,321 Acumuladr D,3225 Acumuladr D,51 Acumuladr D,751 Acumuladr

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

DETECTOR FOTOELÉTRICO ATIVO, DE 3 FEIXES, COM CONVERSÃO DIGITAL DE FREQUÊNCIA MANUAL DE INSTALAÇÃO

DETECTOR FOTOELÉTRICO ATIVO, DE 3 FEIXES, COM CONVERSÃO DIGITAL DE FREQUÊNCIA MANUAL DE INSTALAÇÃO DETECTOR FOTOELÉTRICO ATIVO, DE 3 FEIXES, COM CONVERSÃO DIGITAL DE FREQUÊNCIA MANUAL DE INSTALAÇÃO Faixas de alcance de cada mdel, cnfrme tip de instalaçã: ABE-50 Interna: 150 m; Externa : 50 m ABE-75

Leia mais

GUIA DO USUÁRIO. Termômetros Portáteis. Modelos TM20, TM25 e TM26. Termômetro TM20 Sonda Padrão. Termômetro TM25 Sonda de Penetração.

GUIA DO USUÁRIO. Termômetros Portáteis. Modelos TM20, TM25 e TM26. Termômetro TM20 Sonda Padrão. Termômetro TM25 Sonda de Penetração. GUIA DO USUÁRIO Termômetrs Prtáteis Mdels TM20, TM25 e TM26 Termômetr TM20 Snda Padrã Termômetr TM25 Snda de Penetraçã Termômetr TM26 Snda de Penetraçã cm Certified NSF Refletr de Sm Intrduçã Obrigad pr

Leia mais

FKcorreiosg2_cp1 - Complemento Transportadoras

FKcorreiosg2_cp1 - Complemento Transportadoras FKcrreisg2_cp1 - Cmplement Transprtadras Instalaçã d módul Faça dwnlad d arquiv FKcrreisg2_cp1.zip, salvand- em uma pasta em seu cmputadr. Entre na área administrativa de sua lja: Entre n menu Móduls/Móduls.

Leia mais

Descrição do serviço. Visão geral do serviço. Escopo dos serviços Copilot Optimize. Copilot Optimize CAA-1000. Escopo

Descrição do serviço. Visão geral do serviço. Escopo dos serviços Copilot Optimize. Copilot Optimize CAA-1000. Escopo Descriçã d serviç Cpilt Optimize CAA-1000 Visã geral d serviç Esta Descriçã d serviç ( Descriçã d serviç ) é firmada pr vcê, cliente, ( vcê u Cliente ) e a entidade da Dell identificada na fatura de cmpra

Leia mais

Valor das aposentadorias

Valor das aposentadorias Valr das apsentadrias O que é? O cálcul d valr de apsentadrias é a frma cm s sistemas d INSS estã prgramads para cumprir que está previst na legislaçã em vigr e definir valr inicial que vai ser pag mensalmente

Leia mais

1 - Introdução. 2 - Desenvolvimento

1 - Introdução. 2 - Desenvolvimento Desenvlviment e Otimizaçã de Hidrciclnes Frente a Mdificações de Variáveis Gemétricas e de Prcess Hérmane Mntini da Silva 1 Gilssaha Franklin Maciel 2 Orientadra: Ph.D. Andréia Bicalh Henriques RESUMO

Leia mais

SUMÁRIO 1 Documentação de Código Fonte... 03 1.1 Ativação... 03 1.2 Integração dos Dados... 05 2. Integraç ão com e-commerce Ciashop...

SUMÁRIO 1 Documentação de Código Fonte... 03 1.1 Ativação... 03 1.2 Integração dos Dados... 05 2. Integraç ão com e-commerce Ciashop... 1 SUMÁRIO 1 Dcumentaçã de Códig Fnte... 03 1.1 Ativaçã... 03 1.2 Integraçã ds Dads... 05 2. Integraçã cm e-cmmerce Ciashp... 47 Cmpartilhar Estque 3. Publicar Prduts... 56 4. Alterar Prduts... 56 5. Excluir

Leia mais

Pontifícia Universidade Católica do RS Faculdade de Engenharia

Pontifícia Universidade Católica do RS Faculdade de Engenharia Pntifícia Universidade Católica d S Faculdade de Engenharia LABOATÓO DE ELETÔNCA DE POTÊNCA EXPEÊNCA 4: ETFCADO TFÁSCO COM PONTO MÉDO ( PULSOS) OBJETO erificar qualitativa e quantitativamente cmprtament

Leia mais

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas Capítul 6 - Medidres de Grandezas Elétricas Periódicas 6. Intrduçã Neste capítul será estudad princípi de funcinament ds instruments utilizads para medir grandezas (tensões e crrentes) periódicas. Em circuits

Leia mais

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim Estud da Cnvergência d Métd de Newtn-Raphsn Deseja-se mstrar que, se Métd de Newtn-Raphsn cnverge, esta cnvergência se dá para a raiz (zer da unçã. Hipótese: A raiz α é única n interval [a,b]. Deine-se

Leia mais

o contraste é significativo ao nível

o contraste é significativo ao nível Rteir de Aula 8 Experimentaçã Ztécnica 25/04/2017 Teste de Tukey O prcediment para aplicaçã d teste é seguinte: Pass 1. Calcula-se valr de Pass 2. Calculam-se tdas as estimativas de cntrastes entre duas

Leia mais

Objetivo: Desenvolver as condições ideais para a boa formulação de objetivos, transformando-os em metas realizáveis.

Objetivo: Desenvolver as condições ideais para a boa formulação de objetivos, transformando-os em metas realizáveis. 1 Transfrmand Snhs em Metas Objetiv: Desenvlver as cndições ideais para a ba frmulaçã de bjetivs, transfrmand-s em metas realizáveis. Públic-Alv: Pessas interessadas em atingir sucess prfissinal e realizaçã

Leia mais

Estrutura de Repetição

Estrutura de Repetição Estrutura de Repetiçã 1. Faça um prgrama que peça uma nta, entre zer e dez. Mstre uma mensagem cas valr seja inválid e cntinue pedind até que usuári infrme um valr válid. 2. Faça um prgrama que leia um

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

Capítulo V. Técnicas de Análise de Circuitos

Capítulo V. Técnicas de Análise de Circuitos Capítul V Técnicas de Análise de Circuits 5.1 Intrduçã Analisar um circuit é bter um cnjunt de equações u valres que demnstram as características de funcinament d circuit. A análise é fundamental para

Leia mais

DISCIPLINA: Matemática e Matemática Aplicada

DISCIPLINA: Matemática e Matemática Aplicada DISCIPLINA: Matemática e Matemática Aplicada 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex,

Leia mais

Questão 46. Questão 48. Questão 47. Questão 49. alternativa C. alternativa D. alternativa D

Questão 46. Questão 48. Questão 47. Questão 49. alternativa C. alternativa D. alternativa D Questã 46 Se uma pessa cnseguiu percrrer a distância de 3 000 m em 45 minuts, sua velcidade escalar média, nesse interval, fi: a),0 km/h d) 6,0 km/h b) 3,0 km/h e) 6,7 km/h alternativa C c) 4,0 km/h A

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

Caderno de Prova. EDUCAÇÃO FÍSICA (Bacharelado) Vestibular Vocacionado ª FASE 2ª Etapa. Nome do Candidato:

Caderno de Prova. EDUCAÇÃO FÍSICA (Bacharelado) Vestibular Vocacionado ª FASE 2ª Etapa. Nome do Candidato: Universidade d Estad de Santa Catarina Vestibular Vcacinad 010. Cadern de Prva ª FASE ª Etapa EDUCAÇÃO FÍSICA (Bacharelad) Nme d Candidat: INSTRUÇÕES GERAIS Cnfira Cadern de Prva, as Flhas de Respstas

Leia mais

Exercícios de Eletroquímica

Exercícios de Eletroquímica Material de api d Extensiv Exercícis de Eletrquímica Prfessr: Allan Rdrigues 1. Na dntlgia amálgama, que é cmpst basicamente pr uma mistura sólida na qual mercúri, a prata e estanh sã cmbinads, fi um material

Leia mais