Variáveis Aleatórias e Distribuições de Probabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Variáveis Aleatórias e Distribuições de Probabilidade"

Transcrição

1 PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória represetado os potos obtidos a face voltada para cima (elemetos do espaço amostral). Seja P() a fução que associa a cada valor (eveto) de a sua probabilidade de ocorrêcia. Etão, temos: Tabela 1: Valores obtidos, a face voltada para cima, o laçameto de um dado hoesto. Fote: dados simulados Total 1/6 1/6 1/6 1/6 1/6 1/6 1 p x i 1 i1 Notação: P( = x i ) = p(x i ) = p i, i = 1, 2, 3,..., A esta fução que satisfaz o itervalo: 0 p i 1, dá-se o ome de fução de probabilidade. O cojuto de pares ordeados: {(x i, p(x i )), i = 1, 2,..., } é chamado de Distribuição de Probabilidades 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 2 1

2 Exemplo Cosideremos a distribuição de frequêcias relativa ao úmero de acidetes diários em um estacioameto. Tabela Número de Acidetes Frequêcias 0 22 Probabilidades = 30 = 1,00 Esta tabela édeomiada DISTRIBUIÇÃO DE PROBABILIDADE. 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 3 Exemplo 2 Duas bolas são retiradas sucessivamete, sem reposição, de uma caixa que cotém 4 bolas vermelhas e 3 pretas. Seja a variável aleatória úmero de bolas vermelhas retiradas o experimeto. Quais os valores assumidos por? Qual a Fução probabilidade P(x)? Qual a distribuição de probabilidades? Solução: S = {vv, vp, pv, pp}...espaço Amostral S ou Etão a VARIÀVEL ALEATÓRIA x = {2, 1, 1, 0}, ou seja, as duas bolas podem ser: Duas vermelhas; Uma vermelha e outra preta; Uma preta e outra vermelha; Duas pretas, ou seja, x = 0, 1, 2 x P(x) 1/4 2/4 1/4 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 4 2

3 Exemplo 3 Vamos jogar 3 moedas hoestas e observar o resultado. a. Costrua o espaço amostral. b. Costrua a variável aleatória x idicado o úmero de caras (Ca) c. Costrua a distribuição de probabilidades; d. Calcule as probabilidades acumuladas. Solução: a. S:{(CaCaCa)(CaCaCo)(CaCoCa)(CoCaCa)(CoCoCo)(CoCoCa)(CoCaCo)(CaCoCo)} = 8 elemetos b. Seja a variável aleatória = úmero de caras (Ca) c. x 1 =0; x 2 =1; x 3 =2; x 4 =3 d. 1/8 4/8 7/8 8/8 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 5 ATIVIDADE 01 Certoexperimetocosisteolaçametodedoisdadoseaobservaçãodasomadospotos das faces superiores. Cosidere D 1 : dado 1, D 2 : dado 2 e Z a soma dos potos das faces superiores. Determie o espaço amostral do experimeto e a fução de probabilidade de Z. Solução D 1 : dado 1 e D 2 : dado 2 Z: soma dos potos das faces superiores E 1 : laçar dois dados e observar a soma das faces superiores Espaço amostral: = {(1;1);(1;2);(1;3);...; (6;6)} Variável aleatória Z = {2,3,4,5,6,7,8,9,10,11,12} TABELA 1 Soma dos potos obtidos o laçameto de dois dados hoestos D D Tabela 2: Fução de probabilidade obtida, o laçameto de dois dados hoestos. Z PZ ( ) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 Fote: dados simulados 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 6 3

4 Variáveis Aleatórias Seja o experimeto E que cosite em tomar uma semete ao acaso, de girassol, por exemplo, e observar se ela germia (G) ouãogermia(g). O espaço amostral será: ={G, G). Costruido a variável aleatória, referida daqui prá frete como v.a., assim: Geeralizado: Seja E um experimeto aleatório qualquer e, o seu espaço amostral deotado por ={a 1, a 2,..., a }. Qualquer fução que associa os valores de com úmeros reais é chamada de variável aleatória. 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 7 Variáveis Aleatórias Discreta Seja E um experimeto aleatório qualquer e, o seu espaço amostral deotado por = {a 1, a 2,..., a }. Qualquer fução que associa os valores de em úmeros reais é chamada de variável aleatória discreta Exemplo: Seja um experimeto E relativo ao laçameto simultâeo de duas moedas. Neste caso, as possibilidades obtidas, podem ser represetadas pelo seguite espaço amostral: = {(Ca,Ca),(Ca,Co), ),(Co,Ca), (Co,Co)} Seja a v.a. defiida como a quatidade (ou úmero) de caras que aparecem. Etão, a cada poto amostral podemos associar um úmero de acordo com a tabela 1: Tabela 1 Poto Amostral (Ca,Ca) 2 (Ca,Co) 1 (Co,Ca) 1 (Co,Co) 0 Variável Aleatória Tabela 2 Poto Amostral P() (Ca,Ca) 2 1/2 x1/2 = 1/4 (Ca,Co) 1 1/2 x1/2 = 1/4 (Co,Ca) 1 1/2 x1/2 = 1/4 (Co,Co) 0 1/2 x1/2 = 1/4 Cálculo das Probabilidades Tabela 3 P() 2 1/4 1 2/4 0 1/4 =1 Distribuição de Probabilidades 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 8 4

5 Exemplo 4 Calcular a fução probabilidade discreta dos seguites dados: SOLUÇÃO 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 9 ATIVIDADE 02 A assistete de um Cetro de Saúde, situado a região de Belo Horizote, baseada os dados do último ceso, verifica que, para as famílias dessa região, 20% ão têm filhos, 30% têm um filho, 35% têm dois e as restates se dividem igualmete etre três, quatro ou cico filhos. Supoha que uma família será escolhida, aleatoriamete, essa região, e o úmero de filhos averiguado. Apresete a fução de probabilidade que melhor represete o comportameto da variável aleatória úmero de filhos. Solução : úmero de filhos (variável aleatória) detre 0, 1, 2, 3, 4, 5 A fução de probabilidade dessa variável segue as iformações dispoíveis que: P( = 0) = 0,20 P( = 1) = 0,30 e P( = 2) = 0,35 P( = 3) = P( = 4) = P( = 5) = p Pela defiição de fução de probabilidades, temos que: P(=0) + P(=1) + P(=2) + P(=3) + P(=4) + P(=5) = 1 0,20 + 0,30 + 0,35 + p + p + p = 1 p = 0,05. Ao defiir a distribuição Logo, a fução de probabilidade para é expressa por: de probabilidades, estabelecemos uma Tabela 3 Fução de probabilidade para correspodêcia uívoca Total p i 0,20 0,30 0,35 0,05 0,05 0,05 1,0 Fote: dados simulados etre a v.a. e os valores de P. Isto defie uma fução deomiada fução de probabilidade, represetada por: f(x) = P(=x i ) 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 10 5

6 Variáveis Aleatórias Cotíua Seja E um experimeto aleatório que cosiste em sortear uma semete. = tempo decorrido do platio até a germiação. Estes resultados têm uma escala cotíua de valores. A variável aleatória T associada aos resultados do espaço amostral é, este caso, chamada de variável aleatória cotíua. 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 11 Estatística versus Parâmetros Estatística represeta uma iformação ou característica da amostra (). Parâmetro represeta uma medida utilizada para descrever uma característica da população (N). Quadro 1: Notações de estatísticas e parâmetros Notações Estatísticas (Amostra) Parâmetros (População) Deomiações N Número de elemetos S i i1 2 i 2 i1 1 E Média Var 2 Variâcia S 2 i Var i1 1 Fote: elaboração da própria autora. Desvio Padrão 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 12 6

7 Parâmetros das Variáveis Discretas Destacamos, a seguir, algumas destas características para a variável aleatória discreta: Médiadeumavariávelaleatóriadiscreta() - a média de uma v. a. discreta () é calculada pela expressão:, 1,2,3,, OBS: A média de é usualmete expressa por E(), deomiada esperaça matemática da variável aleatória ou valor esperado da variável aleatória. Variâcia de uma variável aleatória discreta ( 2 ) - a mesma aalogia existe etre a variâcia e desvio-padrão de uma distribuição de freqüêcia e, a variâcia e desvio-padrão de uma variável aleatória. A variâcia, é represetada pela expressão:. 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 13 Exemplo Imagie a seguite distribuição da v.a. discreta, referete ao Nº de cirurgias diárias uma pequea clíica: P() 0,10 0,20 0,30 0,20 0,15 0,05 Solução Calcule a média e a variâcia de. Para calcularmos a média diária de cirurgias efetuadas, basta calcular, ou seja, o somatório do produto de cada valor da variável pela sua probabilidade correspodete: E () = 3. 0, , , , , ,05 E () = 0,30 + 0,80 + 1, , ,05 + 0,40 E () = 5,25 Portato, diariamete são efetuadas, em média, 5,25 cirurgias. A variâcia, Var(), é calculada pela expressão: Vamos calcular a variâcia do úmero de cirurgias. Var() = (3 5,25)². 0,10 + (4 5,25)². 0,20 + (5 5,25)². 0,30 + (6 5,25) ². 0,20 + (7 5,25)². 0,15 + (8 5,25)². 0,05 Var() = 5, ,10 + 1, ,20 + 0, ,30 + 0, ,20 + 3, ,15 + 7, ,05 Var() = 0, , , , , ,3781 Var() = 1,7876. Portato, o desvio padrão de σ () = 1, ,34. O úmero médio de cirurgias realizadas esta clíica é de 5,25, com desvio padrão de 1,34. 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 14 7

8 Exemplo 5 A variável aleatória apresetada a seguite fução desidade de probabilidade: Com base essa distribuição determie: a) a fução distribuição acumulada b) P(=1) c) a esperaça d) a variâcia de. e) P[<E()] 13/09/2012 Bertolo Estatística Aplicada à Cotabilidade 15 8

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

Prof. Rafael A. Rosales 24 de maio de Exercício 1. De quantas maneiras é possível ordenar um conjunto formado por n elementos?

Prof. Rafael A. Rosales 24 de maio de Exercício 1. De quantas maneiras é possível ordenar um conjunto formado por n elementos? USP-FFCLRP Fudametos de Matemática DCM Iformática Biomédica Prof. Rafael A. Rosales 24 de maio de 20 Combiatória Exercício. De quatas maeiras é possível ordear um cojuto formado por elemetos? Exercício

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas Uiversidade Federal Flumiese Istituto de Matemática e Estatística Métodos Estatísticos Aplicados à Ecoomia I (GET00117) Variáveis Aleatórias Discretas Aa Maria Lima de Farias Departameto de Estatística

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados Escola SESI de Aápolis - Judiaí Aluo (a): Disciplia: MATEMÁTICA Turma: 3º Ao Professor (a) : CÉSAR LOPES DE ASSIS Data: INTRODUÇÃO A ESTATÍSTICA A Estatística é o ramo da Matemática que coleta, descreve,

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy Viziho Próximo ógica Fuzzy Métodos de Classificação dos Objetos Segmetados(IAR) objeto REGRA CASSE Fuzzy Cohecimeto Miima Distâcia Viziho Próximo O método do viziho próximo é baseado o método da míima

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Probabilidades e Estatística Curso de Matemática Distribuições de probabilidade Bertolo OBJETIVOS Ao final deste capítulo, esperamos que você seja capaz de: diferenciar variáveis aleatórias discretas e

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003)

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003) UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA -ESTATÍSTICA II (CE003) Prof. Beito Olivares Aguilera o Sem./6. Usado os dados da Tabela o Aexo (Seção Orçameto da MB),

Leia mais

4 Teoria da Probabilidade

4 Teoria da Probabilidade 48 4 Teoria da Probabilidade Apresetam-se este capítulo coceitos de probabilidade e de estimação de fuções desidade de probabilidade ecessários ao desevolvimeto e compreesão do modelo proposto (capítulo

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Aexo PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Uiversidade de Évora, Departameto de Egeharia Rural.. Itrodução Nehum processo hidrológico é puramete determiístico, isto é, ão é possível determiar

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Uma coleção de todos os possíveis elementos, objetos ou medidas de interesse.

Uma coleção de todos os possíveis elementos, objetos ou medidas de interesse. rof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Uma coleção de todos os possíveis elemetos, objetos ou medidas de iteresse. Um levatameto efetuado sobre toda uma população é deomiado

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA

MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA Média ) Tabela de frequêcias simples Cálculo da média: Tabela a Distribuição da idade de fucioários hipertesos Frequêcia Frequêcia (aos) 7 4 5 6 4 4 44 45 46 5 (aos)

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Estatística Descritiva 1

Estatística Descritiva 1 Resumo Estatística Descritiva. O que é Estatística. Tipos de Dados. Processameto Descritivo. Tabelas de requêcia. edidas Resumo Reato Vicete EACH-USP/ Origes William Petty étodo Estatístico - (Reio Uido)

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Ciêcias Exatas Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Probabilidade

Métodos Estatísticos Aplicados à Economia I (GET00117) Probabilidade Uiversidade Federal Flumiese Istituto de Matemática e Estatística Métodos Estatísticos Aplicados à Ecoomia I (GET00117) Probabilidade Aa Maria Lima de Farias Departameto de Estatística Agosto 015 Sumário

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE.

TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE. TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE. 1.1- TIPOS DE VARIÁVEIS A característica populacioal de iteresse é em geral classificada de qualitativa e quatitativa,

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais