COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

Tamanho: px
Começar a partir da página:

Download "COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA"

Transcrição

1 COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para uma determinada dença. Um caminh simples para cmparar s temps de sbrevivência é a bservaçã ds gráfics das funções de sbrevivência estimadas. Cntud esse gráfic frnece apenas uma idéia aprximada da diferença entre essas distribuições. Ele nã revela se as diferenças sã significativas. Para cmparar as curvas de sbrevivência mais frmalmente pde-se recrrer a testes de hipóteses.

2 TESTE LOGRANK Este teste é bastante utilizad em análise de sbrevivência e é aprpriad quand a razã das funções de risc ds grups a serem cmparads é aprximadamente cnstante. Cmpara a distribuiçã da crrência ds events bservads em cada grup cm a distribuiçã que seria esperada se a incidência fsse igual em tds s grups. Supnha que querems cmparar duas funções de sbrevivência S 1 (t) e S 2 (t). Seam t 1 <t 2 <...<t r s temps de falha distints da amstra frmada pela cmbinaçã das duas amstras individuais. Sea d númer de falhas n temp t e n númer de bservações sb risc em um temp imediatamente inferir a t e respectivamente, d i e n i na amstra i, i = 1,2 e = 1,2,...,r. Em cada temp de falha t, s dads pdem ser dispsts em frma de uma tabela de cntingência 2 x 2.

3

4 Cnsidere a hipótese nula de que nã existe diferença entre as sbrevivências ds dis grups. Uma frma de testar a validade desta hipótese é cnsiderar uma medida da diferença entre númer bservad de indivídus que falham ns dis grups em cada temp de falha e númer esperad sb a hipótese nula. Se s ttais marginais da tabela acima sã cnsiderads fixs, e a hipótese nula de que a sbrevivência é independente d grup é verdadeira, as quatr entradas da tabela sã unicamente determinadas pel valr de d 1. É pssível verificar que d 1 tem distribuiçã de prbabilidade cnhecida cm distribuiçã Hipergemétrica. A prbabilidade de que a variável aleatória tme valr d1 é

5 A média da variável aleatória hipergemétrica d 1, é dada pr IMPORTANTE: Este valr esperad pde ser btid de maneira intuitiva pis sb a hipótese nula de que a prbabilidade de falha nã depende d grup, a prbabilidade de falha em t é d /n. Multiplicand pr n 1, btems e 1 cm númer esperad de falhas n grup I em t. O próxim pass é cmbinar a infrmaçã da tabela 2 x 2 para cada temp de falha e bter uma medida ds desvis ds valres bservads de seus valres esperads. A maneira mais simples é utilizar a sma das diferenças d 1 -e 1 para númer ttal de temps de falhas, r, ns dis grups.

6 Esta estatística terá média zer desde que: Cnsiderand que s temps de falhas sã independentes a variância de U L é simplesmente a sma das variâncias de d 1. Cm d 1 tem distribuiçã hipergemétrica a sua variância é dada pr A variância de U L é: 1) ( ) ( n n d n d n n v r L L v V U Var 1 1 ) ( E(d 1 ) = e 1

7 A estatística U L tem distribuiçã aprximadamente nrmal, quand númer de temps de falhas é grande. Assim e tem distribuiçã qui-quadrad cm um grau de liberdade. Ou sea,. Valres grandes dessa estatística ns mstram evidências cntra a hipótese nula.

8 TESTE DE GEHAN Cnsiderand a hipótese nula de que nã existe diferença entre as funções de sbrevivência de dis grups a estatística de teste é N teste de Gehan cada diferença d 1 -e 1 tem pes dad pel ttal de indivídus em risc n temp t. Esta estatística é prtant mens sensível que a de Lg-Rank para desvis de d 1 e e 1. A variância da estatística de teste U G é dada pr Dessa frma a estatística tem distribuiçã quiquadrad cm um grau de liberdade, quand a hipótese nula é verdadeira.

9 COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA OBSERVAÇÃO: Quand apenas dis estrats estã send cmparads, a estatística lg-rank é calculada utilizand-se s dads de apenas um ds estrats. O resultad d teste para um estrat se estende a utr estrat pr simetria. A generalizaçã d teste de lg-rank para mais de dis estrats nã é cmplicada. N R survdiff(surv(temps,censura)~grups,rh=0) EXEMPLO: Dads de Hepatite temp<- c(1,2,3,3,3,5,5,16,16,16,16,16,16,16,16,1,1,1,1,4,5,7,8,10,10,12,16,16,16) cens<-c(0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0) grups<-c(rep(1,15),rep(2,14)) survdiff(surv(temp,cens)~grups,rh=0)

10 COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA TESTE PETO: A variância da estatística de Pet é igual a variância d lg-rank, nde a cada temp se pndera pel quadrad da funçã de sbrevida. N R survdiff(surv(temps,censura)~grups,rh=1) EXEMPLO: Dads de Hepatite survdiff(surv(temp,cens)~grups,rh=1)

11 COMANDOS NO R INTERVALO DE CONFIANÇA - KM<-survfit(Surv(temp,censura)~grups,cnf.type= plain ) - Summary(KM) INTEVALO LOG-LOG - KM<- survfit(surv(temp,censura)~grups,cnf.type= lg-lg ) - Summary(KM) - OBSERVAÇÃO: O default d R é U( t) lg[ S t)] ˆ ˆ(

o contraste é significativo ao nível

o contraste é significativo ao nível Rteir de Aula 8 Experimentaçã Ztécnica 25/04/2017 Teste de Tukey O prcediment para aplicaçã d teste é seguinte: Pass 1. Calcula-se valr de Pass 2. Calculam-se tdas as estimativas de cntrastes entre duas

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

PPGEP Comentários Iniciais CAPÍTULO 7 TESTE DE HIPÓTESE UFRGS. Testes de Hipótese

PPGEP Comentários Iniciais CAPÍTULO 7 TESTE DE HIPÓTESE UFRGS. Testes de Hipótese CAPÍTULO 7 7.. Cmentáris Iniciais Uma hipótese estatística é uma afirmativa a respeit de um parâmetr de uma distribuiçã de prbabilidade. Pr exempl, pdems frmular a hipótese que a prdutividade,5 peças/hra.

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

Comunicado Cetip n 091/ de setembro de 2013

Comunicado Cetip n 091/ de setembro de 2013 Cmunicad Cetip n 091/2013 26 de setembr de 2013 Assunt: Aprimrament da Metdlgia da Taxa DI. O diretr-presidente da CETIP S.A. MERCADOS ORGANIZADOS infrma que, em cntinuidade às alterações infrmadas n Cmunicad

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Circuitos de Corrente Alternada I

Circuitos de Corrente Alternada I Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Circuits de Crrente Alternada I Nesta prática, estudarems circuits de crrente alternada e intrduzirems

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

As propriedades do gás estelar

As propriedades do gás estelar As prpriedades d gás estelar Estrelas sã massas gassas mantidas gravitacinalmente cm uma frma quase esférica e que apresentam prduçã própria de energia. A definiçã acima, além de nã ser a mais precisa

Leia mais

UTLIZAÇÃO DOS TESTES DE HIPÓTESES PARA A MÉDIA NA TOMADA DE DECISÃO RESUMO. Palavras-chave: Testes de Hipótese. Decisão. Estatística.

UTLIZAÇÃO DOS TESTES DE HIPÓTESES PARA A MÉDIA NA TOMADA DE DECISÃO RESUMO. Palavras-chave: Testes de Hipótese. Decisão. Estatística. UTLIZAÇÃO DOS TESTES DE HIPÓTESES PARA A MÉDIA NA TOMADA DE DECISÃO RESUMO Nil A de S. Sampai 1 Rbert Camps Leni 2 Este artig trata ds cnceits que envlvem s Testes de Hipótese e suas aplicações em na tmada

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares J. A. M. Felippe de Sza 3 Sinais Singlares 3 Sinais Singlares 3. Intrdçã as sinais singlares 3 3. Sinais singlares discrets 4 O sinal impls nitári discret ( nit-implse ) 4 Prpriedades d impls nitári discret

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Australe Jrnal Pessal de Astrnmia, Física e Matemática - Prduzid pr Irineu Gmes Varella Criad em 1995 Retmad em Junh de 01 An III Nº 01 - Junh de 01 REFRAÇÃO ATMOSFÉRICA - I Prf. Irineu Gmes Varella,

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

Classificações ECTS. - Resultados da aplicação experimental às disciplinas do IST - Carla Patrocínio

Classificações ECTS. - Resultados da aplicação experimental às disciplinas do IST - Carla Patrocínio Classificações ECTS - Resultads da aplicaçã experimental às disciplinas d IST - Carla Patrcíni Crd.: Drª Marta Pile Gabinete de estuds e planeament Institut Superir Técnic Janeir, 2003 1. Enquadrament

Leia mais

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim Estud da Cnvergência d Métd de Newtn-Raphsn Deseja-se mstrar que, se Métd de Newtn-Raphsn cnverge, esta cnvergência se dá para a raiz (zer da unçã. Hipótese: A raiz α é única n interval [a,b]. Deine-se

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

Questão 13. Questão 14. Resposta

Questão 13. Questão 14. Resposta Questã Uma empresa imprime cerca de.000 páginas de relatóris pr mês, usand uma impressra jat de tinta clrida. Excluind a amrtizaçã d valr da impressra, cust de impressã depende d preç d papel e ds cartuchs

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

Análise da Paisagem Pedreira "Mané"

Análise da Paisagem Pedreira Mané Legenda Curvas de nível EN 246 Caminh de Ferr Estradas Nacinais Hipsmetria 240-250 250,0000001-260 260,0000001-270 270,0000001-280 280,0000001-290 290,0000001-300 300,0000001-310 EN 243 Fntes: Cartas Militares

Leia mais

Bias de AM. Bias e Variância Estatísticos

Bias de AM. Bias e Variância Estatísticos Bias, Variância & Ensembles Em aulas anterires vims cnceit de bias de AM, qual se cnstitui em certas supsições e esclhas efetuadas pels indutres na busca de uma hipótese Nesta aula verems que bias e a

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R.

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R. ANÁLISE DE DESEMPENHO DOS GAFICOS DE E. Vims cm cnstruir e utilizar s gráfics de cntrle. Agra vams estudar sua capacidade de detectar perturbações n prcess. GÁFICO de Em um julgament, veredict final será

Leia mais

FACULDADE AGES CURSO DE ENFERMAGEM REGULAMENTAÇÃO DAS PRÁTICAS EDUCATIVAS ADMINISTRAÇÃO APLICADA A ENFERMAGEM

FACULDADE AGES CURSO DE ENFERMAGEM REGULAMENTAÇÃO DAS PRÁTICAS EDUCATIVAS ADMINISTRAÇÃO APLICADA A ENFERMAGEM FACULDADE AGES CURSO DE ENFERMAGEM REGULAMENTAÇÃO DAS PRÁTICAS EDUCATIVAS ADMINISTRAÇÃO APLICADA A ENFERMAGEM As Práticas Educativas serã realizadas em hráris pré-determinads n períd diurn para aluns regularmente

Leia mais

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha.

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha. Aula: 25 Temática: Ptenciais da Pilha Vams estudar as características e determinações d ptencial da pilha e ds ptenciais padrões d eletrd e da pilha. Uma pilha na qual a reaçã glbal ainda nã tenha atingid

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

Tributação Padrão para Imobilizado

Tributação Padrão para Imobilizado Tributaçã Padrã para Imbilizad Intrduçã O sistema pssui cadastrs de tributaçã padrã para diverss prcesss cm peças, veículs, despesas, serviçs e inclusive a pssibilidade de indicar tributações padrã para

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Retificadores (ENG ) Lista de Exercícios (Selecionados) de Dispositivos Eletrônicos

Retificadores (ENG ) Lista de Exercícios (Selecionados) de Dispositivos Eletrônicos ista de Exercícis de ispsitivs Eletrônics etificadres (ENG - 20301) ista de Exercícis (Selecinads) de ispsitivs Eletrônics 06) etermine a queda de tensã direta através d did cujas características aparecem

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0

Leia mais

Alinhamento de Seqüências Biológicas

Alinhamento de Seqüências Biológicas O que se cmpara? Alinhament de Seqüências Bilógicas A cmparaçã de seqüências de DNA, RNA e prteínas é uma das bases da biinfrmática. Citsina Uracila Timina Prfª Drª Silvana Giuliatti Departament de Genética

Leia mais

FKcorreiosg2_cp1 - Complemento Transportadoras

FKcorreiosg2_cp1 - Complemento Transportadoras FKcrreisg2_cp1 - Cmplement Transprtadras Instalaçã d módul Faça dwnlad d arquiv FKcrreisg2_cp1.zip, salvand- em uma pasta em seu cmputadr. Entre na área administrativa de sua lja: Entre n menu Móduls/Móduls.

Leia mais

A INVESTIGAÇÃO OPERACIONAL NA EMPRESA. Documento n.8. Capítulo II

A INVESTIGAÇÃO OPERACIONAL NA EMPRESA. Documento n.8. Capítulo II N O R M A, S.A.R.L. Sciedade de Estuds para Desenvlviment de Empresas A NVESTGAÇÃO OPERACONAL NA EMPRESA Dcument n.8 1 N D C E Capítul ESTUDO ELEMENTAR DE ALGUNS MODELOS E TÉCNCAS UTLZADAS UA NVESTGAÇÃO

Leia mais

NOTA TÉCNICA nº 14 Complementar do Regulamento Geral de SCIE Ref.ª VII.V.02/2007-05-31

NOTA TÉCNICA nº 14 Complementar do Regulamento Geral de SCIE Ref.ª VII.V.02/2007-05-31 FONTES ABASTECEDORAS DE ÁGUA RESUMO NOTA TÉCNICA nº 14 Cmplementar d Regulament Geral de SCIE Ref.ª VII.V.02/2007-05-31 FONTES ABASTECEDORAS DE ÁGUA Enunciar s tips de fntes de alimentaçã de água permitids

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

As várias interpretações dos Números Racionais

As várias interpretações dos Números Racionais As várias interpretações ds Númers Racinais (Algumas das tarefas apresentadas a seguir fram retiradas u adaptadas da Tese de Dutrament de Maria Jsé Ferreira da Silva, cuj text se encntra n seguinte endereç:

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

Modulação Angular por Sinais Digitais

Modulação Angular por Sinais Digitais Mdulaçã Angular pr Sinais Digitais Cm n cas da mdulaçã em amplitude, também para a mdulaçã angular se desenvlveu uma nmenclatura especial quand se trata de sinais digitais na entrada. N cas da mdulaçã

Leia mais

Alterações na aplicação do Critério Brasil, válidas a partir de 01/01/2014

Alterações na aplicação do Critério Brasil, válidas a partir de 01/01/2014 Alterações na aplicaçã d Critéri Brasil, válidas a partir de 01/01/2014 A dinâmica da ecnmia brasileira, cm variações imprtantes ns níveis de renda e na psse de bens ns dmicílis, representa um desafi imprtante

Leia mais

O uso de amostras. Desvantagens: Perda no nível de confiança; Diminuição da precisão dos resultados. POPULAÇÃO (N) AMOSTRA(n)

O uso de amostras. Desvantagens: Perda no nível de confiança; Diminuição da precisão dos resultados. POPULAÇÃO (N) AMOSTRA(n) Amstragem O us de amstras POPULAÇÃO (N) AMOSTRA(n) Desvantagens: Perda n nível de cnfiança; Diminuiçã da precisã ds resultads. Vantagens: Cust; Temp; Acessibilidade; O us de amstras Pssibilidade de mair

Leia mais

Esta aula nos dará conhecimento para análise e determinação do calor produzido ou absorvido em uma reação química.

Esta aula nos dará conhecimento para análise e determinação do calor produzido ou absorvido em uma reação química. Aula: 07 emática: ermquímica Esta aula ns dará cnheciment para análise e determinaçã d calr prduzid u absrvid em uma reaçã química. A termquímica é a investigaçã d calr prduzid u cnsumid nas reações químicas.

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB Mdulaçã AM - DSB Sinal Mdulante DC + = et = E kem cs ωmt * cs ω AM + t () ( ) ( ) x k = Eficiência d mduladr AM - DSB Sinal Prtadr Espectr d AM-DSB Sinal mdulante cssenidal et ( ) = cs ( ) * cs ( ) = AM

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

ACUMULADOR DE PRESSÃO. Linha de produto 9.1. Pré-seleção

ACUMULADOR DE PRESSÃO. Linha de produto 9.1. Pré-seleção ACUMULADOR DE PRESSÃO Linha de prdut Préseleçã 9.1 Acumuladr de pressã cm diafragma Acumuladr D,725 Acumuladr D,75 Acumuladr D,1625 Acumuladr D,321 Acumuladr D,3225 Acumuladr D,51 Acumuladr D,751 Acumuladr

Leia mais

Capítulo V. Técnicas de Análise de Circuitos

Capítulo V. Técnicas de Análise de Circuitos Capítul V Técnicas de Análise de Circuits 5.1 Intrduçã Analisar um circuit é bter um cnjunt de equações u valres que demnstram as características de funcinament d circuit. A análise é fundamental para

Leia mais

Roteiro-Relatório da Experiência N o 3 RESSONÂNCIA SÉRIE E SELETIVIDADE

Roteiro-Relatório da Experiência N o 3 RESSONÂNCIA SÉRIE E SELETIVIDADE Rteir-Relatóri da Experiência N 3 1. COMPONENTES DA EQUIPE: AUNOS NOTA 1 3 4 Prf.: Cels Jsé Faria de Araúj 5 Data: / / : hs. OBJETIVOS:.1. Nesta experiência será mntad um circuit RC série ressnante, a

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

Avaliação Imobiliária e Manutenção das Construções

Avaliação Imobiliária e Manutenção das Construções Avaliaçã Imbiliária e Manutençã das Cnstruções 1ª Épca 15 de junh de 2016 (11h30) (V1.26 V1.25) Nme: Númer: Duraçã ttal sem interval: 1,45 hras Ntas: I. Nã é permitida a cnsulta de quaisquer ntas u dcuments,

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

Valor das aposentadorias

Valor das aposentadorias Valr das apsentadrias O que é? O cálcul d valr de apsentadrias é a frma cm s sistemas d INSS estã prgramads para cumprir que está previst na legislaçã em vigr e definir valr inicial que vai ser pag mensalmente

Leia mais

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO Última Revisã: 02/06/2014 1. RESUMO CADASTRO Cliente preenche Frmulári de Cadastr CONFIRMAÇÃO DE CADASTRO A FH envia um e-mail de cnfirmaçã de cadastr para cliente

Leia mais

Introdução às Redes e Serviços de Telecomunicações

Introdução às Redes e Serviços de Telecomunicações Capítul 1 Intrduçã às Redes e Serviçs de Telecmunicações 1.1 Intrduçã Neste capítul apresenta-se a resluçã de alguns prblemas e prpõem-se alguns exercícis adicinais referentes à matéria d capítul 1 de

Leia mais

Serviço Social

Serviço Social Serviç Scial 2012-13 Tmada de Decisã UCP-CRB Pól de Viseu *- 1 A elevada velcidade da mudança intrduz um nv element na gestã, frçand s executivs, já nervss cm um ambiente nã familiar, a tmar mais e mais

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

Modelos GAMLSS - Associações entre marcadores e QTL

Modelos GAMLSS - Associações entre marcadores e QTL Mdels GAMLSS - Assciações entre marcadres e QTL Elias Silva de Medeirs 1 2 Rseli Aparecida Leandr 1 Cristian Villegas 1 Marina Rdrigues Maestre 1 1 Intrduçã Durante muits ans, em trabalhs estatístics,

Leia mais

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Ecologia II c 2006 ESTUDO DA DISTRIBUIÇÃO ESPACIAL DE ORGANISMOS NUMA ZONA INTERTIDAL

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Ecologia II c 2006 ESTUDO DA DISTRIBUIÇÃO ESPACIAL DE ORGANISMOS NUMA ZONA INTERTIDAL Universidade Nva de Lisba, Faculdade de Ciências e Tecnlgia Eclgia II c 2006 ESTUDO DA DISTRIBUIÇÃO ESPACIAL DE ORGANISMOS NUMA ZONA INTERTIDAL Jana Alves, Núria Csta & Raquel Machad Resum: Este trabalh

Leia mais

S3 - Explicação sobre endereço e/ou número de telefone dos EUA

S3 - Explicação sobre endereço e/ou número de telefone dos EUA S3 - Explicaçã sbre endereç e/u númer de telefne ds EUA Nme Númer da Cnta (se huver) A preencher seu Frmulári W-8 d IRS, vcê afirma nã ser cidadã u residente ds EUA u utra cntraparte ds EUA para efeit

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 ANO DO ENSINO MÉDIO DATA: 9/0/09 PROFESSOR: CARIBÉ Td mund quer ajudar a refrescar planeta. Viru mda falar em aqueciment glbal. É precis nã esquecer que s recurss

Leia mais

Aula 10 Resposta em Freqüência de Sistemas Lineares Diagramas de Bode Introdução

Aula 10 Resposta em Freqüência de Sistemas Lineares Diagramas de Bode Introdução Aula 0 Respsta em Freqüência de Sistemas Lineares Diagramas de Bde Intrduçã Diagramas de Bde Escala Lgarítmica de Amplitude Escala Lgarítmica de Freqüência Análise ds Terms das Funções de Transferência

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA A.M.A. Taeira A.C.M. Barreir V.S. Bagnat Institut de Físic-Química -USP Sã Carls SP Atraés d lançament de prjéteis pde-se estudar as leis

Leia mais

MECANISMOS COMBINADOS DE TRANSFERÊNCIA DE CALOR (CONDUÇÃO E CONVECÇÃO)

MECANISMOS COMBINADOS DE TRANSFERÊNCIA DE CALOR (CONDUÇÃO E CONVECÇÃO) MECNISMOS COMBINDOS DE NSEÊNCI DE CLO (CONDUÇÃO E CONVECÇÃO Cnsiderems uma parede plana situada entre dis luids a dierentes temperaturas Se as temperaturas e ds luids sã cnstantes, será estabelecid um

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

A utilização da função perda de Taguchi sob a ótica das regiões de máximo e mínimo ARL para otimizar os parâmetros estatísticos do

A utilização da função perda de Taguchi sob a ótica das regiões de máximo e mínimo ARL para otimizar os parâmetros estatísticos do I CONGRESSO RSILEIRO DE ENGENHRI DE PRODUÇÃO Pnta Grssa, PR, rasil, 30/11, 01 a 0 de dezembr 011 utilizaçã da funçã perda de Taguchi sb a ótica das regiões de máxim e mínim RL para timizar s parâmetrs

Leia mais

PAGQuímica 2011/1 Exercícios de Cinética Química

PAGQuímica 2011/1 Exercícios de Cinética Química PAGQuímica 211/1 Exercícis de Cinética Química 1 2. 3. 4. 5. Explique se cada uma das alternativas abaix é crreta u nã, para reações químicas que crrem sem que haja variaçã de temperatura e pressã: a)

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

Trabalhos Práticos. Programação II Curso: Engª Electrotécnica - Electrónica e Computadores

Trabalhos Práticos. Programação II Curso: Engª Electrotécnica - Electrónica e Computadores Trabalhs Prátics Prgramaçã II Curs: Engª Electrtécnica - Electrónica e Cmputadres 1. Objectivs 2. Calendarizaçã 3. Nrmas 3.1 Relatóri 3.2 Avaliaçã 4. Prpstas Na disciplina de Prgramaçã II é prpst um trabalh,

Leia mais

Sobretaxa de IRS em vigor em 2016 ERP eticadata

Sobretaxa de IRS em vigor em 2016 ERP eticadata Sbretaxa de IRS em vigr em 2016 ERP eticadata CONTEÚDO 01 INTRODUÇÃO... 3 02 TABELAS DE RETENÇÃO DA SOBRETAXA DE IRS EM VIGOR EM 2016... 4 02.01 LEI Nº159-D/2015, DE 30 DE DEZEMBRO... 4 02.02 DESPACHO

Leia mais

Seminários de Ensino de Matemática 25/08/09

Seminários de Ensino de Matemática 25/08/09 Semináris de Ensin de Matemática 25/08/09 Encntrand caminhs mínims cm blhas de sabã 1. O prblema da menr malha viária Jsé Luiz Pastre Mell jlpmell@ul.cm.br O caminh mais curt ligand dis pnts n plan euclidian

Leia mais

, cujos módulos são 3N. Se F A

, cujos módulos são 3N. Se F A VTB 008 ª ETAPA Sluçã mentada da Prva de Física 0. nsidere duas frças, F A e F B, cujs móduls sã 3N. Se F A e F B fazem, respectivamente, ânguls de 60 e cm eix-x ( ângul é medid n sentid anti-hrári em

Leia mais

4.1 Representação em PU

4.1 Representação em PU UIVERSIDADE FEDERAL DE JUIZ DE FORA Análise de Sistemas Elétrics de Ptência 1 4.1 Representaçã em PU P r f. F l á v i V a n d e r s n G m e s E - m a i l : f l a v i. g m e s @ u f j f. e d u. b r E E

Leia mais

CATÁLOGO DE APLICAÇÕES Geração de Guias para ST, DIFAL e FCP

CATÁLOGO DE APLICAÇÕES Geração de Guias para ST, DIFAL e FCP CATÁLOGO DE APLICAÇÕES Geraçã de Guias para ST, DIFAL e FCP 1. Objetivs Gerar títuls n cntas a pagar cm ttal de ICMS-ST, DIFAL e/u FCP das ntas fiscais de saída. Página 2 de 6 2. Requisits 2.1. RF01 Geraçã

Leia mais

Outline. 2 Cap 2 O tempo. 3 Cap 3 Funções de Sobrevida. Carvalho MS (2009) Sobrevida 1 / 21

Outline. 2 Cap 2 O tempo. 3 Cap 3 Funções de Sobrevida. Carvalho MS (2009) Sobrevida 1 / 21 Outline 1 Cap 1 Introdução 2 Cap 2 O tempo 3 Cap 3 Funções de Sobrevida 4 Carvalho MS (2009) Sobrevida 1 / 21 Estimação Não-Paramétrica Estimadores de sobrevida e risco Kaplan-Meier e Nelson Aalen Intervalos

Leia mais

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C Questã 46 O ceficiente de atrit e índice de refraçã sã grandezas adimensinais, u seja, sã valres numérics sem unidade. Iss acntece prque a) sã definids pela razã entre grandezas de mesma dimensã. b) nã

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

Aula 03 Circuitos CA

Aula 03 Circuitos CA Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Elements de Circuits n dmíni de Fasres Intrduçã Para cmpreender a respsta de dispsitivs básics

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

GEO046 Geofísica. Magnetômetro de campo total. Magnetômetro flux-gate. Magnetômetro de campo total

GEO046 Geofísica. Magnetômetro de campo total. Magnetômetro flux-gate. Magnetômetro de campo total GEO046 Gefísica Aula n 07 MÉTODO MAGNÉTICO Anmalias magnéticas Magnetômetr de camp ttal aseia-se na precessã d prótn d núcle d átm de hidrgêni, quand este prcura se alinhar cm um camp magnétic extern.

Leia mais

Profa. Dra. Silvia M de Paula

Profa. Dra. Silvia M de Paula Prfa. Dra. Silvia M de Paula Espelhs Esférics Certamente tds nós já estivems diante de um espelh esféric, eles sã superfícies refletras que têm a frma de calta esférica. Em nss ctidian ficams diante de

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais