DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016"

Transcrição

1 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete vale - (meos um poto. 3. Cada questão deixada em braco vale 0 (zero potos 4. Pelo meos 9 (ove questões devem ser respodidas pelo aluo 5. A ota fial será a soma dos potos (egativos e positivos de todas as questões 6. As opções escolhidas devem ser assialadas a folha de respostas o fial da prova. A prova tem duração de 3 horas. É proibido: usar celular; cosultar referêcias bibliográficas diferetes das que estão estabelecidas o edital de seleção; emprestar calculadoras e/ou livros para cosulta de outros cadidatos durate a prova Nome do cadidato(a:

2 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Iformações que podem ser úteis: Z δ = quatil da N(0, com área δ à esquerda Z 0,9987 = 3, Z 0,9332 =,5, Z 0,9049 =,3, Z 0,8643 =,, Z 0,859 = 0,9, Z 0,7734 = 0,75. t δ;v = quatil da t-studet com v graus de liberdade (área δ à esquerda t 0,995;8 = 3, t 0,940;8 =,5, t 0,8867;8 =,3, t 0,8483;8 =,, t 0,8028;8 = 0,9, t 0,7626;8 = 0,75. Lista com algumas séries matemáticas: =0 x = x = x = =0 x = ( α =0 x = x = ( + x =0! para x < ; para x < ; ( x 2 x para x < ; ( x 2 x = ( + x α para x < ; = log( x para x < ; = log( + x para x < ; = exp{x} para todo x; 2

3 Questão. Seja X uiformemete distribuída o itervalo (0, e Y = X. A fução desidade e a esperaça de Y são dadas, respectivamete, por: a. y / e b. y(/ c. y / e d. y(/ + e + 2 e Questão 2. Seja X uma variável aleatória ormalmete distribuída com média µ e variâcia 4. Cosidere o teste de hipóteses H 0 : µ = 0 cotra H : µ = 3. Para uma amostra aleatória de tamaho = 9 de X, cosidere o critério que rejeita H 0 se a média amostral é maior ou igual a 2. As probabilidade dos erros tipo I e tipo II para este critério são dadas, respectivamete, por: a. 0,003 e 0,0668 b. 0,0085 e 0,0860 c. 0,003 e 0,0860 d. 0,0085 e 0,0668 Questão 3. Cosidere o teste de hipóteses H 0 : p = 0,2 cotra H : p > 0,2, ode p é a proporção populacioal de ites defeituosos. Em uma amostra aleatória de 5 ites, observa-se uma proporção amostral de ites defeituosos igual a 0,4. O p-valor deste teste é igual a: a. 0,357 b. 0,665 c. 0,84 d. 0,2627 Questão 4. Sejam X,..., X uma amostra aleatória de uma distribuição com fução desidade dada por f(x θ = θ c θ x (θ+ com x c > 0 e θ > 0. O estimador de máxima verossimilhaça de θ é dado por: a. ( i= log(x i log(c b. c c ( i= log(x i c. log ( i= x i log(c d. c c log ( i= x i 3

4 Questão 5. Sejam X e Y variáveis aleatórias discretas idepedetes e k uma costate. Seja A o eveto X = k, B o eveto Y = k, C o eveto max{x, Y } = k e D o eveto mi{x, Y } = k. Se P (A = 0,3, P (B = 0,4 e P (C = 0,2, etão P (D é igual a: a. 0, b. 0,3 c. 0,5 d. 0,7 Questão 6. Cosidere que X Y Biomial(Y, θ e que Y segue a distribuição Poisso com média λ. A variâcia da distribuição margial de X é dada por: a. λθ 2 b. λθ(2 θ c. λθ( θ d. λθ Questão 7. Em um certo país, a polícia utiliza dois testes para verificar se um motorista cosumiu ou ão bebida alcoólica. O teste A é o primeiro a ser aplicado; saiba que ele acerta em 80% dos casos. Se o teste A detectar a preseça de álcool, o policial irá etão aplicar um teste B. Este segudo teste uca falha se o motorista estiver sóbrio; etretato, ele erra em 0% dos casos de motoristas que beberam. Cosidere que 25% dos motoristas parados em uma blitz cosumiram bebida alcoólica. Nesta blitz, qual é a probabilidade de que um motorista teha realmete bebido visto que o teste A detectou álcool e o teste B ão detectou? a. 2/7 b. 2/7 c. /3 d. / Questão 8. Seja X,..., X uma amostra aleatória da Poisso com média θ e Y = i= X i. Qual deve ser o valor de k tal que exp{ ky } seja um estimador ão viciado para exp{ θ}? a. b. ( c. l ( d. l 4

5 Questão 9. Sejam Y,..., Y variáveis aleatórias idepedetes tal que Y i Normal(βx i, σ 2 ; cosidere x i cohecido para i =,...,. Qual das opções abaixo represeta uma estatística cojutamete suficiete para β e σ 2? a. ( i= Y ix i, i= Y i 2 b. ( i= Y i 2, i= x2 i c. ( i= Y ix i, i= Y i d. ( i= Y i, i= Y i 2, i= x2 i Questão 0. Cosidere as desidades ou fuções de probabilidade eumeradas a seguir:! ( p(x,..., x = i= x i= i! θx i i, com x i {0,,..., }, θ i (0,, i= x i = e i= θ i =. ] (ν+/2 Γ[(ν + /2] (2 f(x = [ Γ[ν/2] σ (x µ2 + νπ νσ 2, com x R, µ R, σ > 0 e ν > 0. (3 f(x = αλα x α+ com x λ, λ > 0 e α > 0. Quais destas distribuições NÃO pertecem à família expoecial? a. Apeas ( e (2. b. Apeas ( e (3. c. Apeas (2 e (3. d. Todas elas pertecem à família expoecial. Questão. A seha de um cartão de crédito é composta por duas letras distitas (alfabeto com 26 letras seguidas por 3 dígitos distitos. Qual é a probabilidade de que um ladrão virtual acerte uma seha até a seguda tetativa aleatória? a. 2, b. 4, c. 4, d. 2,

6 Questão 2. Uma amostra aleatória de tamaho = 3 do úmero de chamadas a uma cetral do SAMU, em 3 dias seguidos, resultou as seguites observações: k = 5, k 2 = 7 e k 3 = 9. Supoha que as chamadas em um dia podem ser modeladas por uma variável aleatória Poisso com média λ. Ecotre a estimativa de máxima verossimilhaça para a probabilidade de que ocorram, o máximo, 2 chamadas em um dia (arredodado a 4 a casa decimal. a. 0,0223 b. 0,036 c. 0,0296 d. 0,0520 Questão 3. Sejam X,..., X e Y,..., Y m amostras aleatórias, idepedetes, ambas com distribuição Normal de média µ e variâcia σ 2. Seja W = X Ȳ. A variâcia de W e a esperaça de X 2 são, respectivamete: a. σ 2 ( +m m e σ2 + µ 2 b. σ 2 ( +m m e σ 2 + µ2 c. ( + mσ 2 e σ 2 + µ 2 d. ( + mσ 2 e σ 2 + µ2 Questão 4. Um dado com 6 faces igualmete prováveis é cotiuamete laçado até que a soma total de todas as jogadas exceda 300. A probabilidade de que sejam ecessárias 80 jogadas é aproximadamete: a. 0,004 b. 0,0336 c. 0,9049 d. 0,095 Questão 5. Supoha que X teha fução desidade de probabilidade dada por f(x = 2x para 0 x. A fução geradora de mometos de X é dada por: ( e t a. 2 t 2 et t 2 ( e t b. 2 t et t 2 + t 2 c. 2 ( e t t e t t 2 + t 2 d. 2 ( e t t 2 e t t 2 6

7 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Data: 0//205 Istruções: No quadro abaixo, assiale com um X a opção de resposta escolhida para cada questão. USE CANETA. Resposta Questão (a (b (c (d Potuação Número de iscriç~ao: 7

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

Análise Combinatória I

Análise Combinatória I Aálise Combiatória I O pricípio fudametal da cotagem ada mais é que a maeira mais simples possível de determiar de quatas maeiras diferetes que um eveto pode acotecer. Se eu, por exemplo, estiver pitado

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Caderno de Fórmulas. Debêntures Cetip21

Caderno de Fórmulas. Debêntures Cetip21 Última Atualização: 01/04/2016 E ste Cadero tem por objetivo iformar aos usuários a metodologia e os critérios de precisão dos cálculos implemetados Para Debêtures o Cetip21. São aqui apresetadas fórmulas

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS 9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma

Leia mais

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações 4 HIDROLOGIA ESTATÍSTICA: coceitos e aplicações 4. Coceitos básicos de Probabilidades Um cojuto de dados hidrológicos ecessita ser previamete aalisado com base em algus idicadores estatísticos básicos

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

IND 1115 Inferência Estatística Aula 13

IND 1115 Inferência Estatística Aula 13 mbarros.com 3 mbarros.com 4 Coteúdo IND 5 Iferêcia Estatística Aula 3 Novembro 005 Môica Barros Itervalos de Cofiaça para Difereças etre Médias (Variâcias supostas iguais) Itervalo de Cofiaça para a variâcia

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação

Leia mais

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução. 55 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

O que é Estatística?

O que é Estatística? O que é Estatística? É um método de observação de feômeos coletivos. Ocupa-se da coleta, orgaização, resumo, apresetação e aálise de dados. Objetivo - Obter iformações que permitam uma descrição dos feômeos

Leia mais

Juros Simples e Compostos

Juros Simples e Compostos Juros Simples e Compostos 1. (G1 - epcar (Cpcar) 2013) Gabriel aplicou R$ 6500,00 a juros simples em dois bacos. No baco A, ele aplicou uma parte a 3% ao mês durate 5 6 de um ao; o baco B, aplicou o restate

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

CRI Certificados de Recebíveis Imobiliários. Guia para Elaboração dos Fluxos de Pagamentos Data: 16/11/2015

CRI Certificados de Recebíveis Imobiliários. Guia para Elaboração dos Fluxos de Pagamentos Data: 16/11/2015 1 CRI Certificados de Recebíveis Imobiliários Guia para Elaboração dos Fluxos de Pagametos Data: 16/11/2015 Sumário/Ídice CRI - CERTIFICADOS DE RECEBÍVEIS IMOBILIÁRIOS... 1 SUMÁRIO/ÍNDICE... 2 1. OBJETIVO...

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Universidade Federal da Bahia - IM

Universidade Federal da Bahia - IM Uiversidade Federal da Bahia - IM Programa de Pós-Graduação em Matemática Professor: Tertuliao Fraco Aluo: Felipe Foseca dos Satos Trabalho do curso de Probabilidade Este trabalho cosiste em resolver algumas

Leia mais

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo MÉTODO ETATÍTICO DE PREVIÃO 8 6 4 98 96 94 9 9 5 5 Regressão Liear Berardo Almada-Lobo Regressão A regressão é uma das técicas estatísticas mais potetes e de utilização mais frequete. É um método matemático

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II MATEMÁTICA PARA CONCURSOS II Módulo III Neste Módulo apresetaremos um dos pricipais assutos tratados em cocursos públicos e um dos mais temíveis por parte dos aluos: Progressão Aritmética e Progressão

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

FERRAMENTAS DA QUALIDADE FOLHA DE VERIFICAÇÃO

FERRAMENTAS DA QUALIDADE FOLHA DE VERIFICAÇÃO FERRAMENTAS DA QUALIDADE FOLHA DE VERIFICAÇÃO 1 A Folha de Verificação é utilizada para permitir que um grupo registre e compile sistematicamente dados de fontes com experiência na área (históricos), ou

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

5n 3. 1 nsen(n + 327) e)

5n 3. 1 nsen(n + 327) e) Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado

Leia mais

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e Eame de Admissão de Matemática Págia de... Simpliicado a epressão. : : tem-se: Simpliicado a epressão p p p Sabedo que p p obtém-se: p p log a etão log será igual a: a a a a pp p p. Para diluir litro de

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

Exemplos de I.C. (1 ) 100% para a mådia (e para diferença entre mådias)

Exemplos de I.C. (1 ) 100% para a mådia (e para diferença entre mådias) Exemplo de I.C. ( )% para a mådia (e para difereça etre mådia) Exemplo : Tete de compreão foram aplicado em dua marca de cimeto para avaliar a reitêcia em cocreto. Foram produzido 5 corpo de prova de cada

Leia mais

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 3 Prof.: Patricia Maria Bortolo, D. Sc. Estimação por Itervalo Objetivos Nesta semaa, veremos: Como costruir e iterpretar estimativas por itervalos de cofiaça para a média e a proporção

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Egeharia - Campus de Guaratiguetá esquisa Operacioal Livro: Itrodução à esquisa Operacioal Capítulo 6 Teoria de Filas Ferado Maris fmaris@feg.uesp.br Departameto de rodução umário Itrodução

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

TEORIAS, TÉCNICAS E SIMULAÇÕES EM PROCESSOS ALEATÓRIOS - Marco Antonio Leonel Caetano PROCESSOS FILAS

TEORIAS, TÉCNICAS E SIMULAÇÕES EM PROCESSOS ALEATÓRIOS - Marco Antonio Leonel Caetano PROCESSOS FILAS PROCESSOS FILAS VIII. - Itrodução Cogestioameto é um feômeo atural em sistemas reais. Um serviço tora-se cogestioado se há mais pessoas ( iformações ) do que o servidor ( ou servidores ) pode ateder. As

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Exame - Época Normal 006/00 Data: 14de Julhode 00 Tópicos de Resolução Duração: 3 horas 1. SejaΩumespaçoamostraleA,BeCacotecimetoscomasseguitescaracterísticasA

Leia mais

TESTE DE MANN-WHITNEY

TESTE DE MANN-WHITNEY TESTE DE MANN-WHITNEY A importâcia deste teste é ser a alterativa ão paramétrica ao teste t para a difereça de médias. Sejam (X 1,X,...,X ) e (Y 1,Y,...,Y m ) duas amostras idepedetes, de tamahos e m respectivamete,

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

Mé todos Numé ricos para a Probabilidade Binomial e. Hipergeomé trica. por. Rosiane Evangelista Borges

Mé todos Numé ricos para a Probabilidade Binomial e. Hipergeomé trica. por. Rosiane Evangelista Borges Uiversidade Federal de Goiá s Campus Avaçado de Catalão Departameto de Matemá tica Mé todos Numé ricos para a Probabilidade Biomial e Hipergeomé trica por Rosiae Evagelista Borges Catalão - GO 2003 Rosiae

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti

Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá los digitalmente, devemos: Converter

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Manual para utilização da funcionalidade de importar arquivo XML para prestação de contas

Manual para utilização da funcionalidade de importar arquivo XML para prestação de contas Manual para utilização da funcionalidade de importar arquivo XML para prestação de contas Conteúdo 1. Introdução 2. Exemplo de documento XML válido para prestação de contas 3. DTD utilizada para validação

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Manual sobre o Valor do Dinheiro no Tempo

Manual sobre o Valor do Dinheiro no Tempo Maual sobre o Valor do Diheiro o Tempo...Dai de graça o que de graça recebeste... A oção de que um dólar hoje é preferível a um dólar em algum mometo o futuro é bastate ituitiva para a maioria das pessoas

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais