Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se"

Transcrição

1 UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer cmplex tem duas cmpnentes: uma real e utra imaginária. Assim send, pdems representar um numer cmplex na frma: Z = A + jb () nde Z é um numer cmplex qualquer, A é sua parte real e B a sua parte imaginária, send que B =. Os númers cmplexs representam cnjunt de númers mais abrangente. Os númers reais sã um sub-cnjunt ds númers reais. Os númers reais é um numer cmplex cm a parte imaginária igual a zer. Em circuits elétrics s númers cmplexs sã muit imprtantes pis permite analisar circuits reativs, ist é, circuits que cntem resistres, capacitres e indutres. Também, cm fi vist, tesões e crrentes alternadas senidais também pdem ser representadas pr númers cmplexs. Ist facilita muit analise de circuits alternads em regime permanente. Um numer cmplex pde ser representad em duas frmas: retangular e plar. A frma retangular fi mstrada acima na Eq (). Na frma plar, numer cmplex é representad pr seu módul e ângul. Assim, tem-se para numer cmplex acima: Z = Z φ () que: Ande Z = A + B e φ = tg - (B/A) (3.a) Cm Z cnstitui-se claramente a hiptenusa de um triângul retângul, tem-se A = Z.cs( φ ) e B = Z.sen( φ ) (3.b) A transfrmaçã de retangular para plar tem que levar em cnta quadrante em que está numer cmplex. Exempl Transfrmar de retangular para plar s seguintes númers cmplexs: a) 3 + j4 (b) 3 j4 (c) 3 + j4 (d) -3 j4

2 Sluçã: Para cas (a) tems Z = = 5 e φ = tg - (4/3) = 53,3 0 N cas (a) vê-se claramente que numer cmplex se encntra n quadrante d plan cmplex: cas a cas b Para cas (b) módul é mesm, prém ângul é φ = tg - (-4/3) = -53,3 0. O que leva a cnclusã fácil que este numer cmplex está n 4 quadrante d plan cmplex. N cas (c), n entant, pde-se ser traíd pela calculadra. O módul ainda é 5, cm se nta facilmente. Quant a ângul tem-se: 3 φ = tg = 53,3 4 O resultad acima pde levar errneamente à cnclusã que numer cmplex d cas (c) também está n 4 quadrante. N entant, ist nã é verdade. Se lcams numer cmplex n plan cmplex cm se vê abaix, tem-se: cas c cas d Assim, numer cmplex de (c) está de fat n quadrante. Para ver iss, fazems: j4 = -(3 j4) = 5 (-53,3 ± 80 ) = 5 6,87 N resultad acima cnsidera-se que se Z = Z φ, -Z = Z = ( φ ± 80 De frma mais direta, pdems dizer, cnfrme a figura acima que ângul é simplesmente: φ = 80 53,3 = 6,87 0 O últim cas, (d), pde levar à mesma cnclusã d cas (a), ist é, estaria também n quadrante, pis pela calculadra tem-se: que

3 Z = 5 e φ = tg - (-4/-3) = tg - (4/3) = N entant, examinand-se, diretamente numer cmplex em questã, vê-se que tant a parte real cm a imaginária, sã negativas, que leva à cnclusã que de fat este numer cmplex está n 3 quadrante, cnfrme mstra a ultima figura acima. Cmplex cnjugad que: Seja Z um numer cmplex qualquer. Z * será seu cmplex cnjugad de maneira Z = A + jb Z * = A -jb & Z = Z φ Z * = Z φ (4) Operações cm númers cmplexs. a) Sma e subtraçã. Para smar e subtrair ds númers cmplexs, sma-se u subtrai-se suas crrespndentes partes reais e imaginárias. Exempl : Smar s númers cmplexs -3 + j4 e 5 + j6 Sluçã: A sma ds númers cmplexs será: (-3 + 5) + j(4 + 6) = + j0 Uma peraçã trivial, prtant. Uma aplicaçã direta em circuits alternads está na sma/subtraçã de tesões/ crrentes alternadas senidais. Seja v (t) = V m.sen(ω.t + φ ) e v (t) = V m.sen(ω.t + φ ). Cm seria v (t) + v (t)? Para respnder a esta pergunta, devems ter em mente que: A sma/subtraçã de duas u mais funções senidais quaisquer da mesma freqüência tem cm resultad uma utra funçã senidal da mesma freqüência das funções iniciais. A sma/subtraçã de duas u mais funções senidais diretamente, sb a frma tempral, nã é prcediment matemátic trivial. N entant, expressand-se cada uma destas funções na frma cmplexa, prcediment fica simples, cm se verá. Assim, seja: v (t) = V m.sen(ω.t + φ ) V = V φ = A + jb v (t) = V m.sen(ω.t + φ ) V = V φ = C + je Vm V = & Vm V = : valres eficazes V + V = (A + C) + j (B + E) B + E V + V = (A + C) + (B + E) & φ T = tg- A + C Assim send, tem-se: (5.a) v (t) + v (t) = V mt. sen(ω.t + φ T ) 3

4 ande V mt = V + V x (5.b) Exempl 3: Duas tensões v (t) = 00.sen(00.t + 80 ) e v (t) = 4.sen(00t +50 ) sã aplicadas em série a um resistr de 30 Ω, cnfrme figura abaix. Determinar a ptência ttal dissipada pel resistr: Sluçã: Antes de mais nada, precisa-se smar as duas tensões. Para iss, de acrd cm (), (3.a) e (3.b), tma-se s seus númers cmplexs crrespndentes V = =,8 + j69,65 & V = 4 80 = 64,8 + j76.6 De acrd cm (5.a), tem-se: V = (,8 + 64,8) + (69,65 76,60) V = (8,93) (46,5) V + + = V + + = 67,64 : valr eficaz φ T = tg - 46,6 = 60,74 8, 93 v (t) + v (t) = x 67,64.sen(00t + 60,74 ) A ptência ttal dissipada n resistr é dada pr: 67,64 P = = 936, 8 watts 30 b) Multiplicaçã e divisã. Para a multiplicaçã e divisã deve-se perar na frma plar. Seja Z = A + jb Z = C + jd. Antes cnverte-se cada um destes númers para a frma plar: Z = Z φ e Z = Z φ 4

5 Na multiplicaçã de dis númers cmplexs, multiplica-se s móduls e smase s ânguls. Assim, Z T = Z x Z = x Z ( φ + φ ) Z Exempl 4: Multiplicar s númers cmplexs Z = 3 + j4 e Z = + j Sluçã: Z = = 5 φ = tg - (4/3) = 53,3 Z = + =, 3 φ = tg - (/) = 6,57 Z T = Z x Z = 5x,3 (53,3 + 6,57 ) =,5 79,7 Pr utr lad, pde-se multiplicar diretamente s dis númers cmplexs usand-se prduts ntáveis: Z T = Z x Z = (3 + j4)x( + j) = 3x + 3xj + j4x + j.j.4x = j8 + j3 = + j : cnsiderand que j.j = j = - Transfrmand na frma plar resultad acima, tem-se: + j7 + tg ( / ) =,8 79,7 O que cincide cm resultad btid acima usand-se a ntaçã plar. Para se dividir usa-se um prcediment análg.a da multiplicaçã. Usa-se a frma plar: divide-se s móduls e subtrai-se s ânguls. Assim, Z Z T = φ Z = ( φ ) Z φ Z φ Exempl 5: Em relaçã as númers cmplexs acima, dividir primeir pel segund. Sluçã Z T = 5 53,3,3 6,57 =,4 6,57 Pr utr lad, pde-se dividir diretamente em crdenadas retangulares: Z T = 3 + j4 + j Antes de se cntinuar a peraçã acima, multiplicams numeradr e denminadr pel cnjugad d numer cmplex d denminadr. A 5

6 multiplicaçã de um numer cmplex pel seu cnjugad dá, cm vims seu módul a quadrad: (3 + j4)x( j) 0 + j5 Z T = = = + j ( + j)x( j) 5 Cnvertend resultad acima para a frma plar chega-se a,4 6,57, mesm resultad acima. Cncluind, pde-se dizer que frma plar é mais direta e simples de usar para a multiplicaçã e divisã que a frma retangular e implica em mens engans e errs. 6

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

Aula 02 Álgebra Complexa

Aula 02 Álgebra Complexa Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician Aula 02 Álgebra Cmplexa 1. Númers Cmplexs Intrduçã Circuits CC smas algébricas de tensões e

Leia mais

Lista de exercícios Conceitos Fundamentais

Lista de exercícios Conceitos Fundamentais Curs: Engenharia Industrial Elétrica Disciplina: Análise Dinâmica Prfessr: Lissandr Lista de exercícis Cnceits Fundamentais 1) Em um circuit trifásic balancead a tensã V ab é 173 0 V. Determine tdas as

Leia mais

CIRCUITOS DE CORRENTE ALTERNADA

CIRCUITOS DE CORRENTE ALTERNADA 3 IUITOS DE OENTE TEND 3. INTODUÇÃO O estud de circuits de crrente alternada (..) é sbremd imprtante dad que a grande mairia das instalações elétricas utiliza este tip de circuits. Inicia-se desenvlviment

Leia mais

Material de apoio - Números complexos

Material de apoio - Números complexos Material de api - Númers cmplexs Intrduçã Dad a equaçã, qual valr de X?. x 8 = 0. x = 8 8 x = x = 4 x = ± 4 Prém, nã existem raízes reais para númers negativs, daí a necessidade de criar um nv númer, infelizmente

Leia mais

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada Sistemas Elétrics de Ptência Lista de Exercícis N. Revisã de ircuits em rrente lternada Parte : Ptência em Sistemas Mnfásics. Duas cargas em paralel cnsmem respectivamente 20 W cm um fatr de ptência de

Leia mais

Resposta de R, L e C em CA e Potência Média

Resposta de R, L e C em CA e Potência Média Institut Federal de Educaçã, Ciência e Tecnlgia de Santa Catarina Departaent Acadêic de Eletrônica Retificadres Respsta de R, e C e CA e Ptência Média Prf. Clóvis Antôni Petry. Flrianóplis, fevereir de

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

M.Sc. Jose Eduardo Ruiz Rosero 1. ENG1116 Tópicos especiais Energia solar

M.Sc. Jose Eduardo Ruiz Rosero 1. ENG1116 Tópicos especiais Energia solar 1 ENG1116 Tópics especiais Energia slar M.Sc. Jse Eduard Ruiz Rser 2 Ementa Cnquistas e desafis da energia slar Cnceits básics Radiaçã slar Física das células slares Célula slar Cmpnentes de um sistema

Leia mais

Roteiro-Relatório da Experiência N o 3 RESSONÂNCIA SÉRIE E SELETIVIDADE

Roteiro-Relatório da Experiência N o 3 RESSONÂNCIA SÉRIE E SELETIVIDADE Rteir-Relatóri da Experiência N 3 1. COMPONENTES DA EQUIPE: AUNOS NOTA 1 3 4 Prf.: Cels Jsé Faria de Araúj 5 Data: / / : hs. OBJETIVOS:.1. Nesta experiência será mntad um circuit RC série ressnante, a

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

Cálculo Aplicado à Engenharia Elétrica 2 o Semestre de 2013 Prof. Maurício Fabbri. 1 a Série de Exercícios Números complexos

Cálculo Aplicado à Engenharia Elétrica 2 o Semestre de 2013 Prof. Maurício Fabbri. 1 a Série de Exercícios Números complexos Cálcul Aplicad à Engenharia Elétrica Semestre de 013 Prf. Mauríci Fabbri 1 a Série de Exercícis Númers cmplexs 00-13 NÚMEROS COMPLEXOS - DEFINIÇÃO O PLANO COMPLEXO FORMAS RETANGULAR E POLAR 1. Esbce s

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

Aula 03 Circuitos CA

Aula 03 Circuitos CA Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Elements de Circuits n dmíni de Fasres Intrduçã Para cmpreender a respsta de dispsitivs básics

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB Mdulaçã AM - DSB Sinal Mdulante DC + = et = E kem cs ωmt * cs ω AM + t () ( ) ( ) x k = Eficiência d mduladr AM - DSB Sinal Prtadr Espectr d AM-DSB Sinal mdulante cssenidal et ( ) = cs ( ) * cs ( ) = AM

Leia mais

Análise de Circuitos em Regime Forçado Sinusoidal

Análise de Circuitos em Regime Forçado Sinusoidal Teria ds Circuits e Fundaments de Electrónica Análise de Circuits em egime Frçad Sinusidal Teresa endes de Almeida TeresaAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T..Almeida ST-DEEC- ACElectrónica

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

Algoritmos e Estruturas de Dados 1 Lista de Exercícios 2

Algoritmos e Estruturas de Dados 1 Lista de Exercícios 2 Algritms e Estruturas de Dads 1 Lista de Exercícis 2 Prfessr Paul Gmide Parte Teórica 1 Analisand as 2 estruturas mdificadras d flux de execuçã da linguagem C cnhecidas cm estruturas de seleçã ( ifelse

Leia mais

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS COMÉRCIO EXTERIOR - REGULAR TERCEIRA SÉRIE NOME: EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS TESTES 1) Cnjunt sluçã da equaçã z z 0, n cnjunt ds númers cmplexs, é: a), 0, - c) d) e) 0 5 ) O cnjugad d númer

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas Capítul 6 - Medidres de Grandezas Elétricas Periódicas 6. Intrduçã Neste capítul será estudad princípi de funcinament ds instruments utilizads para medir grandezas (tensões e crrentes) periódicas. Em circuits

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

Circuitos em CA Série, Paralelo e Misto

Circuitos em CA Série, Paralelo e Misto Institut Federal de Educaçã, Ciência e ecnlgia de Santa Catarina Departament Acadêmic de Eletrônica Retificadres Circuits em CA Série, Paralel e Mist Prf. Clóvis Antôni Petry. Flrianóplis, març de 2009.

Leia mais

Vantagens do Sistema Trifásico

Vantagens do Sistema Trifásico Vantagens d Sistema Trifásic Original: 6-06-03 Hmer Sette Revisã: 30-06-03 Agra que sistema trifásic chegu as amplificadres, cm advent d TRI 6000 S da Etelj, interesse pel assunt na cmunidade de áudi aumentu

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha.

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha. Aula: 25 Temática: Ptenciais da Pilha Vams estudar as características e determinações d ptencial da pilha e ds ptenciais padrões d eletrd e da pilha. Uma pilha na qual a reaçã glbal ainda nã tenha atingid

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Circuitos de Corrente Alternada I

Circuitos de Corrente Alternada I Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Circuits de Crrente Alternada I Nesta prática, estudarems circuits de crrente alternada e intrduzirems

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centr Federal de Educaçã Tecnlógica de Santa Catarina Departament Acadêmic de Eletrônica Retificadres Circuits it em CA Série, Paralel e Mist Prf. Clóvis Antôni Petry. Flrianóplis, agst de 2008. Bibligrafia

Leia mais

As propriedades do gás estelar

As propriedades do gás estelar As prpriedades d gás estelar Estrelas sã massas gassas mantidas gravitacinalmente cm uma frma quase esférica e que apresentam prduçã própria de energia. A definiçã acima, além de nã ser a mais precisa

Leia mais

Comunicado Cetip n 091/ de setembro de 2013

Comunicado Cetip n 091/ de setembro de 2013 Cmunicad Cetip n 091/2013 26 de setembr de 2013 Assunt: Aprimrament da Metdlgia da Taxa DI. O diretr-presidente da CETIP S.A. MERCADOS ORGANIZADOS infrma que, em cntinuidade às alterações infrmadas n Cmunicad

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

, cujos módulos são 3N. Se F A

, cujos módulos são 3N. Se F A VTB 008 ª ETAPA Sluçã mentada da Prva de Física 0. nsidere duas frças, F A e F B, cujs móduls sã 3N. Se F A e F B fazem, respectivamente, ânguls de 60 e cm eix-x ( ângul é medid n sentid anti-hrári em

Leia mais

Figura Diagrama unifilar de uma instalação eléctrica.

Figura Diagrama unifilar de uma instalação eléctrica. 9. Exempl 7 Cnsiderems a rede de distribuiçã representada na Figura 9.1. A canalizaçã QGBT-A é cnstituída pr um cab VAV 3x7+35 mm 2. A canalizaçã S1 alimenta um prédi nde existem 2 habitações cm ptência

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

As várias interpretações dos Números Racionais

As várias interpretações dos Números Racionais As várias interpretações ds Númers Racinais (Algumas das tarefas apresentadas a seguir fram retiradas u adaptadas da Tese de Dutrament de Maria Jsé Ferreira da Silva, cuj text se encntra n seguinte endereç:

Leia mais

Transdutor de corrente alternada (analógico)

Transdutor de corrente alternada (analógico) Transdutr de crrente (analógic) Revisã 1.1 22/04/2014 [1] Intrduçã Os transdutres de crrente têm pr finalidade cnverter um determinad sinal de crrente em um sinal cntínu islad galvanicamente. Sã dispnibilizads

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0

Leia mais

Capacitância e Capacitores

Capacitância e Capacitores Nessa prática, farems um estud sbre capacitres. erá intrduzid cnceit de capacitância e estudarems as leis de carga e descarga de capacitres, bem cm as regras de assciaçã desses elements de circuit. empre

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

+ E - EEL211 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS W= C.V J. v C(t)= i C(t).dt +V C(0) V. d i C(t)=C. v C(t) A dt. j 2 π f C

+ E - EEL211 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS W= C.V J. v C(t)= i C(t).dt +V C(0) V. d i C(t)=C. v C(t) A dt. j 2 π f C 11 - ABOATÓO D UTOS ÉTOS ABOATÓO N O 8: UTO APATVO () NDUTVO () M GM SNODA O bjetiv desta aula é verificar experimentalmente cmprtament d capacitr e indutr em regime de crrente alternada senidal. STA D

Leia mais

Para uma linha de transmissão, o fluxo de potência ativa entre duas barras é dado por:

Para uma linha de transmissão, o fluxo de potência ativa entre duas barras é dado por: Análise de Sisteas de tência (AS Flu de carga linearizad E funçã da grande siplificaçã prprcinada nas equações d flu de carga, s dels linearizads apresenta grande utilidade n planejaent da peraçã e da

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

Pontifícia Universidade Católica do RS Faculdade de Engenharia

Pontifícia Universidade Católica do RS Faculdade de Engenharia Pntifícia Universidade Católica d S Faculdade de Engenharia LABOATÓO DE ELETÔNCA DE POTÊNCA EXPEÊNCA 4: ETFCADO TFÁSCO COM PONTO MÉDO ( PULSOS) OBJETO erificar qualitativa e quantitativamente cmprtament

Leia mais

CAPÍTULO 2 RETIFICADORES A DIODO 2.1 - RETIFICADOR MONOFÁSICO DE MEIA ONDA A DIODO. a) Carga Resistiva Pura

CAPÍTULO 2 RETIFICADORES A DIODO 2.1 - RETIFICADOR MONOFÁSICO DE MEIA ONDA A DIODO. a) Carga Resistiva Pura CAPÍTULO ETFCADOES A DODO.1 ETFCADO MONOFÁSCO DE MEA ONDA A DODO a) Carga esistiva Pura A estrutura d retificadr mnfásic de meia nda alimentand uma carga resistiva está representada na figura.1. v D D

Leia mais

Estrutura de Repetição

Estrutura de Repetição Estrutura de Repetiçã 1. Faça um prgrama que peça uma nta, entre zer e dez. Mstre uma mensagem cas valr seja inválid e cntinue pedind até que usuári infrme um valr válid. 2. Faça um prgrama que leia um

Leia mais

UFRJ / POLI / DEL - Laboratório de Eletrônica III AULA PRÁTICA #4 OSCILADORES SENOIDAIS EM PONTE DE WIEN

UFRJ / POLI / DEL - Laboratório de Eletrônica III AULA PRÁTICA #4 OSCILADORES SENOIDAIS EM PONTE DE WIEN AULA PRÁTICA #4 OSCILADORES SEOIDAIS EM POTE DE WIE Obs: Prnuncia-se pnte de in. O nme vem d pesquisadr alemã Max Karl Werner Wien (866-938), que estudu a pnte RC que realimenta amplificadr, que leva seu

Leia mais

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica Cartgrafia e Geprcessament Parte 2 Prjeçã Cartgráfica Recapituland... Geide; Datum: Planimétrics e Altimétrics; Tpcêntrics e Gecêntrics. Data ficiais ds países; N Brasil: Córreg Alegre, SAD69 e SIRGAS

Leia mais

Classificações ECTS. - Resultados da aplicação experimental às disciplinas do IST - Carla Patrocínio

Classificações ECTS. - Resultados da aplicação experimental às disciplinas do IST - Carla Patrocínio Classificações ECTS - Resultads da aplicaçã experimental às disciplinas d IST - Carla Patrcíni Crd.: Drª Marta Pile Gabinete de estuds e planeament Institut Superir Técnic Janeir, 2003 1. Enquadrament

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim Estud da Cnvergência d Métd de Newtn-Raphsn Deseja-se mstrar que, se Métd de Newtn-Raphsn cnverge, esta cnvergência se dá para a raiz (zer da unçã. Hipótese: A raiz α é única n interval [a,b]. Deine-se

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Capítulo V. Técnicas de Análise de Circuitos

Capítulo V. Técnicas de Análise de Circuitos Capítul V Técnicas de Análise de Circuits 5.1 Intrduçã Analisar um circuit é bter um cnjunt de equações u valres que demnstram as características de funcinament d circuit. A análise é fundamental para

Leia mais

Matemática 1ª série Ensino Médio v. 3

Matemática 1ª série Ensino Médio v. 3 Matemática ª série Ensin Médi v. Eercícis 0) a),76 0 tg 7 tg 0,57 9,7 0 0) 6, cm e 9, cm tg 0 0,89,7670 6 5 cm b) 9,06 8 cm 6 sen 6 8 tg 6 a 5 0,889 8 9,060 cm c) 6,88 5 6,050 a 5 a 0,55 cm tg a 0,69 0,

Leia mais

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL AMPLIFICADO OPEACIONAL Intrduçã O amplificadr peracinal (ampp) é um amplificadr integrad cnstruíd para facilitar a análise e a utilizaçã de amplificadres realimentads. Análise baseada em cnceits de realimentaçã

Leia mais

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L Impedância Em um circuito de corrente alternada puramente resistivo, vimos que, se uma tensão v(t) = V m sen(ωt + ), a corrente que fluirá no resistor será i(t) = I m sen(ωt + ), onde I m = V m /R. Representando

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

Revisão números Complexos

Revisão números Complexos ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma

Leia mais

Questão 46. Questão 48. Questão 47. Questão 49. alternativa C. alternativa D. alternativa D

Questão 46. Questão 48. Questão 47. Questão 49. alternativa C. alternativa D. alternativa D Questã 46 Se uma pessa cnseguiu percrrer a distância de 3 000 m em 45 minuts, sua velcidade escalar média, nesse interval, fi: a),0 km/h d) 6,0 km/h b) 3,0 km/h e) 6,7 km/h alternativa C c) 4,0 km/h A

Leia mais

KIT PARA O REPARO DO CIRCUITO ELETRÔNICO DOS PROCESSADORES RI3172 / RI3173

KIT PARA O REPARO DO CIRCUITO ELETRÔNICO DOS PROCESSADORES RI3172 / RI3173 KIT PR O REPRO DO IRUITO ELETRÔNIO DOS PROESSDORES RI3172 / RI3173 Em funçã da descntinuidade de frneciment da placa de circuit ds prcessadres RI3172 e RI3173 e devid a grande quantidade de aparelhs existentes

Leia mais

AULA CORRENTE CONTÍNUA E ALTERNADA

AULA CORRENTE CONTÍNUA E ALTERNADA APOSTILA ELÉTRIA PARA AULA 11 MÓDULO - 1 ORRENTE ONTÍNUA E ALTERNADA Induçã Eletrmagnética Geraçã de crrente cntínua e alternada Frmas de nda - icl - Períd - Frequência lts de pic e pic-a-pic Tensã eficaz

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

Retificadores (ENG ) Lista de Exercícios (Selecionados) de Dispositivos Eletrônicos

Retificadores (ENG ) Lista de Exercícios (Selecionados) de Dispositivos Eletrônicos ista de Exercícis de ispsitivs Eletrônics etificadres (ENG - 20301) ista de Exercícis (Selecinads) de ispsitivs Eletrônics 06) etermine a queda de tensã direta através d did cujas características aparecem

Leia mais

Aula 10 Resposta em Freqüência de Sistemas Lineares Diagramas de Bode Introdução

Aula 10 Resposta em Freqüência de Sistemas Lineares Diagramas de Bode Introdução Aula 0 Respsta em Freqüência de Sistemas Lineares Diagramas de Bde Intrduçã Diagramas de Bde Escala Lgarítmica de Amplitude Escala Lgarítmica de Freqüência Análise ds Terms das Funções de Transferência

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Avenida Prfessr Mell Mraes, nº 1. CEP 05508-900, Sã Paul, SP. PME 100 MECÂNICA A Terceira Prva 11 de nvembr de 009 Duraçã da Prva: 10 minuts (nã é permitid us de calculadras) 1ª Questã (,5 pnts): Um sólid

Leia mais

o contraste é significativo ao nível

o contraste é significativo ao nível Rteir de Aula 8 Experimentaçã Ztécnica 25/04/2017 Teste de Tukey O prcediment para aplicaçã d teste é seguinte: Pass 1. Calcula-se valr de Pass 2. Calculam-se tdas as estimativas de cntrastes entre duas

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

Introdução às Redes e Serviços de Telecomunicações

Introdução às Redes e Serviços de Telecomunicações Capítul 1 Intrduçã às Redes e Serviçs de Telecmunicações 1.1 Intrduçã Neste capítul apresenta-se a resluçã de alguns prblemas e prpõem-se alguns exercícis adicinais referentes à matéria d capítul 1 de

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

DIFERENÇA NO TEMPO DE QUEDA ENTRE DOIS OBJETOS DE MASSA DIFERENTE EM QUEDA LIVRE

DIFERENÇA NO TEMPO DE QUEDA ENTRE DOIS OBJETOS DE MASSA DIFERENTE EM QUEDA LIVRE DIFERENÇA NO TEMPO DE QUEDA ENTRE DOIS OBJETOS DE MASSA DIFERENTE EM QUEDA LIVRE Eliézer Sbrinh Ferreira¹, Heli Lurenç Esperidiã Ferreira¹, Reginald de Oliveira¹, Paul Rx Barja² ¹ Aluns, FCC, Universidade

Leia mais

Modulação Angular por Sinais Digitais

Modulação Angular por Sinais Digitais Mdulaçã Angular pr Sinais Digitais Cm n cas da mdulaçã em amplitude, também para a mdulaçã angular se desenvlveu uma nmenclatura especial quand se trata de sinais digitais na entrada. N cas da mdulaçã

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA A.M.A. Taeira A.C.M. Barreir V.S. Bagnat Institut de Físic-Química -USP Sã Carls SP Atraés d lançament de prjéteis pde-se estudar as leis

Leia mais

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas Apstila de Física MOVIMENTO DE QUEDA LIVRE (1 a versã - Versã prvisória - setembr/000) Prf. Petrôni Lbat de Freitas A Experiência de Galileu Observand a queda de um bjet pdems ntar que a sua velcidade

Leia mais

Utilizando o Calculador Etelj Velocidade do Som no Ar

Utilizando o Calculador Etelj Velocidade do Som no Ar Utilizand Calculadr telj Velcidade d Sm n Ar Hmer Sette 8 0 0 ste utilitári permite cálcul da velcidade de prpagaçã d sm n ar C, em funçã da temperatura d ar, da umidade relativa d ar e da pressã atmsférica

Leia mais

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de

Leia mais

Liquidação Financeira. PdC Versão 3 PdC Versão 4

Liquidação Financeira. PdC Versão 3 PdC Versão 4 Prcediment de Cmercializaçã Cntrle de Alterações Liquidaçã Financeira PdC Versã 3 PdC Versã 4 Versã 3 Versã 4 METODOLOGIA DO Text em realce refere-se à inserçã de nva redaçã. Text tachad refere-se à exclusã

Leia mais

S3 - Explicação sobre endereço e/ou número de telefone dos EUA

S3 - Explicação sobre endereço e/ou número de telefone dos EUA S3 - Explicaçã sbre endereç e/u númer de telefne ds EUA Nme Númer da Cnta (se huver) A preencher seu Frmulári W-8 d IRS, vcê afirma nã ser cidadã u residente ds EUA u utra cntraparte ds EUA para efeit

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

IMPEDÂNCIA Impedância

IMPEDÂNCIA Impedância IMPEDÂNCIA Em um circuito real a resistência elétrica, que é propriedade física dos materiais que o constituem, está sempre presente. Ela pode ser minimizada, mas não eliminada. Portanto, circuitos indutivos

Leia mais

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares J. A. M. Felippe de Sza 3 Sinais Singlares 3 Sinais Singlares 3. Intrdçã as sinais singlares 3 3. Sinais singlares discrets 4 O sinal impls nitári discret ( nit-implse ) 4 Prpriedades d impls nitári discret

Leia mais

10. Escreva um programa que leia um texto e duas palavras e substitua todas as ocorrências da primeira palavra com a segunda palavra.

10. Escreva um programa que leia um texto e duas palavras e substitua todas as ocorrências da primeira palavra com a segunda palavra. Lista de Exercícis: Vetres, Matrizes, Strings, Pnteirs e Alcaçã Obs: Tdas as questões devem ser implementadas usand funções, pnteirs e alcaçã 1. Faça um prgrama que leia um valr n e crie dinamicamente

Leia mais