) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download ") E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X"

Transcrição

1 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif {,, }. Se X tem distribuição Uif{,,}, etão P( X = i) =, i =,, 0, c.c. ( ) = i E X = + i= V( X) = E( X ) E X = ( ) = i + Eemplo: Seja X uma variável aleatória que cota o úmero de potos obtidos o laçameto de um i= dado equilibrado, etão X~Uif{,,6} P( X = i) =, i =,,6 6 0, c.c. E( X) = 6 + = 3.5 V( X) = 6 = 35 = 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p, 0 < p < Variável aleatória de Beroulli (ou com distribuição de Beroulli) de parâmetro p: X - úmero de sucessos observados quado se realiza uma prova de Beroulli com P(sucesso) = p ( ) = p ( ) = p P X = 0 P X = 0 < p < Eemplos: ou P ( X = ) = p ( p ),, a) Laçameto de uma moeda. Podemos covecioar sucesso=cara. p = 0. 5, se a moeda for perfeita. b) Numa caia estão 00 peças, das quais 0 são defeituosas. Etracção de uma peça ao acaso. Sucesso=defeituosa. p = 0. E ( X ) = 0 ( p ) + p = p E ( X ) = 0 ( p ) + p = p V ( X ) = E ( X ) E ( X ) = p p = p ( p ) Represeta-se X ~ Ber ( p ) 3

2 Variável aleatória Biomial (ou com distribuição Biomial) de parâmetros e p: X - úmero de sucessos em provas de Beroulli realizadas de forma idepedete e com P(sucesso)= p em cada prova X ~ Bi (, p ) Valores possíveis de X: 0,,, Eemplos: a) Laçameto de uma moeda perfeita vezes cosecutivas. X - úmero de caras observado F - cara (sucesso), C - coroa (isucesso) Etão X ~ Bi, P ( X = 0 ) = P ( C, C, C, C ) = P ( X = ) = P ( F, C, C, C ) + P ( C, F, C, C ) + P X = + P ( C, C, F, C ) + P ( C, C, C, F ) = ( ) = P ( F, F, C, C ) + P ( F, C, F, C ) + + P ( F, C, C, F ) + P ( C, F, F, C ) + + P ( C, F, C, F ) + P ( C, C, F, F ) = = 6 P ( X = 3 ) = = P ( X = ) = É razoável admitir que os laçametos são idepedetes. 5 Verificar que P ( X = 0 ) + + P ( X = ) = 6 b) Laçameto de um dado perfeito 0 vezes cosecutivas X - úmero de vezes que sai a face 6 Sucesso=sair a face 6, p = 6 Admitido que os laçametos são idepedetes P ( X = 0 ) = P X = 5 ( ) = 0 P ( X = ) = 0 X ~ Bi 0, 0 P ( X = ) = ,,,, 9 0 Em geral: Se X ~ Bi (, p ) etão ( ;, p ) = Pode mostrar-se que ( ) = P( X = ) E X V X ( ) = P ( X = ) = p p p ( ),,, E ( X ) = p( p ), 7 8

3 Cálculo de probabilidades: pequeo: usar a epressão grade: - programas em computador ou calculadora - tabelas. Em geral o que está tabelado é a fução de distribuição, mas P ( X = k ) = P ( X k ) P ( X k ) = = F X ( k ) F X ( k ) - Também há métodos aproimados (a ver posteriormete) 3.7 A distribuição geométrica Defiição: Cosidere-se uma sucessão de provas de Beroulli idepedetes, com P(sucesso)=p (costate). Seja X - úmero de provas realizadas até à obteção do primeiro sucesso (iclusive) Diz-se que X tem distribuição geométrica de parâmetro p, X ~ Geo ( p ) Valores possíveis de X:,, 3, P ( X = ) = p P ( X = ) = ( p ) p P ( X = 3 ) = ( p ) p... 9 ( ; p ) = ( p ) p, =,, 3, 0 Pode mostrar-se que se X ~ Geo ( p ), etão µ X = E X + = ( ) = ( p ) p = σ X = V ( X ) = p p p 3.8 A distribuição hipergeométrica Eemplo: Caia com 00 peças das quais 0 são defeituosas. São efectuadas 5 etracções ao acaso, sem reposição. Seja X - úmero de peças defeituosas ecotradas Eemplo: Problema das 0 chaves, com reposição. X - º de tetativas ecessárias para ecotrar a chave certa X ~ Geo ( 0. ), porque as tetativas são provas de Beroulli idepedetes e com P(sucesso)=0. (costate). E ( X ) = 0. = 0 e V ( X ) = = 90 (comparar com a situação sem reposição!) (0 def. e 90 ão def.) Valores possíveis: 0,,, 3,, 5 P ( X = 0 ) = P ( X = ) =

4 ,, P ( X = ) = Comparação das probabilidades: Sem reposição: Com reposição: P ( X = 0 ) P ( X = 3 ) = P ( X = ) = P ( X = 5 ) = P ( X = ) = ,,,, 3,, 5 00 Nota: Se as etracções forem efectuadas com reposição (o que em termos práticos é estraho!...) têm-se 5 provas de Beroulli idepedetes com P(sucesso) costate e igual a 0., logo X ~ Bi ( 5, 0. ). 3 P ( X = ) P ( X = ) P ( X = 3 ) P ( X = ) P ( X = 5 ) A situação com reposição, embora irrealista, dá probabilidades próimas das calculadas para o caso sem reposição (mais adiate será idicado em que casos a aproimação é razoável). Defiição: Cosidere-se um cojuto de N objectos em que K são do tipo (ou sucessos) N-K são do tipo (ou isucessos) são realizadas etracções ao acaso e sem reposição (com K N e N ). Seja Valores possíveis: Se K e N K,,,, Se > K e N K,,,, Se K e > N K, Se > K e > N K, K = ( N K ),, = ( N K ),, K X - úmero de objectos do tipo ecotrados Etão X tem distribuição hipergeométrica ou, eglobado todos os casos, = ma ( 0, ( N K )),, mi ( K, ) X ~ Hip ( N, K, ) ( ; N, K, ) = K N K N Pode mostrar-se que se X ~ Hip ( N, K, ), etão E ( X ) = p e V ( X ) = p( p ) N N ode p = K N 5 6

5 , Se N grade e pequeo em relação a N ( < 0. N ), pode usar-se a distribuição biomial para calcular valores aproimados das probabilidades: P ( X = ) com p = K N. p p ( ),,, a Pode represetar-se por X ~ Bi (, p ) A distribuição de Poisso A distribuição de Poisso pode ser vista como um limite "especial" da distribuição biomial: Supoha-se que aumeta e que p dimiui de tal forma que E ( X ) = p se matém costate, seja λ essa costate, etão tem-se P ( X = ) = = ( ) = ( ) = ( ) = p ( p ) = ( + ) p p p = ( + ) λ λ λ = ( + ) λ λ λ = + λ λ λ e λ 8 logo lim P ( X = ) = e λ λ,,,, λ, p= λ ( > 0 ) Defiição: Dado um itervalo de úmeros reais supoha-se que certas ocorrêcias surgem aleatoriamete ao logo do itervalo. Se o itervalo puder ser subdividido em subitervalos de comprimeto suficietemete pequeo de modo a que se verifique: ) A probabilidade de mais do que uma ocorrêcia um subitervalo é zero. ) A probabilidade duma ocorrêcia um subitervalo é costate e proporcioal ao comprimeto do subitervalo. 3) As ocorrêcias os diversos subitervalos são idepedetes. 9 (A uma "eperiêcia" estas codições chama-se Processo de Poisso) Se o úmero médio de ocorrêcias o itervalo total for λ > 0 e se X - úmero de ocorrêcias o itervalo total etão X tem distribuição de Poisso de parâmetro λ, e X ~ Poisso ( λ ) ( ; λ ) = e λ λ,,,, Verificação: P ( X = ) = e λ λ = e λ e λ = 0

6 Pode mostrar-se que: ( ) = e λ λ E X E X ( ) = e λ λ = λ = λ + λ V ( X ) = E ( X ) E ( X ) = λ Eemplos de situações em que pode ser aplicada a distribuição de Poisso: úmero de acidetes por semaa um determiado cruzameto ou secção de estrada (ão tedo em cota os acidetes em cadeia...) úmero de clietes que chegam a uma loja ou serviço um determiado itervalo de tempo (ão tedo em cota as chegadas em grupo...) úmero de defeitos em peças ou materiais produzidos cotiuamete (tecidos, fios, etc.) Cuidado com as uidades: Eemplo: sabemos (por observação aterior) que o úmero médio de defeitos por m de um certo tipo de tecido é. Se admitirmos que estamos as codições do Processo de Poisso, etão: ( ) ( ) º. de defeitos em 0 m ~ Poisso λ = 0 º. de defeitos em 00 m ~ Poisso λ = 00 etc. Qual a probabilidade de ão haver defeitos uma peça com 5 m? E pelo meos 0 defeitos? X - º. de defeitos em 5 m X ~ Poisso ( 0) P ( X = 0 ) = e 0 0 P ( X 0) = P ( X < 0) = ( complemetar ) = P ( X 9 ) = ( discreta em iteiros ) = F X ( 9 ) = ( defiição de F X ( )) = 0. 5 ( tabelas ) Nota: dado o resultado com que começamos (a distribuição de Poisso como limite da distribuição Biomial) podemos também usar a distribuição de Poisso para calcular probabilidades aproimadas da distribuição biomial quado grade e p pequeo (regra prática: > 0 e p < 0. ). 3

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

λ λ n n Distribuição de Poisson Exemplo. Considere a transmissão de n bits em um canal de comunicação digital. X : número de bits em erro

λ λ n n Distribuição de Poisson Exemplo. Considere a transmissão de n bits em um canal de comunicação digital. X : número de bits em erro Distribuição de Poisso Eemplo. Cosidere a trasmissão de bits em um caal de comuicação digital. X : úmero de bits em erro Probabilidade p de erro costate e trasmissões idepedetes Distribuição biomial λ=p

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 e 16 Itrodução à probabilidade evetos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Probabilidades num jogo aos dados

Probabilidades num jogo aos dados Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo VIII Distribuição Biomial Probabilidades um jogo aos dados Defiição de uma Distribuição Biomial Propriedades da Distribuição

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Métodos de Amostragem

Métodos de Amostragem Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20 Ídice Sucessão de úmeros reais. Represetação gráfica. Sucessões defiidas por recorrêcia Itrodução 8 Teoria. Itrodução ao estudo das sucessões 0 Teoria. Defiição de sucessão de úmeros reais Teoria 3. Defiição

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ao Turma B - C.C.H. de Ciêcias e Tecologias - Teste de Avaliação de Matemática A V1 Duração: 90 mi 09 Março 2010 Prof.: GRUPO I Os cico ites deste grupo são de escolha

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FCULDDE DE CIÊCIS E TECOLOGI Redes de Telecomuicações (6/7) Egª de Sistemas e Iformática Trabalho º4 (ª aula) Título: Modelação de tráfego utilizado o modelo de Poisso Fudametos teóricos (cotiuação) 7.

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Intervalos Estatísticos para uma única Amostra - parte II

Intervalos Estatísticos para uma única Amostra - parte II Itervalos Estatísticos para uma úica Amostra - parte II Itervalo de cofiaça para proporção 2012/02 1 Itrodução 2 3 Objetivos Ao fial deste capítulo você deve ser capaz de: Costruir itervalos de cofiaça

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www. ufrgs.br/~viali/ viali@mat.ufrgs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas Uiversidade Federal Flumiese Istituto de Matemática e Estatística Métodos Estatísticos Aplicados à Ecoomia I (GET00117) Variáveis Aleatórias Discretas Aa Maria Lima de Farias Departameto de Estatística

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy Viziho Próximo ógica Fuzzy Métodos de Classificação dos Objetos Segmetados(IAR) objeto REGRA CASSE Fuzzy Cohecimeto Miima Distâcia Viziho Próximo O método do viziho próximo é baseado o método da míima

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Análise Combinatória (Regras de Contagem) 2 Princípio Fundamental da Multiplicação

Análise Combinatória (Regras de Contagem) 2 Princípio Fundamental da Multiplicação Uiversidade Federal Flumiese INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Egeharia Prof. Mariaa Albi Material de Apoio Assuto: Aálise Combiatória Aálise Combiatória

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Ciêcias Exatas Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 05/06/06 Para a costrução de uma jaela a sala de um teatro, eiste a dúvida se ela deve ter a forma de um retâgulo, de um círculo ou etão da figura formada pela

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual

Leia mais

Matemática Financeira

Matemática Financeira UNIVERSIDADE DE SÃO PAULO Faculdade de Ecoomia, Admiistração e Cotabilidade de Ribeirão Preto - FEA-RP Matemática Fiaceira Profa. Dra.Luciaa C.Siqueira Ambrozii Juros Compostos 1 Juros compostos Cosidera

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais