Probabilidade II Aula 9

Tamanho: px
Começar a partir da página:

Download "Probabilidade II Aula 9"

Transcrição

1 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas de Ordem Distribuição da Amplitude Estatísticas sticas de Ordem Sejam X, X,..., X um cojuto de variáveis iid (idepedetes e ideticamete distribuídas) com desidade (ou fução de probabilidade) f(x) e fução de distribuição acumulada x). Estatísticas sticas de Ordem Sejam: X () mí(x, X,..., X ), X () o. meor detre X, X,..., X,... X () máx(x, X,..., X ). Supoha que ordeamos X, X,..., X. X (), X (),..., X () são também variáveis aleatórias, e estamos iteressados em descobrir qual as suas distribuições. 3 4

2 Estatísticas sticas de Ordem Começamos este estudo pelas distribuições do míimo e do máximo. Exemplo Cosidere um cojuto de variáveis iid com a desidade Uif(,). A seguir fazemos uma simulação e, em seguida, obtemos a distribuição teórica correspodete aos dados simulados. A seguir geramos 5 cojutos destas variáveis. Isso os permite obter 5 valores míimos e 5 máximos (detre outras variáveis). 5 6 Exemplo Assim, a partir dos 5 valores gerados, podemos tetar iferir sobre a cara das distribuições do míimo e do máximo das amostras de variáveis Uif(,). Também, podemos calcular a Amplitude, defiida como o (máximo míimo), e teremos também uma aproximação para a distribuição teórica desta quatidade. 7 Exemplo Distribuição simulada do míimo Frequêcia.5 x 4 Histograma dos míimos

3 Exemplo Distribuição simulada do máximo.5 x 4 Histograma dos máximos Exemplo Distribuição simulada da amplitude 4 Histograma da amplitude Frequêcia.5 Frequêcia Exemplo Estatísticas Descritivas MÍNIMO MÁXIMO AMPLITUDE umero de amostras simuladas tamaho de cada amostra média amostral mediaa amostral desvio padrao miimo máximo Dos gráficos fica claro que as distribuições do máximo, míimo e amplitude ão são Uif(,). Note também que a média dos 5 mil míimos gerados é.9, a mediaa.67. Veja as outras estatísticas descritivas... Exemplo Podemos também obter a fução de distribuição empírica dos dados simulados. A idéia por trás da costrução da fução de distribuição empírica é simples. Supoha que defiimos uma fução de probabilidade que associa o valor /N a cada um dos N valores observados.

4 Exemplo Exemplo distribuição empírica do míimom Neste caso, geramos N 5 míimos, por exemplo. Etão, podemos atribuir uma probabilidade /5 acada um destes míimos observados..9.8 Fucao de distribuição empírica do míimo A fução de distribuição empírica F* tem o aspecto de uma fução degrau, e é tal que F*(x) úmero de valores observados meores ou iguais a x dividido por N (N 5 aqui). Nos gráficos a seguir, a forma de degrau da fução de distribuição empírica ão fica evidete, pois foram gerados muitos valores e a fução se aproxima de uma fução cotíua. 3 Frequêcia Relativa Por exemplo, cerca de 6% dos valores míimos gerados estão abaixo de. 4 Exemplo distribuição empírica do máximom Exemplo distribuição empírica da amplitude Fucao de distribuição empírica do máximo Fucao de distribuição empírica da amplitude Frequêcia Relativa Frequêcia Relativa

5 Exemplo Uma questão que deve ser ivestigada é: Como o tamaho da amostra Uiforme iflui estes resultados? Parece ituitivo que, se partimos de uma amostra grade, o míimo da amostra deve estar mais próximo de zero que se usarmos uma amostra pequea. Aalogamete, para uma amostra grade, o máximo deve estar mais perto de um que uma amostra pequea. Exemplo Para verificar estas cojecturas, repetimos o experimeto do Exemplo, mas agora geramos 5 amostras de tamaho 5 da Uiforme(,), ao ivés de amostras de tamaho, como foi feito o exemplo aterior. Os resultados das simulações seguem os próximos slides. 7 8 Exemplo Distribuição simulada do míimo Frequêcia x 4 Histograma dos míimos Compare com o gráfico do slide 8. Que difereças você ota? Exemplo Distribuição simulada do máximo Frequêcia x 4 Histograma dos máximos Compare com a figura do slide 9

6 Exemplo Distribuição simulada da amplitude Frequêcia Histograma da amplitude Compare com a figura do slide Exemplo distribuição empírica do míimom Frequêcia Relativa Fucao de distribuição empírica do míimo Compare com a figura do slide 4 Por exemplo, quase % dos valores míimos gerados estão abaixo de. Exemplo distribuição empírica do máximom Exemplo distribuição empírica da amplitude.9.8 Fucao de distribuição empírica do máximo Compare com a figura do slide Fucao de distribuição empírica da amplitude Compare com a figura do slide 6 Frequêcia Relativa Frequêcia Relativa

7 Exemplo Estatísticas descritivas MÍNIMO MÁXIMO AMPLITUDE umero de amostras simuladas tamaho de cada amostra média amostral mediaa amostral desvio padrao miimo máximo a média dos 5 mil míimos gerados é., a mediaa.4. Compare com as estatísticas descritivas do Exemplo. Exemplo Em resumo... O efeito do tamaho da amostra () Uiforme(,) é claro, como a comparação das as simulações revela. Quato maior o tamaho da amostra, mais perto de está o míimo da amostra, e mais perto de está o máximo da amostra. Que coclusões você tira acerca da amplitude? 5 6 Exemplo 3 O próximo passo é derivar aaliticamete as desidades do míimo e do máximo de uma amostra de tamaho da Uiforme(,). Qual a distribuição do míimo? Seja X () mí(x, X,..., X ) 7 Exemplo 3 Ecotraremos a desidade de X () através do método da fução de distribuição. Para isso, é bom recordar quem é a fução de distribuição de uma variável Uif(,). Se U tem desidade Uif(,) etão: Pr( U u se u < se u se u > 8

8 Exemplo 3 A fução de distribuição de X () é: ( X Pr( X > G ( Pr () () Pr ( X > u, X > u,..., X > Pela idepedêcia dos X i, esta última probabilidade pode ser escrita como o proto das probabilidades idiviais e etão: Exemplo 3 G ( Pr Pr G ( Pr ( X Pr( X > u, X > u,..., X > ( X > Pr( X >...Pr( X > () ( X Pr( X > Pr( X >...Pr( X > { Pr( X > } () Mas, os X i s são ideticamete distribuídos, e etão todos os termos o proto acima são iguais. Logo: Como os X i s são Uif(,), segue que Pr(X > -u. Logo: G ( () ( X { u} Pr 9 3 Exemplo 3 A desidade de X () é apeas a derivada da fução de distribuição: dg ( d { u} g ( + (. u ( { } ( ) { u } Γ Γ ( + ) ( ) Γ( ) ( para < u < Ou seja, X () tem desidade Beta(,). Em particular, sua média é /(+). u Exemplo 3 Do último slide, a depedêcia da desidade do míimo da amostra o tamaho da amostra deve ter ficado explícita. Note que, em particular, se tomarmos uma amostra de tamaho grade, a média dos X () se aproxima de zero. 3 3

9 Exemplo 3 Por exemplo, uma amostra de tamaho (vide exemplo ), o valor esperado de X () é /.99 Exemplo 3 Neste mesmo cotexto (amostra de tamaho da Uif(,)) qual a desidade do máximo? Numa amostra de tamaho 5 (vide exemplo ), a média de X () é /5.96 Compare estes valores com os ecotrados as simulações dos exemplos e. A fução de distribuição de X () é: G ( Pr ( X Pr( X u, X u,..., X ( ) Pr( X Pr( X...Pr( X { Pr( X } { } ( Exemplo 3 A desidade de X () é: dg ( d g( Γ. u ( Γ { u } { u} ( + ) ( ) Γ( ) u ( para < u < Ou seja, X () é Beta(,). Em particular, E{X () } /(+) Exemplo 4 Os resultados ecotrados para o míimo e o máximo de uma amostra Uiforme(,) podem ser facilmete geeralizados para uma amostra de uma desidade f(x) qualquer. Sejam X, X,..., X um cojuto de variáveis CONTÍNUAS iid (idepedetes e ideticamete distribuídas) com desidade f(x) e fução de distribuição acumulada x)

10 Exemplo 4 Etão a fução de distribuição do míimo é: ( X Pr( X > Pr( X >...Pr( X > G ( Pr () { } E a desidade do míimo é: { { } } dg ( d d g ( ( ) { } +. f ( ( ) 37 Exemplo 4 Aalogamete, a fução de distribuição do máximo é: G ( Pr ( X Pr( X u, X u,..., X ( ) Pr( X Pr( X...Pr( X { Pr( X } { } E a desidade do máximo é: dg ( d g( { } d { } { } 38. f ( u ) Exemplo 5 Sejam X, X,..., X um cojuto de variáveis Expo(λ). Ecotre a desidade do míimo destas variáveis. Solução Lembre-se que a fução de distribuição dos X s é: x) exp(-λ.x) e etão x) exp(-λ.x) Exemplo 5 Dos resultados ateriores: g ( +. f ( λ. e λu λu λu ( ). λ. e { e } Assim, X() é Expoecial com parâmetro.λ 39 4

11 Distribuição das Estatísticas sticas de Ordem Teorema A desidade de X (k) a k-ésima estatística de ordem, é: f k ( x)! ( k )!( k)! { } x k k f ( x). F ( x) ) 4 Distribuição das Estatísticas sticas de Ordem Demostração Seja dx um úmero positivo pequeo. Etão: f ( x). dx Pr x X x dx ( ) k ( k ) + O eveto x X (k) x + dx ocorre se k- observações são meores que x, uma observação está em [x, x + dx] e k observações estão acima de x + dx. A probabilidade de qualquer sequêcia deste tipo é f(x).{x)} k-.{ x)} -k.dx e existem!/{(k-)!!(k)!} sequêcias deste tipo. 4 Distribuição das Estatísticas sticas de Ordem Do teorema aterior podemos descobrir facilmete quais são as distribuições de todas as estaísticas de ordem de uma amostra Uiforme(,), como idicado o próximo teorema. Distribuição Beta e relação com a Uiforme(,) Teorema Sejam X, X,..., X variáveis aleatórias idepedetes com desidade Uif(,). Seja X (k) a k-ésima estatística de ordem da amostra. Etão X (k) tem desidade Beta com parâmetros k e k

12 Exemplo 6 Um computador gera úmeros aleatórios uiformemete o itervalo (,). Calcule a probabilidade de que o meor destes úmeros será maior que.5. Solução Pelo teorema aterior, a desidade do meor dos úmeros é uma Beta com parâmetros e. Isto é, se Y deota este úmero temos: Exemplo 6 A desidade de Y é: ( ) Γ( ) ( ) Γ( )! ( ) ( ) ( ) ode <y< Γ.!9! 9 9 f y y y y y A probabilidade deste úmero exceder.5 é: 9 Pr ( Y >.5) ( y) dy.5 Faça a mudaça de variável: t - y dt - dy e se y.5, t.5 e se y, t. Logo: Pr ( Y >.5) t ( dt ) t dt t (.5).977% Distribuição Beta (para casa) Cosidere uma amostra de tamaho > 3 da desidade Uiforme(,). Calcule, como fução do tamaho da amostra, as seguites probabilidades: a) De que o maior úmero a amostra exceda.8; b) De que o meor úmero a amostra seja meor que.. c) Faça um gráfico das probabilidades os ítes a) e b) versus. Distribuição Beta (para casa) Um computador gera 6 úmeros aleatórios uiformemete distribuídos o itervalo (,). Calcule a probabilidade de que o meor destes úmeros será maior que.. Calcule o valor esperado do meor destes úmeros. Ecotre a desidade do o. meor destes úmeros e calcule a sua média e variâcia. Calcule a probabilidade de que o maior destes úmeros exceda

13 Distribuição da Amplitude Para ecotrar a distribuição da amplitude é preciso achar a distribuição cojuta do míimo e do máximo. Supoha que (pois se < a amplitude é zero). Seja u v. Etão: Distribuição da Amplitude Pr(X () > x, X () y) Pr(x < X y, x < X y,..., x < X y) {Pr(x < X y)} { y) x) } Também: Pr(X () y) { y)} Assim a fução de distribuição cojuta de X () e X () é: 49 5 Distribuição da Amplitude F X () Pr, X ( x, y) Pr( X x X y) (), ( ) ( ) ( X y) Pr( X > x, X y) ( ) () ( ) { y) } { y) x) } A desidade cojuta de X () e X () é dada por: f X (), X ( ) ( x, y) + ( ) f ( x) f ( y) FX, (, ) () X x y ( ) x y { y) x) } para x y Distribuição da Amplitude A desidade cojuta é zero se x > y. A desidade da amplitude, R X () - X () é dada por uma ligeira modificação da desidade da soma: f r) ( ) se r < R ( f ( x) f ( r + x) { r + x) x) } dx se r > 5 5

14 Distribuição da Amplitude Exemplo 7 Podemos aplicar o resultado do slide aterior a uma amostra de tamaho da desidade Uif(,). A desidade da amplitude é: f R ( r) ( ) f ( r) ( ) r R r se r < ()() {( r + x) ( x) } ( -r) Γ Γ( + ) ( ) Γ( ) dx ( ). r r (- r) ( r) se < r < se < r < 53 Distribuição da Amplitude Exemplo 7 Ou seja, a amplitude R tem desidade Beta(-, ). Sua média é: E( R) + + Assim, quado o tamaho da amostra cresce, a amplitude se aproxima de. 54 Distribuição da Amplitude Exemplo 7 Assim, para uma amostra de tamaho da Uif(,), E(R) 9/.88. Na simulação do Exemplo, a média da distribuição simulada foi.883. Para uma amostra de tamaho 5 da Uif(,), E(R) 49/5.968, e ecotramos o Exemplo o mesmo valor como média amostral da distribuição simulada. 55

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Reato A. Firmio praf6@gmail.com Aulas 19-0 1 Iferêcia Idutiva - Defiições Coceitos importates Parâmetro: fução diretamete associada à população É um valor fixo, mas

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO LIMITES. Itrodução: Usamos a palavra ite o osso cotidiao para idicar, geericamete, um poto que pode ser evetualmete

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

Intervalos Estatísticos para uma única Amostra - parte II

Intervalos Estatísticos para uma única Amostra - parte II Itervalos Estatísticos para uma úica Amostra - parte II Itervalo de cofiaça para proporção 2012/02 1 Itrodução 2 3 Objetivos Ao fial deste capítulo você deve ser capaz de: Costruir itervalos de cofiaça

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Les 201 Matemática Aplicada à Economia. Relações entre CMg e CMe. Aulas Relações entre CMg e CMe. dct. dcme. CMe = = = =

Les 201 Matemática Aplicada à Economia. Relações entre CMg e CMe. Aulas Relações entre CMg e CMe. dct. dcme. CMe = = = = Les 0 Matemática Aplicada à Ecoomia Aulas -4 Derivadas Aplicação em Ecoomia Derivadas de Ordem Superiores Derivadas Parciais Determiate Jacobiao 9 e 0/09/06 Aplicações da a. Derivada em Ecoomia Dada a

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003)

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003) UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA -ESTATÍSTICA II (CE003) Prof. Beito Olivares Aguilera o Sem./6. Usado os dados da Tabela o Aexo (Seção Orçameto da MB),

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

Métodos de Amostragem

Métodos de Amostragem Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

= o logaritmo natural de x.

= o logaritmo natural de x. VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FCULDDE DE CIÊCIS E TECOLOGI Redes de Telecomuicações (6/7) Egª de Sistemas e Iformática Trabalho º4 (ª aula) Título: Modelação de tráfego utilizado o modelo de Poisso Fudametos teóricos (cotiuação) 7.

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Exercícios de Intervalos de Confiança para media, variância e proporção

Exercícios de Intervalos de Confiança para media, variância e proporção Exercícios de Itervalos de Cofiaça para media, variâcia e proporção 1. Se uma amostra aleatória =5, tem uma média amostral de 51,3 e uma desvio padrão populacioal de σ=. Costrua o itervalo com 95% de cofiaça

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www. ufrgs.br/~viali/ viali@mat.ufrgs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas Uiversidade Federal Flumiese Istituto de Matemática e Estatística Métodos Estatísticos Aplicados à Ecoomia I (GET00117) Variáveis Aleatórias Discretas Aa Maria Lima de Farias Departameto de Estatística

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Implementação de Planilha de Cálculos Simplificada

Implementação de Planilha de Cálculos Simplificada INF 1620 Estruturas de Dados Semestre 08.2 Primeiro Trabalho Implemetação de Plailha de Cálculos Simplificada Uma plailha de cálculos é um programa muito utilizado em aplicações fiaceiras e aquelas que,

Leia mais

Notas de aula de Probabilidade Avançada

Notas de aula de Probabilidade Avançada Notas de aula de Probabilidade Avaçada Adilso Simois (professor) Tássio Naia dos Satos (aluo) primeiro semestre de 2012 compilado 2 de abril de 2012 Notas de aula de Tássio Naia dos Satos, aluo do curso

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE.

TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE. TP010 ENGENHARIA DA QUALIDADE 1. VARIÁVEIS, DESCRIÇÃO E DISTRIBUIÇÕES DE PROBABILIDADE. 1.1- TIPOS DE VARIÁVEIS A característica populacioal de iteresse é em geral classificada de qualitativa e quatitativa,

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais