Instruções gerais sobre a Prova:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Instruções gerais sobre a Prova:"

Transcrição

1 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada questão respodida icorretamete vale -1 (meos um) poto. (c) Cada questão deixada em braco vale 0 (zero) potos (este caso marque TODAS as alterativas). (d) Pelo meos 9 (ove) questões devem ser respodidas pelo cadidato. (e) A ota fial será a soma dos potos (egativos e positivos) de todas as questões. (f) As opções escolhidas devem ser assialadas a folha de respostas o fial da prova. A prova tem duração de 3 horas É proibido: usar celular; cosultar referêcias bibliográficas diferetes das que estão estabelecidas o edital de seleção; emprestar calculadoras e/ou livros para cosulta de outros cadidatos durate a prova. 1

2 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Nome do (a) cadidato (a): Questão 1 Cosidere duas uras. A ura 1 cotém 2 bolas pretas e 3 bolas vermelhas; a ura 2 cotém 3 bolas pretas e 2 bolas vermelhas. Uma moeda hoesta é laçada para decidirmos de qual ura retirar uma bola. Supoha que a primeira bola retirada é preta e é devolvida à ura de origem. Uma seguda bola será retirada da mesma ura escolhida o passo aterior. Qual a probabilidade de que a seguda bola retirada também seja preta? (a) 0,48 (b) 0,52 (c) 0,56 (d) 0,60 Questão 2 Supoha que o abastecimeto de água de uma cidade depeda de 3 reservatórios. Supoha que cada um destes reservatórios teha capacidade máxima diária de litros e que suas respectivas demadas diárias sejam idepedetes e teham desidades expoeciais dadas respectivamete por: Reservatório 1: 0,00002 exp(-0,00002 x), x ( 0, ). Reservatório 2: 0,00004 exp(-0,00004 x), x ( 0, ). Reservatório 3: 0,00005 exp(-0,00005 x), x ( 0, ). Qual a probabilidade aproximada de que a cidade fique sem água em um dia específico? (a) 0,004 (b) 0,005 (c) 0,006 (d) 0,007 Questão 3 Escolha um poto uiformemete distribuído o itervalo (0,1) e o chame de X. Em seguida escolha um poto uiformemete o itervalo (0, X ) e o chame de Y. Qual é a fução de desidade de Y? 1 (a) I { 0 y x } x (b) 1 I { 0 y1} (c) y I { 0 y 2 } (d) l y I { 0 y1} 2

3 Questão 4 O úmero de pessoas que etram em um elevador o térreo de um prédio é uma variável aleatória com distribuição de Poisso com parâmetro, 0. Supoha que há N adares acima do térreo e que cada pessoa escolhe com igual probabilidade, idepedetemete das demais, em qual adar irá sair do elevador. Defia Y como o úmero de paradas que o elevador fará até que todas as pessoas teham saído. Seja E[Y ] a esperaça matemática de Y. Nesse caso, é correto dizer que a E[Y ] é igual a (a) N(1 e N ) (b) ( 1 e N ) N (c) N(1 e ) (d) e N Questão 5 Um revededor de compoetes eletrôicos compra caixas com 10 compoetes cada. É seu costume ispecioar 2 ites de cada caixa e decidir aceitá-la somete se os dois compoetes avaliados estiverem fucioado. Se 30% das caixas tem 4 compoetes defeituosos, 50% tem 1 defeituoso e 20% tem todos os compoetes perfeitos, qual a proporção de caixas rejeitadas pelo revededor? (a) 28% (b) 29% (c) 30% (d) 31% Questão 6 Cosidere 10 laçametos idepedetes de uma moeda com probabilidade de sair cara igual a 0,4. Cada moeda que mostra cara é laçada ovamete. Seja Y o úmero de caras obtidas a seguda rodada de laçametos. Nesse caso, P[Y=2] é aproximadamete igual a: (a) 0,2266 (b) 0,2631 (c) 0,2792 (d) 0,2854 Questão 7 Deseja-se estimar o tempo médio diário (em miutos) que os cadidatos a um cocurso gastam estudado um determiado tópico do programa. Supodo que o tempo de estudo diário tem distribuição ormal, escolha, detre as alterativas apresetadas, aquela que apreseta o tamaho da amostra ecessário para se estimar o tempo médio com uma margem de erro de 20 miutos. Supoha que se deseja um ível de cofiaça de 90% e que um estudo piloto teha demostrado que o desvio padrão do tempo de estudo é estimado em 100 miutos. (a) 11 (b) 41 (c) 68 (d) 97 3

4 Questão 8 Os dados a seguir referem-se a uma amostra aleatória de tamaho =5 da variável aleatória X: úmero de colôias de bactérias por 10 ml de água de um lago. Supoha que a distribuição de X seja Poisso ( ), > 0, descohecido. Seja g( ) a probabilidade de que seja ecotrada uma coloia de bactérias a cada 10 ml de água do lago. Sejam ĝ 1( ) e ĝ 2( ) os estimadores UMVU e de máxima verossimilhaça de g( ). Uma amostra aleatória de tamaho =5 da variável aleatória X resultou os seguites valores: x 4, x2 7, x3 5,x4 4, x5 1 Com base os dados amostrais pode-se afirmar que (a) a estimativa de máxima verossimilhaça de g( ) é igual a UMVU. (b) a estimativa de máxima verossimilhaça de g( ) é maior que a UMVU. (c) a estimativa de máxima verossimilhaça de g( ) é meor que a UMVU. (d) ão há relação etre as estimativas pois a estimativa UMVU ão existe. 3 Questão 9 Deseja-se verificar, ao ível de 5% de sigificâcia, se existe difereça a perda média de peso (em kg) de idivíduos submetidos a três diferetes dietas. Cada dieta foi aplicada idepedetemete, a quatro idivíduos diferetes e parte dos resultados utilizada a aálise estatística é apresetada a Tabela 1. Tabela 1. Resultados da Questão 9 Fote de Variação Soma de Quadrados Dieta 31,60 Erro 9,55 Total 41,15 Supodo que o peso perdido em cada dieta teha distribuição ormal de mesma variâcia, verifique se cada uma das afirmativas seguites é verdadeira (V) ou falsa (F). (I) A hipótese ula assume que a perda média de peso das três dietas é igual. (II) O valor aproximado da estatística de teste é 14,9. (III) Coclui-se que ão há evidêcias suficietes para afirmar que há difereça a perda média de peso das três dietas. (IV) O valor crítico obtido da distribuição a ser utilizada para o teste é 4,256. Escolha a opção correta da seqüêcia de V e F para as quatro afirmativas ateriores: (a) V V F V (b) F V F F (c) V V F F (d) V F V V 4

5 Questão 10 Seja X uma variável aleatória com distribuição Uiforme o itervalo (0, ), > 0. Cosidere as seguites hipóteses ula e alterativa: H 0 : 5 e H A : 5. O teste UMP (uiformemete mais poderoso) foi costruído para testar a hipótese ula, cosiderado um ível de sigificâcia igual a 5% e um tamaho de amostra igual a 25. Se o valor verdadeiro de for igual a 5,3, o poder do teste será (a) 0,6432 (b) 0,7784 (c) 0,9415 (d) 0,9900 Questão 11 Um distribuidor de care bovia deseja determiar se há relação etre a área geográfica e o tipo de care que os cosumidores preferem. Para isto ele observou uma amostra aleatória de 500 cosumidores proveietes da região orte e sul da localidade em estudo sedo que cada cosumidor foi questioado em relação a sua preferêcia pelos tipos A, B e C de care. Os resultados obtidos estão a Tabela 2. Tipo de care Total Tabela 2. Dados da Questão 11 Região geográfica Norte Sul Total A B C Nesse caso, é correto afirmar que (a) ao ível de sigificâcia de 2,5% ão existe associação sigificativa etre preferêcia pelo tipo de care e região geográfica. No etato, ao ível de sigificâcia de 1% a associação é sigificativa. (b) ao ível de sigificâcia de 1% ão existe associação sigificativa etre preferêcia pelo tipo de care e região geográfica. No etato, ao ível de sigificâcia de 2,5% a associação é sigificativa. (c) tato ao ível de sigificâcia de 1% quato ao de 2,5%, ão existe associação sigificativa etre preferêcia pelo tipo de care e região geográfica. (d) tato ao ível de sigificâcia de 1% quato ao de 2,5% existe associação sigificativa etre preferêcia pelo tipo de care e região geográfica. 5

6 Questão 12 Um experimeto foi coduzido para determiar se a temperatura de queima e/ou a posição da foralha afetam a desidade de um aodo de carboo. Foram aalisadas três temperaturas de queima (800ºC, 825ºC, 850ºC), duas posições da foralha (A e B) e três réplicas em cada combiação temperatura x posição. Supoha que a desidade do aodo de carboo em cada tratameto teha distribuição ormal de mesma variâcia descohecida 2. Parte dos resultados utilizada para aálise estatística é apresetada a Tabela 3. Tabela 3. Resultados da Questão 12 Fote de Variação Soma de Quadrados Temperatura Posição Temperatura x Posição 818 Erro Total Escolha, detre as alterativas a seguir, aquela que é verdadeira. (a) ao ível de sigificâcia de 10%, coclui-se que há efeito de iteração etre temperatura de queima e posição da foralha a desidade do aodo de carboo. (b) ao ível de sigificâcia de 10%, coclui-se que apeas a temperatura de queima ifluecia a desidade do aodo de carboo. (c) ao ível de sigificâcia de 5%, coclui-se que tato a temperatura de queima quato a posição da foralha iflueciam a desidade do aodo de carboo, mas ão há efeito de iteração etre esses fatores. (d) ao ível de sigificâcia de 5%, coclui-se que apeas a posição da foralha ifluecia a desidade do aodo de carboo. 6

7 Questão 13 Duas variedades de milho (A e B) foram comparadas para verificar se havia alguma difereça sigificativa o tempo de maturação. Semetes da variedade A foram platadas em 10 subáreas distitas e semetes da variedade B foram platadas em outras 10 áreas distitas. As médias amostrais observadas para as variedades A e B foram respectivamete: 95 e 74, sedo a difereça etre as médias igual a 21. O itervalo de 95% de cofiaça costruído para a difereça populacioal de tempos médios de maturação das duas variedades, cosiderado-se aproximação pela distribuição ormal, foi igual a: (15,9; 26,1). Com base este itervalo poder-se-ia cocluir ao ível de 5% de sigificâcia que as duas variedades: (a) diferem estatisticamete em relação ao tempo médio de maturação, pois o itervalo de cofiaça cotém valores possíveis de difereças acima de 21. (b) diferem estatisticamete em relação ao tempo médio de maturação sedo que a variedade A tem um tempo médio de maturação maior que a variedade B. (c) ão diferem estatisticamete em relação ao tempo médio de maturação mas a variedade B é melhor que a variedade A. (d) ão diferem estatisticamete em relação ao tempo médio de maturação pois o valor de difereça 21 ecotra-se detro do itervalo de cofiaça. Questão 14 Cosidere uma variável aleatória cotíua cuja distribuição é simétrica em toro da mediaa (µ d ). Desejamos testar, ao ível de sigificâcia =0,05, se a média (µ) dessa variável é maior que 33. Coletou-se etão, uma amostra de tamaho 26 e o valor observado da estatística de teste (já ormalizado para a distribuição coveiete), foi igual a 1,90. Marque a alterativa correta. (a) o teste aplicado é o teste t de Studet e devemos cocluir que há evidêcias suficietes de que a média é maior que 33. (b) o teste aplicado é o teste Z e devemos cocluir que há evidêcias suficietes de que a média é maior que 33. (c) o teste aplicado é o teste de Wilcoxo e o valor aproximado da probabilidade de sigificâcia do teste é 0,029. (d) o teste aplicado é o teste dos siais e o valor aproximado da probabilidade de sigificâcia do teste é 0,058. 7

8 Questão 15 Cosidere os modelos de regressão liear simples (I) e (II) apresetados a seguir, em que os X i ' s são fixos (ão aleatórios). (I) Y X i 0 1 i i, em que i são variáveis aleatórias idepedetes e ideticamete distribuídas, com distribuição ormal de média zero e variâcia costate 2. (II) Y 0 1 X X, em que i são variáveis aleatórias idepedetes e ideticamete i i i distribuídas, com distribuição ormal de média zero e variâcia costate 2. Para esses modelos, cosiderado uma amostra de tamaho, os estimadores de máxima verossimilhaça dos parâmetros de iteresse são dados por: ˆ 2 Y X X Y Y ˆ ˆ ˆ ˆ X X i i i i i1 2 2 i1 Y X ; ˆ Y ; ˆ ; ˆ i1 i Além disso, tem-se que ˆ X ˆ Var ; Var ; Var ˆ ; Var ˆ X X X X X X i i i i1 i1 i1 Verifique se cada uma das afirmativas seguites é verdadeira (V) ou falsa (F): (I) ˆ ˆ 0 1 COV, 0 (II) ˆ ˆ COV, (III) Os estimadores ˆ ˆ 0 e 0 são ão viciados. (IV) Pode-se utilizar a distribuição t de Studet com (-1) graus de liberdade para testar hipóteses sobre,, e Escolha a opção correta da seqüêcia de V e F para as quatro afirmativas ateriores: (a) V F V V (b) F F V F (c) V V F V (d) F V V F 8

9 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções: 20/11/2012 a) No quadro abaixo, assiale com um X a opção de resposta escolhida para cada questão b) USE CANETA Questão Resposta (a) (b) (c) (d) Potuação NOME COMPLETO: IDENTIDADE/PASSAPORTE Nº: ASSINATURA: 9

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 A Secretaria de Saúde de um muicípio vem realizado um programa educativo etre as gestates mostrado a importâcia da amametação. Para averiguar a eficácia do programa pretede-se realizar uma

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Hipótese Estatística. Tipos de Hipóteses

Hipótese Estatística. Tipos de Hipóteses Hipótese Estatística Hipótese, em estatística, é uma suposição formulada a respeito dos parâmetros de uma distribuição de probabilidade de uma ou mais populações. Podemos formular a hipótese que a produtividade

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

6. Testes de Hipóteses Conceitos Gerais

6. Testes de Hipóteses Conceitos Gerais 6. Testes de Hipóteses Coceitos Gerais Este capitulo itrodutório, pretede apresetar todas as defiições e todo o vocabulário utilizado em testes de hipóteses. Em um primeiro mometo, talvez você fique um

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Exame final de Estatística 1ª Época - 3 de Junho de Duração: 2h30m. Note bem:

Exame final de Estatística 1ª Época - 3 de Junho de Duração: 2h30m. Note bem: xame fial de statística ª Época 3 de Juho de 4 Faculdade de coomia José Atóio iheiro Uiversidade Nova de Lisboa aria Helea Almeida Duração: h3m Note bem:. Resolva grupos diferetes em folhas diferetes.

Leia mais

Introdução à Inferência Estatística 1. Conceitos básicos em inferência

Introdução à Inferência Estatística 1. Conceitos básicos em inferência Itrodução à Iferêcia Estatística 1. Coceitos básicos em iferêcia 1.1. População: cojuto de idivíduos, ou objetos, com pelo meos uma característica em comum. Também será deotada por população objetivo,

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Caderno de Exercício 3

Caderno de Exercício 3 1 Cadero de Exercício 3 Esaios de Hipóteses e Regressão Liear 1. Exercícios Aulas 1. Exercício 10.11 do livro Statistics for Ecoomics ad Busiess 2. Exercício 10.27 do livro Statistics for Ecoomics ad Busiess

Leia mais

Métodos Quantitativos em Contabilidade. Prof. José Francisco Moreira Pessanha

Métodos Quantitativos em Contabilidade. Prof. José Francisco Moreira Pessanha Métodos Quatitativos em Cotabilidade Prof. José Fracisco Moreira Pessaha professorjfmp@hotmail.com Rio de Jaeiro, 4 de setembro de 0 Itrodução O propósito da iferêcia estatística cosiste em fazer afirmações

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Licenciatura em Economia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA. Luís Filipe Martins.

Licenciatura em Economia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA. Luís Filipe Martins. 1 Ecoometria e Métodos de Modelização I Liceciatura em Ecoomia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA Luís Filipe Martis luis.martis@iscte.pt http://home.iscte.pt/~lfsm Departameto de Métodos Quatitativos,

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999 PG apostila. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 04: Medidas de Posição (webercampos@gmail.com) . MÉDIA ARITMÉTICA : Para um cojuto de valores Média Aritmética Simples: xi p Média Aritmética Poderada: MÓDULO 04 - MEDIDAS

Leia mais

b. que têm dígitos distintos? c. que são pares? d. que são pares e têm dígitos distintos? f. que têm exatamente 3 dígitos iguais?

b. que têm dígitos distintos? c. que são pares? d. que são pares e têm dígitos distintos? f. que têm exatamente 3 dígitos iguais? Tópicos de Matemática B Aálise Combiatória Turma N 1 o semestre 20O7 Exercícios I 1. Quatos são os úmeros de quatro dígitos, ão ecessariamete distitos, escolhidos etre 1, 2, 3, 4, 5 a. sem restrição? b.

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

ESTATÍSTICA. para Psicologia Parte 2. 01/06/2011 Bertolo 1

ESTATÍSTICA. para Psicologia Parte 2. 01/06/2011 Bertolo 1 ESTATÍSTICA para Psicologia Parte 2 01/06/2011 Bertolo 1 01/06/2011 Bertolo 2 Cap 02 - Medidas Estatísticas A distribuição de frequêcias permite-os descrever, de modo geral, os grupos de valores (classes)

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio.

05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio. BINÔMIO DE NEWTON 0 - (UNIFOR CE) No desevolvimeto do biômio 4 ( ) 4 8 4, o termo idepedete de é 0 - (PUC RJ) O coeficiete de o desevolvimeto 7 0 5 5 0 0 - (PUC RJ) No desevolvimeto do biômio 4 8 ( ),

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015 RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015 Olá galera!!!! Hoje estou postado a resolução das questões de Raciocíio Lógico Quatitativo da prova de APO/MPOG, ocorrida o último

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Fundação Oswaldo Cruz

Fundação Oswaldo Cruz Fudação Oswaldo Cruz Cocurso Público 2010 Tecologista em Saúde Pública Prova Objetiva Código da prova C3068 Estatística Istruções: Você deverá receber do fiscal: a) um cadero com o euciado das 60 (sesseta)

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE.

TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE. TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE. 1.1- TIPOS DE VARIÁVEIS A característica populacioal de iteresse é em geral classificada de qualitativa e quatitativa,

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: 1. (Cefet MG 013) Durate o mesmo período, dois irmãos depositaram, uma vez por semaa, em seus respectivos cofrihos, uma determiada quatia, da seguite forma: o mais ovo depositou, a primeira semaa,

Leia mais

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA Embora com pouco tempo, devido à preparação da 3ª edição do livro Estatística ESAF, preocupado com os cadidatos que farão a prova para Fiscal-RS em 19/08/06 resolvi, mesmo em cima da hora, fazer um resumo

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

1ª Lista de Exercícios Números Naturais e o PIF

1ª Lista de Exercícios Números Naturais e o PIF Álgebra I Prof. Robso Rodrigues http: www.robso.mat.br e-mail: robsomat@uol.com.br 1ª Lista de Exercícios Números Naturais e o PIF Questão 01. (Cocurso Professor de Matemática SP 001) Segudo o Pricípio

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I J.I.Ribeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem. Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção. É uma

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FCULDDE DE CIÊCIS E TECOLOGI Redes de Telecomuicações (6/7) Egª de Sistemas e Iformática Trabalho º4 (ª aula) Título: Modelação de tráfego utilizado o modelo de Poisso Fudametos teóricos (cotiuação) 7.

Leia mais

Estatística I Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 4 Prof.: Patricia Maria Bortolo, D. Sc. PROBABILIDADE Ates...... de estudarmos probabilidades é preciso saber quais são as possibilidades de um determiado feômeo/experimeto Precisamos

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

Lista de exercícios propostos n. o 05: Testes de hipóteses

Lista de exercícios propostos n. o 05: Testes de hipóteses Lista de exercícios propostos. o 5: Testes de hipóteses Exercício 1. Uma pizzaria recebe diariamete ecomedas por telefoe, que se têm comportado segudo uma lei ormal. A empresa está dimesioada para uma

Leia mais