Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prova Escrita de MATEMÁTICA A - 12o Ano a Fase"

Transcrição

1 Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0, = 0,) = 0,096 Resposta: Opção D. Como a experiêcia aleatória descrita, foi defiido que Se sair o úmero 5, tira-se uma bola da caixa A, para calcular a probabilidade de a bola retirada ser verde, cosideramos apeas o coteúdo da caixa A duas bolas verdes e uma bola amarela). Assim temos que existem bolas verdes úmero de casos favoráveis) um total de 3 bolas úmero de casos possíveis), pelo que a probabilidade é de 3 Resposta: Opção D 3. A liha do triâgulo de Pascal que tem 15 elemetos é costituída por 16 úmeros da forma 1 C k. Como 1 C 0 = 1 C 1 = 1, 1 C 1 = 1 C 13 = 1 e 1 C = 1 C 1 = 91 estes são os úicos 6 elemetos da liha meores que 100, porque 1 C 3 = 1 C 11 = 36 e todos os restates são maiores que 36. Resposta: Opção C. Como o poto P 1,3) pertece ao gráfico da fução, substituido as coordeadas a expressão algébrica da fução, e resolvedo a equação, podemos determiar o valor de a: Resposta: Opção A 3 = a = a = a a = log a = Págia 1 de

2 5. Como lim gx ) = +, e como, pela observação do gráfico temos que + lim x gx) = +, temos que limx ) = + ou etão limx ) = lim gx) = + e que x + Assim, calculado os limites das sucessões de cada uma das hipóteses, temos: lim + ) = = + lim 1 ) = 0 + = lim ) = = 1 + lim 1 1 ) = = 1 1 y gx ) g 1 0 x Pelo que, de etre os termos gerais de sucessões apresetados, o úico em que lim + gx ) = + é 1 Graficamete, a figura aterior, estão represetados algus termos da sucessão x = + 1 como objetos, e algus termos da sucessão das images gx ), que tedem para +, quado o valor de aumeta. Resposta: Opção B 6. Como y = 1 é a úica assítota do gráfico da fução f, e pela observação da figura, temos que: lim fx) = 1 E assim, vem que: Resposta: Opção B lim 3 lim 3 fx) = lim fx) = 3 1 = 3. Os úmeros complexos z e z, têm argumetos que diferem de π radiaos, logo, temos que: Resposta: Opção D arg z) = π + arg z) = π + π 6 = 6π 6 + π 6 = π 6. Os potos represetado a região a sombreado satisfazem cumulativamete duas codições: Re z) 3, ou seja, pertecem ao semiplao à direita da reta defiida por Re z) = 3 π arg z) 0, ou seja, os potos que são images geométricas de úmeros complexos cujo argumeto está compreedido etre π e 0 Resposta: Opção A Imz) Re z) = π Rez) Págia de

3 GRUPO II Como i 1 = i + = i ) i = 1) 1) = 1, temos que: z 1 i i = 1 i) 1) 3 1 i = i i = i = i = i = i i1 + i) i i = = 1 i 1 i)1 + i) 1 i) = 1.. Escrevedo z 1 a f.t. temos z 1 = ρ cis θ, ode: ρ = z 1 = 1 + 1) = = tg θ = 1 1 = 1 ; como se θ < 0 e cos θ > 0, θ é um âgulo do o quadrate, logo θ = π Logo z 1 = cis π ) Como existem raízes quartas de z, cujas images geométricas são os vértices de um quadrado cetrado a origem, temos que as outras 3 raízes quartas de z são: z = cis π + π ) = cis π + π ) = cis π z 3 = π cis + π ) = π cis + π ) = cis 3π z 3 = 3π cis + π ) = π cis + π ) = cis 5π Pelo que a raiz quarta de z cuja imagem geométrica é um poto do 3 o quadrate é z 3 = cis 5π..1. Temos que, P A ) P B) + P A B) = 1 P A) P B) + P A B) Teorema: P X) = 1 P X ) ) = 1 P A) + P B) P A B) Logo, P A B ) = P A ) P B) + P A B) q.e.d. = 1 P A B) Teorema: P X Y ) = P X) + P Y ) P X Y ) = P A B ) Teorema: P X) = 1 P X ) = P A B ) Leis de De Morga: X Y = X Y Págia 3 de

4 .. Como se pretede calcular a probabilidade de o estudate escolhido ão ser rapaz ou ão ter tido classificação positiva, para utilizar a igualdade P A B ) = P A ) P B) + P A B), podemos defiir os acotecimetos A: O estudate escolhido ser rapaz B: O estudate escolhido ter tido classificação positiva E assim, A B é o acotecimeto o estudate escolhido ão ser rapaz ou ão ter tido classificação positiva. Temos que o úmero de casos possíveis é = 0, correspodedo ao úmero total de estudates que realizaram o exame 160 raparigas e 10 rapazes). O úmero de casos favoráveis para o acotecimeto A é 160, correspodedo ao úmero de raparigas. E assim temos que P A ) = O úmero de casos favoráveis para o acotecimeto B é 160 0, ,6 = 16, correspodedo a 65% das raparigas e 60% dos rapazes. E assim temos que P B) = 16 0 O úmero de casos favoráveis para o acotecimeto A B é ,65 =, correspodedo à soma do úmero de rapazes com 65% das raparigas que teve positiva. E assim temos que P A B) = 0 Logo, calculado a probabilidade de o estudate escolhido ão ser rapaz ou ão ter tido classificação positiva, e apresetado o resultado em forma de dízima, com aproximação às cetésimas, vem P A B ) = P A ) P B) + P A B) = = 0 0 0, 3. Como as fichas têm os úmeros 1 e, só existem três somas possíveis: soma : se as duas fichas selecioadas tiverem o úmero 1 3 C cojutos possíveis). soma 3: se as duas fichas selecioadas tiverem úmeros diferetes 3 C 1 C 1 cojutos possíveis). soma : se as duas fichas selecioadas tiverem o úmero C cojutos possíveis). Logo, como existem C cojutos diferetes de fichas, podemos calcular os valores da probabilidade associada à ocorrêcia de cada soma: 3 C P X = ) = = 3 C 1 = 1 P X = 3) = P X = ) = 3 C 1 C 1 = 3 = 1 C 1 1 = C C = 6 1 = E assim, a tabela de distribuição de probabilidades da variável aleatória X é: x i 3 P X = x i ) 1 Págia de

5 . Traçado a calculadora gráfica os gráficos das fuções f e g uma jaela compatível com o itervalo 1, + [ podemos visualizar o gráfico reproduzido a figura seguite. Assim, as abcissas dos potos A e B, também assialados a figura ao lado, podem ser determiadas com aproximação às décimas, usado a fução da calculadora que permite determiar valores aproximados para as coordeadas de potos de iterseção de dois gráficos. As coordeadas, aproximadas às décimas, são A 0,3;,3) e B,3; 0,3). Pela observação do gráfico podemos observar que os potos do gráfico de f têm ordeada maior que os potos do gráfico de g, quado as respetivas abcissas estão compreedidos etre as abcissas dos potos A e B, pelo que a solução da iequação fx) > gx), o itervalo 1 [, +, é o cojuto 0,3;,3[; y 0,3 1 0,3 0 B,3 g f x logo os úmeros iteiros que pertecem a este itervalo, ou seja as soluções iteiras de iequação são: A,3 x 1 = 0, x = 1 e x 3 = 5. Cosiderado [AB como a base do triâgulo, como os potos A e B são fixos, temos que a base do triâgulo é costate. A altura do triâgulo, relativa à base [AB, á a distâcia etre as retas, que como são paralelas também é costate. Assim, temos que ax), ou seja a área do triâgulo [ABS é costate, pelo que o Gráfico 3 ão pode represetar a fução a s altura B Como o poto S se desloca sobre a reta S, existem localizações do poto S, para as quais o âgulo BAS, ou seja, o âgulo x é superior a um âgulo reto, ou seja, a π radiaos, pelo que o gráfico Gráfico 1 também ão represeta a fução a, visto que este gráfico a fução está defiida apeas para valores de x meores que π radiaos. S x base A Como as retas s e AB são estritamete paralelas, ão existem localizações do poto S sobre a reta s, tais que o âgulo x teha amplitude de π radiaos ou zero radiaos), pelo que o gráfico Gráfico também ão represeta a fução a, visto que este gráfico a fução está defiida para valores de x iguais a zero e a π radiaos. Págia 5 de

6 Determiado a massa iicial da amostra da substâcia radioativa, ou seja a massa ao fim de zero horas t = 0), vem que: M0) = 15 e 0,0 0 = 15 e 0 = 15 1 = 15 Assim, equacioado o problema e resolvedo a equação vem: Mt) = e 0,0t = 15 e 0,0t = e 0,0t = 1 0,0t = l 1 t = l 1 0,0 t 3,65 Assim temos que o tempo correspode a 3,65 horas, aproximadamete. E como cada hora tem 60 miutos, fazedo a coversão de 0,65 horas para miutos, vem 0,65 60 = 39,0 39 mi Pelo que se cocluí ao fim de 3 horas e 39 miutos a massa iicial da amostra da substâcia radioativa se reduz a metade. 6.. Como a fução M resulta de operações sucessivas de fuções cotíuas em R +, é cotíua em R +, e também, em [,5;, porque [,5; R + Como 13, < 1 < 1,6, ou seja, como M) < 1 < M,5), etão, podemos cocluir, pelo Teorema de Bolzao, que existe t 0,5; [ tal que Mt 0 ) = 1, ou seja, que houve, pelo meos, um istate, etre as horas e 30 miutos e as horas após o iício da observação, em que a massa da amostra da substâcia radioativa atigiu os 1 gramas. C.A. Observado que horas e 30 miutos correspode a,5 horas, temos que: M,5) = 15 e 0,0,5 1,6 M) = 15 e 0,0 13,..1. Recorredo à defiição de derivada da fução o poto de abcissa 0, vem: ) g gx) g0) + se x) + se 0) + se x) 0) = lim = lim = lim = x 0 x 0 x 0 x x 0 x se x) se x) se x) = lim = lim = lim x 0 x x 0 x x 0 x 1) fazedo y = x, se x 0, etão y 0 = lim 1) y 0 se y y }{{} Limite Notável = 1 = Págia 6 de

7 .. Para estudar a mootoia da fução, começamos por determiar a expressão da derivada: g x) = + se x) ) = ) + se x) ) = 0 + x) cosx) = cosx) Para estudar o sial da derivada, calculamos os zeros: g x) = 0 cosx) = 0 cosx) = 0 x = π + kπ, k Z x = π + kπ, k Z Atribuido valores a k k = 0 e k = 1) ecotramos as duas soluções da equação que pertecem ao itervalo 0, π [, ou seja x = π e x = π + π = π + π = 3π Estudado a variação do sial de g para relacioar com a mootoia de g, o itervalo 0, π [, vem: x 0 π g x) π π gx) Máx mi Assim, o itervalo 0, π [, temos que: π ) o valor do máximo de g é g = + se π ) π ) = + se = + 1 = 3 ) 3π o valor do míimo de g é g = + se 3π ) ) 3π = + se = + 1) = 1 g é crescete o itervalo 0, π [ [ 3π e também o itervalo,π [ π g é decrescete o itervalo,3π Págia de

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

Mais exercícios de 12.º ano:

Mais exercícios de 12.º ano: Mais exercícios de 1.º ao: www.prof000.pt/users/roliveira0/ao1.htm Escola Secudária de Fracisco Fraco Matemática 1.º ao Cálculo Diferecial algus exercícios saídos em exames e em testes itermédios (Exames

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ Nome Nº T:

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ Nome Nº T: Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Série Trigonométrica de Fourier

Série Trigonométrica de Fourier studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor

Leia mais

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012 DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,... Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dração: 90 mitos Março/ 05 Nome N.º T:.ª PARTE Para cada ma das segites qestões de escolha múltipla, selecioe a resposta correta

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999 PG apostila. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b)

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b) Matemática 5 aula 11 REVISÃO 1. Seja L a capacidade, em litros, do taque. Por regra de três simples, temos: I. Toreira 1: II. Toreira : 1 L 18 L x 1 x + xl ( x+ ) 1 = = L 1 18 xl ( x+ ) Sabedo que R 1

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dração: 9 mitos Jho/ 4 Nome N.º T: Classificação O Prof. (Lís Abre).ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ 9 Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova. EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 74/004, de de Março Prova Escrita de Matemática A 1.º Ao de Escolaridade Prova 5/1.ª Fase 11 Págias Dração da Prova: 150 mitos. Tolerâcia: 0 mitos. 009

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Teorema Fundamental da Trigonometria

Teorema Fundamental da Trigonometria Teorema Fudametal da Trigoometria Na ciêcia ada é sagrado, tudo é real deriva da experiêcia, da aálise e da lógica e a experiêcia é o criério da verdade. Prof. Grageiro. A relação etre o comprimeto da

Leia mais

) x N(núcleos) = λ N desint./seg.

) x N(núcleos) = λ N desint./seg. FÍSICA NUCLEAR E PARTÍCULAS PERÍODOS DE SEMI - DESINTEGRAÇÃO (ACTIVAÇÃO COM NEUTRÕES) Um úcleo radioactivo, após a sua formação, pode decair em qualquer istate. Verifica-se que este processo de decaimeto

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

Probabilidades num jogo aos dados

Probabilidades num jogo aos dados Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo VIII Distribuição Biomial Probabilidades um jogo aos dados Defiição de uma Distribuição Biomial Propriedades da Distribuição

Leia mais

As principais propriedades geométricas de figuras planas são:

As principais propriedades geométricas de figuras planas são: Tema IV. CRCTERÍSTICS GEOMÉTRICS DE FIGURS PLNS 4.1. Itrodução O dimesioameto e a verificação da capacidade resistete de barras, como de qualquer elemeto estrutural depedem de gradezas chamadas tesões,

Leia mais

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e Eame de Admissão de Matemática Págia de... Simpliicado a epressão. : : tem-se: Simpliicado a epressão p p p Sabedo que p p obtém-se: p p log a etão log será igual a: a a a a pp p p. Para diluir litro de

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

Matemática. Binômio de Newton. Professor Dudan.

Matemática. Binômio de Newton. Professor Dudan. Matemática Biômio de Newto Professor Duda www.acasadococurseiro.com.br Matemática BINÔMIO DE NEWTON Defiição O biômio de Newto é uma expressão que permite calcular o desevolvimeto de (a + b), sedo a +

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda seu meio de propagação, com mudaça em sua velocidade. Porém é válido lembrar que simultaeamete com a refração ocorre também a reflexão e absorção da luz.

Leia mais

GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta.

GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. GRUPO I Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção seleccionada. Não apresente cálculos,

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Radiciação. Roberto Geraldo Tavares Arnaut. Kathleen S. Gonçalves

Radiciação. Roberto Geraldo Tavares Arnaut. Kathleen S. Gonçalves Radiciação 1 Roberto Geraldo Tavares Araut Kathlee S. Goçalves e-tec Brasil Estatística Aplicada META Apresetar o coceito de radiciação e suas propriedades. OBJETIVO PRÉ-REQUISITOS Após o estudo desta

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 3. Sucessões; série geométrica

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 3. Sucessões; série geométrica Faculdade de Ecoomia Uiversidade Nova de Lisboa Primavera 2004/2005 Cálculo I Cadero de Exercícios 3 Sucessões; série geométrica Nota: Os problemas ão resolvidos as aulas costituem trabalho complemetar

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

Problemas de Contagem

Problemas de Contagem Problemas de Cotagem Cotar em semre é fácil Pricíio Fudametal de Cotagem Se um certo acotecimeto ode ocorrer de 1 maeiras diferetes e se, aós este acotecimeto, um segudo ode ocorrer de 2 maeiras diferetes

Leia mais

Usamos a tabela de valores da função na calculadora (após a introdução da função):

Usamos a tabela de valores da função na calculadora (após a introdução da função): 25.2 Queremos determiar o valor de, de modo que: 4,3 log 2 4, 3 Usamos a tabela de valores da fução a calculadora (após a itrodução da fução): Podemos verificar que o primeiro a ultrapassar 4,3 é 4,3219

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais