Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Tamanho: px
Começar a partir da página:

Download "Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ..."

Transcrição

1 Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para elimiar a doeça. Comparar três lojas quato ao volume médio de vedas Existem populações de iteresse, as quais se estuda uma característica comum. Sejam 1,,..., as variáveis aleatórias que represetam tal característica as populações 1,,...,, respectivamete. Hipóteses a testar: H 0 : 1 = =... = H 1 : i j para algum i e algum j tais que i j. As populações podem ser vistas como íveis de um mesmo factor. A questão é saber se o factor exerce alguma ifluêcia a variação da característica em estudo.

2 Exemplo Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para elimiar a doeça. Temos apeas um factor, Tratameto, que se apreseta em quatro íveis, A, B, C e D. Através da aplicação da aálise de variâcia com um factor ou "oe-way ANOVA", podemos idagar se os tratametos produzem os mesmos resultados o que diz respeito à característica em estudo. 3 Exemplo Supohamos agora que existe a suspeita de que uma estação quete é um factor determiate para uma cura rápida. Etão, o estudo deve ser coduzido tedo em cota este segudo factor, Estação do Ao. Aqui, a técica estatística apropriada será a aálise de variâcia com dois factores, também desigada por "two-way ANOVA". Neste caso, pode-se testar se existe difereça etre os tratametos e também se existe difereça etre as estações do ao, o que respeita ao tempo de tratameto até à elimiação da doeça. 4

3 Aálise de Variâcia com Um Factor Exemplo 1 O Sr. Ferado Estradas é doo de várias lojas que vedem todo o tipo de material para desportos radicais. Para uma determiada loja foram recolhidas três amostras aleatórias e idepedetes das vedas semaais (em u.m.); cada uma destas amostras costituída por cico observações (vedas em 5 semaas, =5). Dados recolhidos: Amostra 1 Amostra Amostra valores observados da v. a. 5 Exemplo 1 Naturalmete, obtivemos as três amostras volumes de vedas médios diferetes, o que se deve, como sabemos, às flutuações amostrais. A variação de, de amostra para amostra, pode ser medida pela sua variâcia:. Em geral, descohece-se o valor de descohece-se o valor de Mas, podemos obter uma estimativa deste parâmetro. 6

4 Exemplo 1 Calculamos a média dos valores observados de a média das médias amostrais: Usámos o estimador: x 5 (estimativa) 3 1 i i1 (ode é o úmero de amostras) Fialmete, estimamos a variâcia de por: s (estimativa) Usámos o estimador: S i 1 i 7 Exemplo Supohamos agora, que o Sr Ferado Estradas pretede comparar três lojas quato ao volume de vedas. Para isso, para cada loja, ele seleccioa aleatoriamete cico semaas, ode observa o volume de vedas. Obtém assim uma amostra das vedas semaais para cada loja (as três amostras são idepedetes). Os dados estão registados a tabela seguite. Loja 1 Loja Loja i (médias amostrais) x 1 = 49 x = 56 3 i x = 51 x = 5 x i x = 6 8

5 Exemplo Represetemos por i o volume de vedas uma semaa a loja i (i = 1,,3) e por i o valor médio de i. Este exemplo tem apeas um factor de iteresse, o factor Loja, e este apreseta três íveis ou grupos: Loja 1, Loja e Loja 3. Cada ível do factor defie uma população de média i. Pretede-se saber se as médias dos três íveis, ou populações, são iguais, isto é, pretede-se saber se é de rejeitar ou ão a hipótese H 0 : 1= = 3 (igualdade de vedas médias das três lojas). 9 Exemplo Questão: Serão as médias amostrais x 1 =49, x =56 e x 3 =51 diferetes porque há difereças etre as médias populacioais 1, e 3? Ou serão essas difereças razoavelmete atribuídas a flutuações amostrais? Podemos etão formular as seguites hipóteses: H 0 : 1= = 3 (ão há difereça etre o volume médio de vedas das 3 lojas) H 1 : i j para algum i e algum j tais que i j (há pelo meos duas lojas com diferetes volumes médios de vedas) Não seria possível resolver a questão coduzido três testes de hipóteses, cada um comparado duas médias populacioais, utilizado as técicas vistas o capítulo aterior? 10

6 Supohamos que, de facto, as vedas médias das três lojas são iguais, isto é 1= = 3. Admitido a idepedêcia etre os três testes e fixado para cada teste um ível de sigificâcia de 0.05, o ível de sigificâcia para o cojuto dos três testes, isto é, a probabilidade de decidirmos erradamete que as três médias ão são iguais quado de facto o são, seria aproximadamete Pesemos os 3 testes de hipóteses como 3 provas de Beroulli. sucesso tomar a decisão errada de rejeitar H 0 W º de decisões erradas (sucessos) os três testes de hipóteses W ~ B(3, 0.05) A probabilidade de cocluirmos erradamete que as 3 médias ão são iguais, é igual a P W 1 1 PW = A aplicação da aálise de variâcia pressupõe a verificação das seguites codições: 1. As amostras devem ser aleatórias e idepedetes.. As amostras devem ser extraídas de populações ormais. 3. As populações devem ter variâcias iguais ( 1 ). 1

7 Temos etão duas situações possíveis: H 0 é verdadeira as difereças observadas etre as médias amostrais são devidas a flutuações amostrais. 1= = 3 = todas as amostras provêm de populações com médias iguais. Como se supôs que todas as populações são ormais e têm variâcias iguais, isto é o mesmo que extrair todas as amostras de uma úica população (de uma úica loja como o Exemplo 1). Distribuições populacioais quado H 0 é verdadeira ( 1 = = 3 =). 13 H 0 é falsa as difereças observadas etre as médias amostrais são demasiado grades para serem devidas uicamete a flutuações amostrais. As médias das populações ão são iguais, ou seja pelo meos duas lojas têm volumes de vedas médios diferetes. As amostras recolhidas provêm de populações diferetes. 3 1 Distribuições populacioais quado H 0 é falsa (as médias ão são todas iguais). 14

8 Note que é suposto que 1. A aálise de variâcia vai estimar por dois processos diferetes e comparar os valores obtidos. 1º PROCESSO Estimativa detro da variâcia: s p Como todas as amostras são extraídas de populações com a mesma variâcia, etão, para estimar este parâmetro, poderíamos utilizar qualquer uma das amostras. Assim, poderíamos obter estimativas de, uma por cada amostra. 15 Exemplo Temos as seguites estimativas de : s 1 1 s s Tomado a média destas estimativas obtemos outra estimativa para, s1 s s3 s p

9 O que fizemos foi combiar as três estimativas ateriores, de modo a produzir uma outra estimativa que use a iformação cotida as três amostras recolhidas. A fórmula geral para o cálculo da estimativa detro da variâcia é: s1 s s s p ode, si variâcia amostral da amostra i. Note que esta estimativa ão é afectada pela veracidade ou falsidade de H 0, o que já ão acotece com a que iremos obter pelo processo seguite. 17 º PROCESSO Estimativa etre da variâcia: s b Já vimos ateriormete, que se H 0 é verdadeira podemos ecarar as três amostras como sedo proveietes da mesma população () (da mesma loja, como o Exemplo 1). Admitido que H 0 é verdadeira ( 1 = = 3 =) Distribuição da média amostral: ~ N(, / ) Distribuição populacioal: ~ N(, ) 18

10 Os valores médios observados as três amostras, x 1, x e x 3, podem ser ecarados como três valores observados de uma v. a. ~ N(, / ).., sugerido que se estime através de b. s s, com s 1 1 i 1 x x i estimativa de. 19 Se H0 for falsa Pelo meos duas distribuições populacioais são diferetes. Isto é, as variáveis aleatórias i têm distribuições ormais, com iguais variâcias, mas, pelo meos duas, têm médias diferetes. Etão também 1, e 3, vão ter distribuições diferetes: ~ N(, / ), ~ N(, / ) e ~ N(, / ), ode 1 ou 1 3 ou 3. Distribuições da média amostral Distribuições populacioais 3 1 0

11 Assim, x 1, x e x 3 são valores observados de variáveis aleatórias com distribuições diferetes, o que se vai reflectir, evetualmete, uma maior dispersão desses valores, coduzido a um maior valor de s e cosequetemete a um maior valor de b. s s. Exemplo : s 3 1 logo a estimativa etre da variâcia é: b. s s Estatística de teste F A estimativa detro da variâcia, s p, ão é afectada pela veracidade ou falsidade de H 0. Ao cotrário, a estimativa etre da variâcia, a s p quado H 0 é verdadeira e maior do que esta se H 0 é falsa. s b, já o é, sedo aproximadamete igual A estatística de teste é,. S Sb F. S S p p

12 Se H 0 é verdadeira, pode ser estimada pelos dois processos e como as duas estimativas serão aproximadamete iguais, a razão F será próxima de 1. Se H 0 for falsa, as difereças as médias populacioais 1, e 3 vão provocar maior variabilidade as médias amostrais. Isto é, s será grade e cosequetemete s b será também grade comparativamete com s p. A razão F tomará um valor maior que 1. Sob o pressuposto de H 0 ser verdadeira, tem-se F p b p. S S ~ S S 1 ( 1) F. 3 H 0 deve ser rejeitada se o valor observado de F se situar à direita do poto crítico. Isto é, rejeita-se H 0 se, F obs p c ode, o poto crítico p c é dado por P F p 1 1) ( = ível de sigificâcia. c O poto crítico p c é o quatil de probabilidade 1- da distribuição 1 ( 1) F e é usualmete deotado por F ( 1 ) ou por F1, 1, ( 1). 4

13 Exemplo Vamos ver o que podemos cocluir ao ível de sigificâcia de Se a hipótese H 0 é verdadeira, b p S F ~ S F 1. F 3.89 (quatil de probabilidade 1- da distribuição 1,, 1 F 1) R.C.=[3.89,+[ 65 O valor observado da estatística F é: Fobs 8. 3R.C Etão a hipótese H 0 é rejeitada ao ível de sigificâcia de 0.05, isto é, existem difereças sigificativas etre as médias amostrais das vedas. Há portato evidêcia de que existem pelo meos duas lojas com volumes médios de vedas diferetes. Por outras palavras, o factor Loja exerce uma ifluêcia sigificativa sobre o volume de vedas. 5 Tabela de aálise de variâcia (ANOVA) Os dados, usualmete, vêm represetados da seguite maeira: Amostra ( j ) x 11 x 1 x x 1 Observações ( i ) x 1 x x 3... x x 31 x 3 x x 3 x 1 x x 3... x Médias amostrais x1 x x 3... x x 6

14 Os cálculos para a aálise de variâcia podem ser sumariados uma tabela chamada Tabela ANOVA: Fote de Variação Soma de Quadrados Etre grupos Detro dos grupos ou residual Total SS A = x j x j1 SS E = j1i 1 x ij x j SS T = x ij x j1i 1 Graus de Liberdade Variâcia (Soma Média de Quadrados) Razão F -1 SS A S MS Sb MS b A F= 1 S MS (-1) -1 S p MS E SSE ( 1) p A E 7 Note que: s p s j1i 1 x x x x x x i1 1 i i i1 i1 i1 s s x ij x ( 1) j SS E = MS E ( 1) e, s b. s = j1 x j x 1 SS A = MS A 1 8

15 SS T = x ij x j1i 1 é a soma de quadrados total e mede a variação total os dados; SS A = j1 x j x SS E = j1i 1 x ij x j é a soma de quadrados etre os íveis, ou grupos, do factor e mede a variação etre grupos (populações); é por vezes desigada por variação explicada, pois ela é explicada pelo facto de as amostras poderem provir de populações diferetes; é a soma de quadrados detro dos íveis, ou grupos, do factor e mede a variação detro dos grupos (populações); é por vezes desigada por variação ão explicada ou residual, pois é atribuída a flutuações detro do mesma população, portato ão pode ser explicada pelas possíveis difereças etre os grupos (populações). 9 Pode-se provar que: SS T = SS A +SS E o que permite verificar os cálculos da Tabela ANOVA. Apresetamos a seguir a Tabela ANOVA relativa ao Exemplo. Fote de Variação Soma de Quadrados Graus de Liberdade Variâcia (Soma Média de Quadrados) Razão F Etre grupos SS A =130 MS A = s Detro dos grupos SS E =94 1 MS E = s p ou residual Total SS T =4 14 b 30

16 Amostras de Tamahos Diferetes Se as amostras têm tamahos diferetes, as fórmulas apresetadas ateriormete devem ser coveietemete modificadas. j º de observações a amostra j º de amostras N j 1 j (total de observações) x j média observada a amostra j x 1 i x ij j1i 1 j1 1 j x j média poderada das médias amostrais 31 Soma média de quadrados etre grupos j x j x j1 MS A = 1 SS A. 1 Soma média de quadrados detro dos grupos ou residual j x x j MS i ij j 1 1 E 1 SS E N. A Tabela ANOVA para amostras de tamahos diferetes. Fote de Variação Soma de Quadrados Graus de Liberdade Etre grupos Detro dos grupos SS A = x x j1 j ou residual SS E = xij x j Total j j1i 1 j SS T = x x j1i 1 j ij N N 1 Variâcia (Soma Razão F Média de Quadrados) SS A MS Sb MS A F= S MS -1 1 MS E SSE N p A E 3

17 Exemplo 3 Supoha que é director de maretig de uma empresa que pretede relaçar um produto o mercado. Você estudou três campahas de maretig diferetes, cada uma deles combia de modo diferete factores como o preço do produto, a apresetação do produto, promoções associadas, etc. Qualquer uma destas campahas é levada a cabo o poto de veda, ão havedo qualquer publicidade os meios de comuicação. Para saber se há difereça etre as três campahas relativamete à sua eficácia, cada uma delas é feita um cojuto de lojas seleccioadas aleatoriamete, durate um período de duração limitada. Note que as lojas são seleccioadas de modo a que as três amostras sejam aleatórias e idepedetes etre si. As vedas (em uidades moetárias u. m.) registadas durate este período costam da tabela seguite. 33 Campaha 1 Campaha Campaha Soma Seja i a v.a. que represeta o volume de vedas de uma loja sujeita à campaha i (i=1, ou 3). Admitamos que 1, e 3 têm distribuição ormal com iguais variâcias. As hipóteses em teste são: 34

18 H 0 : 1= = 3 (ão há difereça etre as campahas de maretig relativamete ao volume médio de vedas a que coduzem) H 1 : i j para algum i e algum j tais que ij (pelo meos duas campahas de maretig coduziram a volumes médios de vedas diferetes) Fixemos o ível de sigificâcia em Sob o pressuposto de H 0 ser verdadeira, MSA F ~ F 15. MS F 6.36 (quatil de probabilidade 1-=0.99 da distribuição 1,, 15 R.C.=[6.36,+[ Para as amostras recolhidas, tem-se: E F 15) 35 x , x , x e x ; SS A = e MS A =. 015; SS E = e MS E = O valor observado da estatística F é: Fobs R.C Ao ível de sigificâcia de 0.01, rejeita-se a hipótese H 0 de igualdade de médias, pois o valor observado da estatística de teste pertece à região crítica. Há, portato, evidêcia estatística de que as três campahas ão são iguais relativamete ao volume médio de vedas a que coduzem. Isto é, o tipo de campaha ifluecia sigificativamete o volume de vedas. 36

19 A Tabela ANOVA para este exemplo é a seguite. Fote de Variação Soma de Quadrados Graus de Liberdade Variâcia (Soma Razão F Média de Quadrados) Etre grupos SS A =44.03 MS A = 015 Detro dos SS E = MS E = 0165 grupos ou residual Total SS T =

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Comparação entre duas populações

Comparação entre duas populações Comparação etre duas populações AMOSTRAS INDEPENDENTES Comparação etre duas médias 3 Itrodução Em aplicações práticas é comum que o iteresse seja comparar as médias de duas diferetes populações (ambas

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Testes de Comparação Múltipla

Testes de Comparação Múltipla Testes de Comparação Múltipla Quado a aplicação da aálise de variâcia coduz à reeição da hipótese ula, temos evidêcia de que existem difereças etre as médias populacioais. Mas, etre que médias se registam

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE

FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE FACULDADE DE ECONOMIA DO PORTO Liceciatura em Ecoomia E C O N O M E T R I A I (LEC0) Exame Fial 0 de Jaeiro de 00 RESOLUÇÃO: I PARTE I GRUPO a) Dispoível uma amostra de observações de Y para períodos cosecutivos,

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

O teste de McNemar. A tabela 2x2. Depois - Antes

O teste de McNemar. A tabela 2x2. Depois - Antes Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br O teste de McNemar O teste de McNemar para a sigificâcia de mudaças é particularmete aplicável aos experimetos do tipo "ates e depois"

Leia mais

Distribuições Amostrais

Distribuições Amostrais 7/3/07 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/07/07 09:3 ESTATÍSTICA APLICADA I - Teoria

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

Estatística II Licenciatura em Gestão TESTE I

Estatística II Licenciatura em Gestão TESTE I Estatística II Liceciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circustâcia, é motivo suficiete para a aulação

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

1. Dados: Deve compreender-se a natureza dos dados que formam a base dos procedimentos

1. Dados: Deve compreender-se a natureza dos dados que formam a base dos procedimentos 9. Testes de Hipóteses 9.. Itrodução Uma hipótese pode defiir-se simplesmete como uma afirmação acerca de uma mais populações. Em geral, a hipótese se refere aos parâmetros da população sobre os quais

Leia mais

ESTIMAÇÃO PARA A MÉDIA

ESTIMAÇÃO PARA A MÉDIA ESTIMAÇÃO PARA A MÉDIA Objetivo Estimar a média de uma variável aleatória, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Vamos observar elemetos, extraídos ao

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Testes de Hipóteses sobre uma Proporção Populacional

Testes de Hipóteses sobre uma Proporção Populacional Estatística II Atoio Roque Aula Testes de Hipóteses sobre uma Proporção Populacioal Seja o seguite problema: Estamos iteressados em saber que proporção de motoristas da população usa cito de seguraça regularmete.

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc.

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc. Cotabilometria Prof.: Patricia Maria Bortolo, D. Sc. Teste para Duas Amostras Fote: LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L.; Estatística Teoria e Aplicações, 5a. Edição, Editora

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Aula 10. ANOVA Análise de Variância em SPSS

Aula 10. ANOVA Análise de Variância em SPSS Aula 10. ANOVA Aálise de Variâcia em SPSS Métodos stadísticos 008 Uiversidade de Averio Profª ladys Castillo Jordá Aálise de Variâcia Objectivo: comparar medidas de localização para mais do que dois grupos

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teste de Hipótese

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teste de Hipótese Estatística: Aplicação ao Sesoriameto Remoto SER 4 - ANO 18 Teste de Hipótese Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Estimação de Parâmetros Como já foi visto,

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

e, respectivamente. Os valores tabelados para a distribuição t-student dependem do número de graus de liberdade ( n 1 e

e, respectivamente. Os valores tabelados para a distribuição t-student dependem do número de graus de liberdade ( n 1 e Prof. Jaete Pereira Amador 1 1 Itrodução Um fator de grade importâcia a pesquisa é saber calcular corretamete o tamaho da amostra que será trabalhada. Devemos ter em mete que as estatísticas calculadas

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática Probabilidades e Estatística Primeiro exame/segudo teste 2 o semestre 29/21 Duração: 18/9 miutos Grupo I Justifique coveietemete todas as respostas. 17/6/21 9: horas 1. Com base

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Jaete Pereira Amador Itrodução Os métodos utilizados para realização de iferêcias a respeito dos parâmetros pertecem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através da

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

TRANSPORTES. Sessão Prática 4 Amostragem de escalares

TRANSPORTES. Sessão Prática 4 Amostragem de escalares Mestrado Itegrado em Egeharia Civil TRNPORTE Prof. Resposável: Luis Picado atos essão Prática 4 mostragem de escalares Istituto uperior Técico / Mestrado Itegrado Egeharia Civil Trasportes ulas Práticas

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

Teoria da Estimação 1

Teoria da Estimação 1 Teoria da Estimação 1 Um dos pricipais objetivos da estatística iferecial cosiste em estimar os valores de parâmetros populacioais descohecidos (estimação de parâmetros) utilizado dados amostrais. Etão,

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

INTERVALOS DE CONFIANÇA

INTERVALOS DE CONFIANÇA INTRVALOS D CONFIANÇA 014 stimação por itervalos 1,..., é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro. Se L( 1,..., ) e U( 1,..., ) são duas fuções tais que L < U e P(L

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Hipótese Estatística. Tipos de Hipóteses

Hipótese Estatística. Tipos de Hipóteses Hipótese Estatística Hipótese, em estatística, é uma suposição formulada a respeito dos parâmetros de uma distribuição de probabilidade de uma ou mais populações. Podemos formular a hipótese que a produtividade

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática robabilidades e Estatística LEGM, LEIC-A, LEIC-T, LEMat, MEBiom, MEFT, MEQ 2 o semestre 2011/2012 2 o Teste A 08/06/2012 9:00 Duração: 1 hora e 30 miutos Justifique coveietemete

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

7. INTERVALOS DE CONFIANÇA

7. INTERVALOS DE CONFIANÇA 7 INTRVALOS D CONFIANÇA 00 stimação por itervalos,, é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro θ Se L(,, ) e U(,, ) são duas fuções tais que L < U e P(L θ U), o itervalo

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico dessa

Leia mais

Caderno de Exercício 2

Caderno de Exercício 2 1 Cadero de Exercício Estimação Potual e Itervalos de Cofiaça 1. Exercícios Aulas 1. Exercício 8.6 do livro Statistics for Ecoomics ad Busiess. O úmero de adares vedidos em cada dia por uma empresa imobiliária

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CESPE/UB FUB/0 fa 5 4 CONHECIMENTOS ESPECÍFICOS 60 As distribuições B e C possuem os mesmos valores para os quartis Q e Q, e o quartil superior em B correspode ao quartil cetral (Q ) da distribuição A.

Leia mais

1 Estimação de Parâmetros

1 Estimação de Parâmetros 1 Estimação de arâmetros Vários tipos de estudos tem o objetivo de obter coclusões fazer iferêcias a respeito de parâmetros de uma população. A impossibilidade de avaliar toda a população faz com que a

Leia mais

n i=1 X i n X = n 1 i=1 X2 i ( n i=1 X i) 2 n

n i=1 X i n X = n 1 i=1 X2 i ( n i=1 X i) 2 n Exercício 1. As otas fiais de um curso de Estatística foram as seguites 7, 5, 4, 5, 6, 1, 8, 4, 5, 4, 6, 4, 5, 6, 4, 6, 6, 4, 8, 4, 5, 4, 5, 5 e 6. a. Determie a mediaa, os quartis e a média. Resposta:

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ Justifique coveietemete todas as respostas 2 o semestre 207/208

Leia mais

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. Objetivo Estimar a média de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: : peso médio de homes a faixa etária de 20 a 30 aos,

Leia mais

Probabilidades e Estatística LEE, LEGI, LEMat, LERC/LETI, LMAC, MEAer, MEAmb, MEBiol, MEBiom, MEEC, MEFT, MEQ

Probabilidades e Estatística LEE, LEGI, LEMat, LERC/LETI, LMAC, MEAer, MEAmb, MEBiol, MEBiom, MEEC, MEFT, MEQ Duração: 90 miutos Grupo I Probabilidades e Estatística LEE, LEGI, LEMat, LERC/LETI, LMAC, MEAer, MEAmb, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique coveietemete todas as respostas 2 o semestre 206/207

Leia mais

3 Introdução à inferência estatística

3 Introdução à inferência estatística 3 Itrodução à iferêcia estatística Itrodução à iferêcia estatística Pág. 00 1.1. Este tipo de estudos as sodages eleitorais têm como objetivo aferir o setido de voto dos eleitores. Isto permite, ão só

Leia mais

Regressão linear simples

Regressão linear simples Regressão liear simples Maria Virgiia P Dutra Eloae G Ramos Vaia Matos Foseca Pós Graduação em Saúde da Mulher e da Criaça IFF FIOCRUZ Baseado as aulas de M. Pagao e Gravreau e Geraldo Marcelo da Cuha

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Probabilidades e Estatística / Introd. às Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística / Introd. às Probabilidades e Estatística TODOS OS CURSOS Probabilidades e Estatística / Itrod. às Probabilidades e Estatística TODOS OS CURSOS Exame Época Especial 7/8 3/7/7 9: Duração: 3 horas Justifique coveietemete todas as respostas Grupo I 5 valores. Uma

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Introdução à Probabilidade e à Estatística I

Introdução à Probabilidade e à Estatística I Itrodução à Probabilidade e à Estatística I Resolução Lista 1 Professor: Pedro Moretti & Chag Chia 1. (a) Podemos iserir dados o software R e costruir um histograma com 5 itervalos: Frequecy 0 2 4 6 8

Leia mais

Teste de Hipóteses Paramétricos

Teste de Hipóteses Paramétricos Teste de Hipóteses Paramétricos Como costruir testes de hipóteses para difereças etre duas médias. Como costruir testes de hipóteses para difereças etre duas proporções. Como costruir testes de hipóteses

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Grupo I robabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas 2 o semestre 2016/2017 05/07/2017 15:00 2 o Teste C 10 valores 1. Admita que a proporção

Leia mais

ESTATÍSTICA NÃO-PARAMÉTRICA

ESTATÍSTICA NÃO-PARAMÉTRICA ESTATÍSTICA NÃO-PARAMÉTRICA Prof. Dr. Edmilso Rodrigues Pito Faculdade de Matemática - UFU edmilso@famat.ufu.br 1 Programa Itrodução - Plao de curso, sistema de avaliação - Coceitos básicos de iferêcia

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO Dr. Sivaldo Leite Correia CONCEITOS, LIMITAÇÕES E APLICAÇÕES Nos tópicos ateriores vimos as estratégias geeralizadas para

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática robabilidades e Estatística LEGM, LEIC-A, LEIC-T, LEMat, MEBiom, MEFT, MEQ o semestre 0/0 o Teste A 08/06/0 9:00 Duração: hora e 30 miutos Justifiue coveietemete todas as respostas!

Leia mais

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva Testes de Hipóteses Júlio Osório Os dois campos da Aálise Estatística Métodos Estatísticos Estatística Descritiva Iferêcia Estatística Estimativa Testes de Hipóteses 1 Exemplo Ilustrativo Mediram-se os

Leia mais

Regressão Linear Múltipla

Regressão Linear Múltipla Regressão Liear Múltipla Lucas Sataa da Cuha http://www.uel.br/pessoal/lscuha/ 28 de ovembro de 2018 Lodria 1 / 20 Há muitos problemas que é razoável esperar que as previsões de uma variável devam melhorar

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Lista IC, tamanho de amostra e TH

Lista IC, tamanho de amostra e TH Lista IC, tamaho de amostra e TH 1. Cosidere a amostra abaixo e costrua um itervalo de cofiaça para a média populacioal. Cosidere um ível de cofiaça de 99%. 17 3 19 3 3 1 18 0 13 17 16 Como ão temos o

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 0 Estimação de parâmetros populacioais 9.. Itrodução Aqui estudaremos o problema de avaliar certas características dos elemetos da população (parâmetros), com base em operações com os dados de uma

Leia mais

Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Pontual e Estimação intervalar.

Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Pontual e Estimação intervalar. Escola uperior de Tecologia de Viseu ETIMAÇÃO Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Potual e Estimação itervalar. Exemplo: Num dos diversos

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas o semestre 017/018 04/07/018 15:00 o Teste C 10 valores 1. Admita que os tempos (em cetea

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

10 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses Introdução Lógica dos Testes de Hipóteses

10 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses Introdução Lógica dos Testes de Hipóteses INE 700 - Iferêcia Estatística Testes de Hipóteses 0 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses 0. - Itrodução Viu-se ateriormete que uma determiada população pode ser descrita através de um modelo probabilístico,

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática robabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec 2 o semestre 20/202 2 o Teste B 08/06/202 :00 Duração: hora e 30 miutos Justifique

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique coveietemete todas as respostas 2 o semestre 208/209 04/05/209 9:00 o Teste A 0 valores. As amostras de

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

Stela Adami Vayego Estatística II CE003/DEST/UFPR

Stela Adami Vayego Estatística II CE003/DEST/UFPR Resumo 0 Estimação de parâmetros populacioais Defiição : Estimador e Estimativa Um estimador do parâmetro θ é qualquer fução das observações... isto é g(... ). O valor que g assume isto é g(x x... x )

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais