ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

Tamanho: px
Começar a partir da página:

Download "ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)"

Transcrição

1 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes quatas as amostras utiliadas para o seu cálculo. De um modo geral ehuma destas estimativas irá coicidir com o valor do parâmetro da população e ão é possível obter qualquer iformação relativa ao seu rigor. Esta impossibilidade de associar a uma dada estimativa o respectivo grau de cofiaça costitui a grade limitação dos métodos de estimação potual. Este problema é ultrapassado recorredo à estimação por itervalo. ( ) dmita-se etão que temos uma população N µ e que é seleccioada uma amostra aleatória de dimesão. ara essa amostra é calculada a respectiva média amostral cujo valor é x. O objectivo é defiir um itervalo que com uma dada probabilidade - (p.ex: 95% 99%) iclua o verdadeiro valor do parâmetro µ da população. abemos que: N µ Z µ N( 0 ) defia-se agora ( ) [ Z > ( )]. Etão [ Z ( )] portato [ ( ) Z ( )]. como o valor da v.a. Z que verifica e

2 07 Etão: µ que se pode escrever como: µ µ ou como: µ De acordo com a expressão aterior o itervalo: icluirá o valor de µ com probabilidade -.

3 Este itervalo desiga-se por itervalo de cofiaça para o valor esperado a ( - ).00%. Os extremos deste itervalo são os limites de cofiaça a ( - ).00%. O valor de ( ) que represeta a semiamplitude do itervalo de cofiaça correspode ao erro máximo que com a cofiaça especificada se pode cometer a estimativa de µ. NOT: 08 O valor de represeta em média a proporção de vees em que o itervalo de cofiaça ão cotém o parâmetro que se pretede estimar. Outro aspecto a salietar prede-se com a simetria do itervalo de cofiaça relativamete ao valor do estimador potual.

4 09 ara quaisquer valores e ão simétricos que satisfaçam: os itervalos ( ) ( ) são todos eles itervalos de cofiaça de µ a (- ).00% porém com amplitudes diferetes. empre que a estatística a partir da qual se defiem os itervalos de cofiaça apresetar uma distribuição uimodal simétrica o itervalo simétrico em relação à estatística ( ) é o de meor amplitude e portato aquele que deve ser calculado. s excepções a esta regra são situações em que o objectivo é defiir itervalos de cofiaça uilaterais (ilimitados superiormete ou ilimitados iferiormete).

5 0 EECIICÇÃO DE INTERVLO DE CONINÇ especificação de um itervalo de cofiaça para um parâmetro implica cohecer: Um estimador do parâmetro em causa distribuição desse estimador Uma estimativa potual do parâmetro INTERVLO DE CONINÇ R O VLOR EERDO (µ) I ) mostra de grade dimesão. opulação qualquer. De acordo com o teorema do limite cetral temos que este caso: N µ Z µ N( 0 ) Em geral o desvio padrão da população é descohecido sedo estimado através do desvio padrão amostral : i ( i ) ( : estimador desvio padrão amostral; s: estimativas)

6 Uma ve que se admitiu que a amostra é de elevada dimesão o erro de estimação é despreável e podemos admitir que: e portato: (costate) Z µ µ N( 0 ) Etão o itervalo de cofiaça para o valor esperado µ a (- ).00% é dado por: ( ) ( ) II ) mostra de pequea dimesão. opulação Normal. Neste caso já ão é válido cosiderar que: (costate) e portato também já ão é válido admitir que: µ µ

7 Etão para defiir o itervalo de cofiaça é ecessário determiar a distribuição da v.a. : Notemos que: µ µ µ N ( 0 ) µ e como e são v.a. idepedetes resulta da defiição da distribuição t de tudet que: µ t sedo portato o itervalo de cofiaça para o valor esperado µ a (-).00% dado por: ( ) t ( ) t

8 3 INTERVLO DE CONINÇ R ROORÇÃO INOMIL ( ) Vimos já ateriormete que era um estimador para a proporção biomial p e que sob determiadas codições a distribuição de é dada por: N p p ( p ) e portato os limites do itervalo de cofiaça para são dados por: ( p ) p ± ( ) ± ( ) Uma ve que o valor de depede do parâmetro descohecido p poderá para amostras de elevada dimesão ser substituído por um qualquer valor do seu estimador resultado em: e portato: ( ) ( ) 3

9 4 p ( ) 3 N( 0 ) sedo o itervalo de cofiaça para a proporção biomial p a (-).00% dado por: ( ) ( ) 3 ( ) ( ) 3 INTERVLO DE CONINÇ R VRIÂNCI DE UM OULÇÃO NORML ( ) ( ) Vimos já que se de uma população Normal N µ forem seleccioadas amostras aleatórias de dimesão com variâcia amostral etão a v.a. : ( ) Cosideremos agora dois valores ( que: ) e [ ] tais

10 5 ubstituido a equação aterior por obtém-se: ou: > > a que podemos aida dar outro aspecto: > > ou fialmete:

11 6 O itervalo de cofiaça para a variâcia dado por: a (-).00% é ( ) ( ) ( ) Neste caso a distribuição ão é simétrica existido portato a ( dificuldade de defiir os valores que ) e coduem ao itervalo de cofiaça de meor amplitude. or raões de simplicidade é habitual escolher: ( ) ( ) e assim a expressão fial para o itervalo de cofiaça é: ( ) ( ) ( ) ( )

12 7 INTERVLO DE CONINÇ R RZÃO ENTRE VRIÂNCI DE OULÇÕE NORMI dmita-se que e correspodem às variâcias de duas populações Normais e. Cosidere-se também que com base em amostras idepedetes de dimesão e respectivamete se obtêm os estimadores para aquelas variâcias isto é e. Etão: e resultado que: ( ) ( ) ( ) ( ) tededo à defiição da distribuição temos etão que: uma ve que se admite que as variáveis e são idepedetes (pois são obtidas a partir de amostras idepedetes).

13 8 Cosiderem-se agora dois valores desta distribuição e tais que: [ ] e portato: ou aida: > > ou de outro modo: > > e fialmete:

14 9 O itervalo de cofiaça a (-).00% para a raão etre as variâcias das duas populações ormais é etão: ( ) ( ) INTERVLO DE CONINÇ R DIERENÇ ENTRE O VLORE EERDO DE DU OULÇÕE ( µ ) µ I) mostras idepedetes de grades dimesões populações quaisquer ejam µ e µ os valores esperados das populações e e e as suas variâcias. Cosidere que a partir destas populações se obtêm amostras idepedetes de dimesão N e N com base as quais se determiam os estimadores dos valores esperados e e das variâcias e. Uma ve que estamos a tratar com amostras de elevada dimesão podemos cosiderar que: e

15 0 por outro lado o teorema do limite cetral permite-os afirmar que quaisquer que sejam as formas das distribuições de e teremos: µ µ N N e µ µ N N Uma ve que se admitiu que as amostras são idepedetes a difereça é a também uma v.a. com distribuição Normal e portato: µ µ µ µ N N isto é: 0 N Z µ µ Etão o itervalo de cofiaça a (-).00% para a difereça dos valores esperados µ µ é dado por:

16 e se admitir que as variâcias das duas populações são iguais: etão: µ µ µ µ N N este caso é possível refiar a expressão obtida para o itervalo de cofiaça estimado a variâcia comum das duas populações e a partir de: e substituido essa expressão e por. Etão se as variâcias das populações forem iguais a expressão para o itervalo de cofiaça é:

17 I) mostras idepedetes de pequeas dimesões populações quaisquer Uma ve que agora já ão é válido cosiderar: e também deixa de ser válido admitir que tem distribuição N(0) a v.a.: µ µ eguido um procedimeto aálogo ao já utiliado o caso de se trabalhar apeas com uma amostra temos que: µ µ µ µ gl gl t gl 0 N isto é aquela variável segue uma distribuição t de tudet com gl graus de liberdade.

18 3 ara defiir o valor de gl temos duas situações possíveis que correspodem a podermos ou ão admitir como válido que as variâcias das duas populações são iguais: gl se gl se No primeiro caso o úmero de graus de liberdade correspode ao úmero de graus de liberdade com que a variâcia comum das duas populações é estimada. No segudo caso se o valor de gl ão der um iteiro deve-se utiliar o iteiro imediatamete iferior já que codu à defiição de um itervalo com uma cofiaça maior do que a especificada iicialmete. e as variâcias das populações forem iguais podemos também aqui estimar a variâcia comum pela fórmula usada ateriormete isto é:

19 4 Etão o itervalo de cofiaça a (-).00% para a difereça dos valores esperados das duas populações µ µ é dado por: µ ) ( ) ± t ( ) ( µ µ ) ( ) ± t ( ) ( µ INTERVLO DE CONINÇ R DIERENÇ ENTRE ROORÇÕE INOMII p p (MOTR INDEENDENTE DE GRNDE DIMENÕE) ejam duas populações e costituídas por elemetos de dois tipos. eja p a proporção de elemetos de um dos dois tipos a população e p o valor correspodete para a população. eleccioadas idepedetemete duas

20 5 um estimador de amostras seja amostra de dimesão e uma amostra de dimesão. p baseado uma o estimador de p baseado Estado satisfeitas as codições para aproximarmos as distribuições de e por distribuições Normais (populações ifiitas ou amostragem com reposição verificado-se aida que 0 e.p > 7 ; o caso de amostragem sem reposição é também ecessário garatir que a dimesão da população é grade face à dimesão da amostra) e uma ve que as amostras são idepedetes temos que: N µ µ p ( p ) p ( p ) Etão seguido um procedimeto idêtico ao utiliado ateriormete temos que o itervalo de cofiaça a (- ).00% para a difereça etre as proporções biomiais p é dado por: p p p ) ( ± ( ) ( ) ( ) 3 3

21 6 DIMENIONMENTO DE MOTR té agora admitimos que a dimesão das amostras utiliadas para o cálculo das estimativas potuais estava já especificada previamete. Cotudo o problema de dimesioameto das amostras é muito importate já que: e a amostra for excessivamete grade face aos objectivos que se pretedem atigir estaremos a desperdiçar recursos a recolha e tratameto da iformação. e a dimesão da amostra ão for suficiete para a partir dela se extraírem coclusões válidas estaremos a cometer um erro. dimesão das amostras a cosiderar aumetará à medida que aumetem os seguites parâmetros (isoladamete ou em simultâeo): i) a precisão do itervalo de cofiaça (que varia a raão iversa da respectiva amplitude). ii) o grau de cofiaça do itervalo isto é a probabilidade de este vir a icluir o verdadeiro valor do parâmetro populacioal.

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

TRANSPORTES. Sessão Prática 4 Amostragem de escalares

TRANSPORTES. Sessão Prática 4 Amostragem de escalares Mestrado Itegrado em Egeharia Civil TRNPORTE Prof. Resposável: Luis Picado atos essão Prática 4 mostragem de escalares Istituto uperior Técico / Mestrado Itegrado Egeharia Civil Trasportes ulas Práticas

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Distribuições Amostrais

Distribuições Amostrais 7/3/07 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/07/07 09:3 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

ESTIMAÇÃO PARA A MÉDIA

ESTIMAÇÃO PARA A MÉDIA ESTIMAÇÃO PARA A MÉDIA Objetivo Estimar a média de uma variável aleatória, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Vamos observar elemetos, extraídos ao

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

7. INTERVALOS DE CONFIANÇA

7. INTERVALOS DE CONFIANÇA 7 INTRVALOS D CONFIANÇA 00 stimação por itervalos,, é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro θ Se L(,, ) e U(,, ) são duas fuções tais que L < U e P(L θ U), o itervalo

Leia mais

1 Estimação de Parâmetros

1 Estimação de Parâmetros 1 Estimação de arâmetros Vários tipos de estudos tem o objetivo de obter coclusões fazer iferêcias a respeito de parâmetros de uma população. A impossibilidade de avaliar toda a população faz com que a

Leia mais

INTERVALOS DE CONFIANÇA

INTERVALOS DE CONFIANÇA INTRVALOS D CONFIANÇA 014 stimação por itervalos 1,..., é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro. Se L( 1,..., ) e U( 1,..., ) são duas fuções tais que L < U e P(L

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Teoria da Estimação 1

Teoria da Estimação 1 Teoria da Estimação 1 Um dos pricipais objetivos da estatística iferecial cosiste em estimar os valores de parâmetros populacioais descohecidos (estimação de parâmetros) utilizado dados amostrais. Etão,

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Comparação entre duas populações

Comparação entre duas populações Comparação etre duas populações AMOSTRAS INDEPENDENTES Comparação etre duas médias 3 Itrodução Em aplicações práticas é comum que o iteresse seja comparar as médias de duas diferetes populações (ambas

Leia mais

NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA

NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA Objetivos da aula: Compreeder que um estimador é uma variável aleatória e, portato, pode-se estabelecer sua distribuição probabilística; Estabelecer

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Intervalos Estatísticos para uma única Amostra - parte II

Intervalos Estatísticos para uma única Amostra - parte II Itervalos Estatísticos para uma úica Amostra - parte II Itervalo de cofiaça para proporção 2012/02 1 Itrodução 2 3 Objetivos Ao fial deste capítulo você deve ser capaz de: Costruir itervalos de cofiaça

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Pontual e Estimação intervalar.

Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Pontual e Estimação intervalar. Escola uperior de Tecologia de Viseu ETIMAÇÃO Estimação A estimação de um parâmetro, θ, de uma população pode ser feita por dois processos: Estimação Potual e Estimação itervalar. Exemplo: Num dos diversos

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. Objetivo Estimar a média de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: : peso médio de homes a faixa etária de 20 a 30 aos,

Leia mais

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial

Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar potual por itervalos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos potual e itervalar Lic. Eg. Biomédica e Bioegeharia-2009/2010 potual por itervalos A Teoria das Probabilidades cosiste

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 0 Estimação de parâmetros populacioais 9.. Itrodução Aqui estudaremos o problema de avaliar certas características dos elemetos da população (parâmetros), com base em operações com os dados de uma

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

A DESIGUALDADE DE CHEBYCHEV

A DESIGUALDADE DE CHEBYCHEV A DESIGUALDADE DE CHEBYCHEV Quado se pretede calcular a probabilidade de poder ocorrer determiado acotecimeto e se cohece a distribuição probabilística que está em causa o problema, ão se colocam dificuldades

Leia mais

Inferência Estatística

Inferência Estatística Iferêcia Estatística opulação Amostra Itroduç Itrodução à Iferêcia Estatística Como tirar coclusões tomar decisões a partir de iformação parcial / icompleta (amostra) projectado /geeralizado resultados

Leia mais

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação Assuto: Propriedade dos Estimadores e Métodos de Estimação. ANPEC 08 - Questão 6 Por regulametação, a cocetração de um produto químico ão pode ultrapassar 0 ppm. Uma fábrica utiliza esse produto e sabe

Leia mais

Estatística. 7 - Distribuições Amostrais

Estatística. 7 - Distribuições Amostrais Estatística 7 - Distribuições Amostrais 07 - Distribuição da Média Amostral Distribuição costituída de todos os valores de, cosiderado todas as possíveis amostras de tamaho i ( Ode,,..., são V.A. com mesma

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teste de Hipótese

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teste de Hipótese Estatística: Aplicação ao Sesoriameto Remoto SER 4 - ANO 18 Teste de Hipótese Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Estimação de Parâmetros Como já foi visto,

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc.

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc. Cotabilometria Prof.: Patricia Maria Bortolo, D. Sc. Teste para Duas Amostras Fote: LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L.; Estatística Teoria e Aplicações, 5a. Edição, Editora

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Estatística Aplicada I DISTRIBUIÇÃO AMOSTRAL MÉDIA ERRO AMOSTRAL

Estatística Aplicada I DISTRIBUIÇÃO AMOSTRAL MÉDIA ERRO AMOSTRAL Estatística Aplicada I DISTRIBUIÇÃO AMOSTRAL MÉDIA ERRO AMOSTRAL AULA 8 16/05/17 Prof a Lilia M. Lima Cuha Maio de 017 PROPOSITO FUNDAMENTAL DA INFERÊNCIA ESTATISTICA DESENVOLVER ESTIMATIVAS E TESTAR HIPOTESES

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

MAE 116 Estimação para a média FEA - 2º Semestre de 2018

MAE 116 Estimação para a média FEA - 2º Semestre de 2018 MAE 116 Estimação para a média FEA - 2º Semestre de 2018 1 Objetivo da aula O objetivo é estimar a média de uma população (ou de uma variável aleatória) Vamos iicialmete estudar de forma empírica a distribuição

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

; 2N 2N.! " j %.(1 & q)2 N & j.q j. j!(2n & j)!

; 2N 2N.!  j %.(1 & q)2 N & j.q j. j!(2n & j)! DERIVA GENÉTICA Seja uma população de tamaho fiito N, costate ao logo das gerações; sejam aida p e q as freqüêcias dos alelos A e a de um loco autossômico a geração ; como o tamaho da população é costate,

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Disciplina: TRANSPORTES. Sessão Prática 4 (Tipo A): Amostragem

Disciplina: TRANSPORTES. Sessão Prática 4 (Tipo A): Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRANSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4 (Tipo A): Amostragem 008 / 009 Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes

Leia mais

σ = Proporção (estrato C): =

σ = Proporção (estrato C): = Ficha para praticar 16 1.1. Por exemplo: Amostra:.º 7 (Vera Lima).º 6 (Vasco Braga).º 5 (Berardo Silva).º (Liliaa Pires).º 1 (Joaa Cardoso).º 1 (Pedro Vieira).º (Aa Sousa).º 10 (Fracisco Medes) 1.. a)

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Exercício 1 A Secretaria de Saúde de um muicípio vem realizado um programa educativo etre as gestates mostrado a importâcia da amametação. Para averiguar a eficácia do programa pretede-se realizar uma

Leia mais

Universidade Federal de Mato Grosso Probabilidade e Estatística - Curso: Engenharia Civil Introdução à Inferência Estatística - Prof a Eveliny

Universidade Federal de Mato Grosso Probabilidade e Estatística - Curso: Engenharia Civil Introdução à Inferência Estatística - Prof a Eveliny 1 Itrodução Uiversidade Federal de Mato Grosso Probabilidade e Estatística - Curso: Egeharia Civil Itrodução à Iferêcia Estatística - Prof a Eveliy Vimos o iício do curso como resumir descritivamete variáveis

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

e, respectivamente. Os valores tabelados para a distribuição t-student dependem do número de graus de liberdade ( n 1 e

e, respectivamente. Os valores tabelados para a distribuição t-student dependem do número de graus de liberdade ( n 1 e Prof. Jaete Pereira Amador 1 1 Itrodução Um fator de grade importâcia a pesquisa é saber calcular corretamete o tamaho da amostra que será trabalhada. Devemos ter em mete que as estatísticas calculadas

Leia mais

Como a dimensão da amostra é , o número de inquiridos correspondente é

Como a dimensão da amostra é , o número de inquiridos correspondente é 41. p ˆ 0, 5 e z 1, 960 Se a amplitude é 0,, etão a margem de erro é 0,1. 0,5 0,48 1,960 0,1 0,496 96 0,0510 0,496 0,0510 0,496 0,0510 Tema 5 71) 1.1 4 11 6% Como a dimesão da amostra é 15 800, o úmero

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS Acerca dos coceitos de estatística e dos parâmetros estatísticos, julgue os ites seguites. CONHECIMENTOS ESPECÍFICOS CESPE/UB STM 67 A partir do histograma mostrado a figura abaixo, é correto iferir que

Leia mais

Unidade IX Estimação

Unidade IX Estimação Uidade IX Estimação 6/09/07 Itervalos de cofiaça ii. Para a difereça etre médias de duas populações (μ μ ) caso : Variâcias cohecidas Pressupostos: 6/09/07 x - x x - x ; N é - x x ) ( x x x x E ) ( x x

Leia mais

Stela Adami Vayego Estatística II CE003/DEST/UFPR

Stela Adami Vayego Estatística II CE003/DEST/UFPR Resumo 0 Estimação de parâmetros populacioais Defiição : Estimador e Estimativa Um estimador do parâmetro θ é qualquer fução das observações... isto é g(... ). O valor que g assume isto é g(x x... x )

Leia mais

Testes de Hipóteses sobre uma Proporção Populacional

Testes de Hipóteses sobre uma Proporção Populacional Estatística II Atoio Roque Aula Testes de Hipóteses sobre uma Proporção Populacioal Seja o seguite problema: Estamos iteressados em saber que proporção de motoristas da população usa cito de seguraça regularmete.

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica Aula 10 Professor: Carlos Sérgio

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica Aula 10 Professor: Carlos Sérgio Cetro de Ciêcias e Teclogia Agroalimetar - Campus Pombal Disciplia: Estatística Básica - 01.1 Aula 10 Professor: Carlos Sérgio UNIDADE 6 - TEORIA DA ESTIMAÇÃO NOTAS DE AULA 1 Itrodução Iferêcia estatística

Leia mais

Teste de Hipóteses Paramétricos

Teste de Hipóteses Paramétricos Teste de Hipóteses Paramétricos Como costruir testes de hipóteses para difereças etre duas médias. Como costruir testes de hipóteses para difereças etre duas proporções. Como costruir testes de hipóteses

Leia mais

INTERVALOS DE CONFIANÇA

INTERVALOS DE CONFIANÇA INTRVALOS D CONFIANÇA stimação or itervalos,, é uma amostra aleatória de uma variável cuja distribuição deede do arâmetro Se L(,, e U(,, são duas fuções tais que L < U e P(L U =, o itervalo [L, U] é chamado

Leia mais

MAE0229 Introdução à Probabilidade e à Estatística II

MAE0229 Introdução à Probabilidade e à Estatística II Exercício : Sabe-se que o tempo de viagem de um local A a zoa orte de São Paulo até a USP segue uma distribuição ormal com desvio padrão 9 miutos. Em 200 dias aotou-se o tempo gasto para vir desse poto

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departameto de Egeharia Química Escola de Egeharia de Lorea EEL Referêcias Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFial 0,4 P 0,4

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros População p Amostra X S pˆ (parâmetros:

Leia mais

3 Introdução à inferência estatística

3 Introdução à inferência estatística 3 Itrodução à iferêcia estatística Itrodução à iferêcia estatística Pág. 00 1.1. Este tipo de estudos as sodages eleitorais têm como objetivo aferir o setido de voto dos eleitores. Isto permite, ão só

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática Probabilidades e Estatística Primeiro exame/segudo teste 2 o semestre 29/21 Duração: 18/9 miutos Grupo I Justifique coveietemete todas as respostas. 17/6/21 9: horas 1. Com base

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

1. Dados: Deve compreender-se a natureza dos dados que formam a base dos procedimentos

1. Dados: Deve compreender-se a natureza dos dados que formam a base dos procedimentos 9. Testes de Hipóteses 9.. Itrodução Uma hipótese pode defiir-se simplesmete como uma afirmação acerca de uma mais populações. Em geral, a hipótese se refere aos parâmetros da população sobre os quais

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CESPE/UB FUB/0 fa 5 4 CONHECIMENTOS ESPECÍFICOS 60 As distribuições B e C possuem os mesmos valores para os quartis Q e Q, e o quartil superior em B correspode ao quartil cetral (Q ) da distribuição A.

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais