Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ..."

Transcrição

1 Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para elimiar a doeça. Comparar três lojas quato ao volume médio de vedas Existem populações de iteresse, as quais se estuda uma característica comum. Sejam 1,,..., as variáveis aleatórias que represetam tal característica as populações 1,,...,, respectivamete. Hipóteses a testar: H 0 : 1 = =... = H 1 : i j para algum i e algum j tais que i j. As populações podem ser vistas como íveis de um mesmo factor. A questão é saber se o factor exerce alguma ifluêcia a variação da característica em estudo.

2 Exemplo Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para elimiar a doeça. Temos apeas um factor, Tratameto, que se apreseta em quatro íveis, A, B, C e D. Através da aplicação da aálise de variâcia com um factor ou "oe-way ANOVA", podemos idagar se os tratametos produzem os mesmos resultados o que diz respeito à característica em estudo. 3 Exemplo Supohamos agora que existe a suspeita de que uma estação quete é um factor determiate para uma cura rápida. Etão, o estudo deve ser coduzido tedo em cota este segudo factor, Estação do Ao. Aqui, a técica estatística apropriada será a aálise de variâcia com dois factores, também desigada por "two-way ANOVA". Neste caso, pode-se testar se existe difereça etre os tratametos e também se existe difereça etre as estações do ao, o que respeita ao tempo de tratameto até à elimiação da doeça. 4

3 Aálise de Variâcia com Um Factor Exemplo 1 O Sr. Ferado Estradas é doo de várias lojas que vedem todo o tipo de material para desportos radicais. Para uma determiada loja foram recolhidas três amostras aleatórias e idepedetes das vedas semaais (em u.m.); cada uma destas amostras costituída por cico observações (vedas em 5 semaas, =5). Dados recolhidos: Amostra 1 Amostra Amostra valores observados da v. a. 5 Exemplo 1 Naturalmete, obtivemos as três amostras volumes de vedas médios diferetes, o que se deve, como sabemos, às flutuações amostrais. A variação de, de amostra para amostra, pode ser medida pela sua variâcia:. Em geral, descohece-se o valor de descohece-se o valor de Mas, podemos obter uma estimativa deste parâmetro. 6

4 Exemplo 1 Calculamos a média dos valores observados de a média das médias amostrais: Usámos o estimador: x 5 (estimativa) 3 1 i i1 (ode é o úmero de amostras) Fialmete, estimamos a variâcia de por: s (estimativa) Usámos o estimador: S i 1 i 7 Exemplo Supohamos agora, que o Sr Ferado Estradas pretede comparar três lojas quato ao volume de vedas. Para isso, para cada loja, ele seleccioa aleatoriamete cico semaas, ode observa o volume de vedas. Obtém assim uma amostra das vedas semaais para cada loja (as três amostras são idepedetes). Os dados estão registados a tabela seguite. Loja 1 Loja Loja i (médias amostrais) x 1 = 49 x = 56 3 i x = 51 x = 5 x i x = 6 8

5 Exemplo Represetemos por i o volume de vedas uma semaa a loja i (i = 1,,3) e por i o valor médio de i. Este exemplo tem apeas um factor de iteresse, o factor Loja, e este apreseta três íveis ou grupos: Loja 1, Loja e Loja 3. Cada ível do factor defie uma população de média i. Pretede-se saber se as médias dos três íveis, ou populações, são iguais, isto é, pretede-se saber se é de rejeitar ou ão a hipótese H 0 : 1= = 3 (igualdade de vedas médias das três lojas). 9 Exemplo Questão: Serão as médias amostrais x 1 =49, x =56 e x 3 =51 diferetes porque há difereças etre as médias populacioais 1, e 3? Ou serão essas difereças razoavelmete atribuídas a flutuações amostrais? Podemos etão formular as seguites hipóteses: H 0 : 1= = 3 (ão há difereça etre o volume médio de vedas das 3 lojas) H 1 : i j para algum i e algum j tais que i j (há pelo meos duas lojas com diferetes volumes médios de vedas) Não seria possível resolver a questão coduzido três testes de hipóteses, cada um comparado duas médias populacioais, utilizado as técicas vistas o capítulo aterior? 10

6 Supohamos que, de facto, as vedas médias das três lojas são iguais, isto é 1= = 3. Admitido a idepedêcia etre os três testes e fixado para cada teste um ível de sigificâcia de 0.05, o ível de sigificâcia para o cojuto dos três testes, isto é, a probabilidade de decidirmos erradamete que as três médias ão são iguais quado de facto o são, seria aproximadamete Pesemos os 3 testes de hipóteses como 3 provas de Beroulli. sucesso tomar a decisão errada de rejeitar H 0 W º de decisões erradas (sucessos) os três testes de hipóteses W ~ B(3, 0.05) A probabilidade de cocluirmos erradamete que as 3 médias ão são iguais, é igual a P W 1 1 PW = A aplicação da aálise de variâcia pressupõe a verificação das seguites codições: 1. As amostras devem ser aleatórias e idepedetes.. As amostras devem ser extraídas de populações ormais. 3. As populações devem ter variâcias iguais ( 1 ). 1

7 Temos etão duas situações possíveis: H 0 é verdadeira as difereças observadas etre as médias amostrais são devidas a flutuações amostrais. 1= = 3 = todas as amostras provêm de populações com médias iguais. Como se supôs que todas as populações são ormais e têm variâcias iguais, isto é o mesmo que extrair todas as amostras de uma úica população (de uma úica loja como o Exemplo 1). Distribuições populacioais quado H 0 é verdadeira ( 1 = = 3 =). 13 H 0 é falsa as difereças observadas etre as médias amostrais são demasiado grades para serem devidas uicamete a flutuações amostrais. As médias das populações ão são iguais, ou seja pelo meos duas lojas têm volumes de vedas médios diferetes. As amostras recolhidas provêm de populações diferetes. 3 1 Distribuições populacioais quado H 0 é falsa (as médias ão são todas iguais). 14

8 Note que é suposto que 1. A aálise de variâcia vai estimar por dois processos diferetes e comparar os valores obtidos. 1º PROCESSO Estimativa detro da variâcia: s p Como todas as amostras são extraídas de populações com a mesma variâcia, etão, para estimar este parâmetro, poderíamos utilizar qualquer uma das amostras. Assim, poderíamos obter estimativas de, uma por cada amostra. 15 Exemplo Temos as seguites estimativas de : s 1 1 s s Tomado a média destas estimativas obtemos outra estimativa para, s1 s s3 s p

9 O que fizemos foi combiar as três estimativas ateriores, de modo a produzir uma outra estimativa que use a iformação cotida as três amostras recolhidas. A fórmula geral para o cálculo da estimativa detro da variâcia é: s1 s s s p ode, si variâcia amostral da amostra i. Note que esta estimativa ão é afectada pela veracidade ou falsidade de H 0, o que já ão acotece com a que iremos obter pelo processo seguite. 17 º PROCESSO Estimativa etre da variâcia: s b Já vimos ateriormete, que se H 0 é verdadeira podemos ecarar as três amostras como sedo proveietes da mesma população () (da mesma loja, como o Exemplo 1). Admitido que H 0 é verdadeira ( 1 = = 3 =) Distribuição da média amostral: ~ N(, / ) Distribuição populacioal: ~ N(, ) 18

10 Os valores médios observados as três amostras, x 1, x e x 3, podem ser ecarados como três valores observados de uma v. a. ~ N(, / ).., sugerido que se estime através de b. s s, com s 1 1 i 1 x x i estimativa de. 19 Se H0 for falsa Pelo meos duas distribuições populacioais são diferetes. Isto é, as variáveis aleatórias i têm distribuições ormais, com iguais variâcias, mas, pelo meos duas, têm médias diferetes. Etão também 1, e 3, vão ter distribuições diferetes: ~ N(, / ), ~ N(, / ) e ~ N(, / ), ode 1 ou 1 3 ou 3. Distribuições da média amostral Distribuições populacioais 3 1 0

11 Assim, x 1, x e x 3 são valores observados de variáveis aleatórias com distribuições diferetes, o que se vai reflectir, evetualmete, uma maior dispersão desses valores, coduzido a um maior valor de s e cosequetemete a um maior valor de b. s s. Exemplo : s 3 1 logo a estimativa etre da variâcia é: b. s s Estatística de teste F A estimativa detro da variâcia, s p, ão é afectada pela veracidade ou falsidade de H 0. Ao cotrário, a estimativa etre da variâcia, a s p quado H 0 é verdadeira e maior do que esta se H 0 é falsa. s b, já o é, sedo aproximadamete igual A estatística de teste é,. S Sb F. S S p p

12 Se H 0 é verdadeira, pode ser estimada pelos dois processos e como as duas estimativas serão aproximadamete iguais, a razão F será próxima de 1. Se H 0 for falsa, as difereças as médias populacioais 1, e 3 vão provocar maior variabilidade as médias amostrais. Isto é, s será grade e cosequetemete s b será também grade comparativamete com s p. A razão F tomará um valor maior que 1. Sob o pressuposto de H 0 ser verdadeira, tem-se F p b p. S S ~ S S 1 ( 1) F. 3 H 0 deve ser rejeitada se o valor observado de F se situar à direita do poto crítico. Isto é, rejeita-se H 0 se, F obs p c ode, o poto crítico p c é dado por P F p 1 1) ( = ível de sigificâcia. c O poto crítico p c é o quatil de probabilidade 1- da distribuição 1 ( 1) F e é usualmete deotado por F ( 1 ) ou por F1, 1, ( 1). 4

13 Exemplo Vamos ver o que podemos cocluir ao ível de sigificâcia de Se a hipótese H 0 é verdadeira, b p S F ~ S F 1. F 3.89 (quatil de probabilidade 1- da distribuição 1,, 1 F 1) R.C.=[3.89,+[ 65 O valor observado da estatística F é: Fobs 8. 3R.C Etão a hipótese H 0 é rejeitada ao ível de sigificâcia de 0.05, isto é, existem difereças sigificativas etre as médias amostrais das vedas. Há portato evidêcia de que existem pelo meos duas lojas com volumes médios de vedas diferetes. Por outras palavras, o factor Loja exerce uma ifluêcia sigificativa sobre o volume de vedas. 5 Tabela de aálise de variâcia (ANOVA) Os dados, usualmete, vêm represetados da seguite maeira: Amostra ( j ) x 11 x 1 x x 1 Observações ( i ) x 1 x x 3... x x 31 x 3 x x 3 x 1 x x 3... x Médias amostrais x1 x x 3... x x 6

14 Os cálculos para a aálise de variâcia podem ser sumariados uma tabela chamada Tabela ANOVA: Fote de Variação Soma de Quadrados Etre grupos Detro dos grupos ou residual Total SS A = x j x j1 SS E = j1i 1 x ij x j SS T = x ij x j1i 1 Graus de Liberdade Variâcia (Soma Média de Quadrados) Razão F -1 SS A S MS Sb MS b A F= 1 S MS (-1) -1 S p MS E SSE ( 1) p A E 7 Note que: s p s j1i 1 x x x x x x i1 1 i i i1 i1 i1 s s x ij x ( 1) j SS E = MS E ( 1) e, s b. s = j1 x j x 1 SS A = MS A 1 8

15 SS T = x ij x j1i 1 é a soma de quadrados total e mede a variação total os dados; SS A = j1 x j x SS E = j1i 1 x ij x j é a soma de quadrados etre os íveis, ou grupos, do factor e mede a variação etre grupos (populações); é por vezes desigada por variação explicada, pois ela é explicada pelo facto de as amostras poderem provir de populações diferetes; é a soma de quadrados detro dos íveis, ou grupos, do factor e mede a variação detro dos grupos (populações); é por vezes desigada por variação ão explicada ou residual, pois é atribuída a flutuações detro do mesma população, portato ão pode ser explicada pelas possíveis difereças etre os grupos (populações). 9 Pode-se provar que: SS T = SS A +SS E o que permite verificar os cálculos da Tabela ANOVA. Apresetamos a seguir a Tabela ANOVA relativa ao Exemplo. Fote de Variação Soma de Quadrados Graus de Liberdade Variâcia (Soma Média de Quadrados) Razão F Etre grupos SS A =130 MS A = s Detro dos grupos SS E =94 1 MS E = s p ou residual Total SS T =4 14 b 30

16 Amostras de Tamahos Diferetes Se as amostras têm tamahos diferetes, as fórmulas apresetadas ateriormete devem ser coveietemete modificadas. j º de observações a amostra j º de amostras N j 1 j (total de observações) x j média observada a amostra j x 1 i x ij j1i 1 j1 1 j x j média poderada das médias amostrais 31 Soma média de quadrados etre grupos j x j x j1 MS A = 1 SS A. 1 Soma média de quadrados detro dos grupos ou residual j x x j MS i ij j 1 1 E 1 SS E N. A Tabela ANOVA para amostras de tamahos diferetes. Fote de Variação Soma de Quadrados Graus de Liberdade Etre grupos Detro dos grupos SS A = x x j1 j ou residual SS E = xij x j Total j j1i 1 j SS T = x x j1i 1 j ij N N 1 Variâcia (Soma Razão F Média de Quadrados) SS A MS Sb MS A F= S MS -1 1 MS E SSE N p A E 3

17 Exemplo 3 Supoha que é director de maretig de uma empresa que pretede relaçar um produto o mercado. Você estudou três campahas de maretig diferetes, cada uma deles combia de modo diferete factores como o preço do produto, a apresetação do produto, promoções associadas, etc. Qualquer uma destas campahas é levada a cabo o poto de veda, ão havedo qualquer publicidade os meios de comuicação. Para saber se há difereça etre as três campahas relativamete à sua eficácia, cada uma delas é feita um cojuto de lojas seleccioadas aleatoriamete, durate um período de duração limitada. Note que as lojas são seleccioadas de modo a que as três amostras sejam aleatórias e idepedetes etre si. As vedas (em uidades moetárias u. m.) registadas durate este período costam da tabela seguite. 33 Campaha 1 Campaha Campaha Soma Seja i a v.a. que represeta o volume de vedas de uma loja sujeita à campaha i (i=1, ou 3). Admitamos que 1, e 3 têm distribuição ormal com iguais variâcias. As hipóteses em teste são: 34

18 H 0 : 1= = 3 (ão há difereça etre as campahas de maretig relativamete ao volume médio de vedas a que coduzem) H 1 : i j para algum i e algum j tais que ij (pelo meos duas campahas de maretig coduziram a volumes médios de vedas diferetes) Fixemos o ível de sigificâcia em Sob o pressuposto de H 0 ser verdadeira, MSA F ~ F 15. MS F 6.36 (quatil de probabilidade 1-=0.99 da distribuição 1,, 15 R.C.=[6.36,+[ Para as amostras recolhidas, tem-se: E F 15) 35 x , x , x e x ; SS A = e MS A =. 015; SS E = e MS E = O valor observado da estatística F é: Fobs R.C Ao ível de sigificâcia de 0.01, rejeita-se a hipótese H 0 de igualdade de médias, pois o valor observado da estatística de teste pertece à região crítica. Há, portato, evidêcia estatística de que as três campahas ão são iguais relativamete ao volume médio de vedas a que coduzem. Isto é, o tipo de campaha ifluecia sigificativamete o volume de vedas. 36

19 A Tabela ANOVA para este exemplo é a seguite. Fote de Variação Soma de Quadrados Graus de Liberdade Variâcia (Soma Razão F Média de Quadrados) Etre grupos SS A =44.03 MS A = 015 Detro dos SS E = MS E = 0165 grupos ou residual Total SS T =

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Testes de Comparação Múltipla

Testes de Comparação Múltipla Testes de Comparação Múltipla Quado a aplicação da aálise de variâcia coduz à reeição da hipótese ula, temos evidêcia de que existem difereças etre as médias populacioais. Mas, etre que médias se registam

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Aula 10. ANOVA Análise de Variância em SPSS

Aula 10. ANOVA Análise de Variância em SPSS Aula 10. ANOVA Aálise de Variâcia em SPSS Métodos stadísticos 008 Uiversidade de Averio Profª ladys Castillo Jordá Aálise de Variâcia Objectivo: comparar medidas de localização para mais do que dois grupos

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Hipótese Estatística. Tipos de Hipóteses

Hipótese Estatística. Tipos de Hipóteses Hipótese Estatística Hipótese, em estatística, é uma suposição formulada a respeito dos parâmetros de uma distribuição de probabilidade de uma ou mais populações. Podemos formular a hipótese que a produtividade

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva Testes de Hipóteses Júlio Osório Os dois campos da Aálise Estatística Métodos Estatísticos Estatística Descritiva Iferêcia Estatística Estimativa Testes de Hipóteses 1 Exemplo Ilustrativo Mediram-se os

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

10 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses Introdução Lógica dos Testes de Hipóteses

10 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses Introdução Lógica dos Testes de Hipóteses INE 700 - Iferêcia Estatística Testes de Hipóteses 0 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses 0. - Itrodução Viu-se ateriormete que uma determiada população pode ser descrita através de um modelo probabilístico,

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida? 1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www. ufrgs.br/~viali/ viali@mat.ufrgs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 A Secretaria de Saúde de um muicípio vem realizado um programa educativo etre as gestates mostrado a importâcia da amametação. Para averiguar a eficácia do programa pretede-se realizar uma

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003)

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003) UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA -ESTATÍSTICA II (CE003) Prof. Beito Olivares Aguilera o Sem./6. Usado os dados da Tabela o Aexo (Seção Orçameto da MB),

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar potual por itervalos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos potual e itervalar Lic. Eg. Biomédica e Bioegeharia-2009/2010 potual por itervalos A Teoria das Probabilidades cosiste

Leia mais

6. Testes de Hipóteses Conceitos Gerais

6. Testes de Hipóteses Conceitos Gerais 6. Testes de Hipóteses Coceitos Gerais Este capitulo itrodutório, pretede apresetar todas as defiições e todo o vocabulário utilizado em testes de hipóteses. Em um primeiro mometo, talvez você fique um

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I J.I.Ribeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem. Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção. É uma

Leia mais

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x Matemática aula COMENTÁRIOS ATIVIDADES PARA SALA. Pelo algoritmo da divisão, temos: I. q + r II. + ( + 3) q + r + q+ r+ 3q + + 3q q 7 5. N 5. 8 x N 5. 3x Número de divisores ( + )(3x + ) 3x + 7 x um úmero

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas Uiversidade Federal Flumiese Istituto de Matemática e Estatística Métodos Estatísticos Aplicados à Ecoomia I (GET00117) Variáveis Aleatórias Discretas Aa Maria Lima de Farias Departameto de Estatística

Leia mais

Caderno de Exercício 3

Caderno de Exercício 3 1 Cadero de Exercício 3 Esaios de Hipóteses e Regressão Liear 1. Exercícios Aulas 1. Exercício 10.11 do livro Statistics for Ecoomics ad Busiess 2. Exercício 10.27 do livro Statistics for Ecoomics ad Busiess

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA Embora com pouco tempo, devido à preparação da 3ª edição do livro Estatística ESAF, preocupado com os cadidatos que farão a prova para Fiscal-RS em 19/08/06 resolvi, mesmo em cima da hora, fazer um resumo

Leia mais