1ª PROVA ICIN 2º/2010

Tamanho: px
Começar a partir da página:

Download "1ª PROVA ICIN 2º/2010"

Transcrição

1 Dertmento de Engenhr Elétrc Prof. Adolfo Buchsess Fculdde de Tecnolog Lbortóro de Automção e Robótc Unversdde de Brsíl 6848 INTRODUÇÃO AO CONTROLE INTELIGENTE NUMÉRICO - 2 /200 ENE/FT/UnB ª Prov de dezembro de 2008, Nome: Mtrícul: ª PROVA ICIN 2º/200 ª Questão (4,0) O roblem ds oto dms consste em dsor oto dms em um tbulero de xdrez de dmensão 8x8, de form que nenhum dels sej tcd or outr. Pr tnto, é necessáro que dus dms qusquer não estejm num mesm lnh, colun, ou dgonl. Este roblem fo nclmente roosto n revst Schchzetung elo enxdrst Mx Bezzel em 848, e o longo dos nos fo vldo or dversos mtemátcos nclundo Guss e Georg Cntor. A rmer solução fo roost em 850 or Frnz Nuck, que tmbém o generlzou r o Problem ds n dms. Obs: Exstem 92 soluções dstnts e C mners dstnts de dsor 8 dms em um tbulero 8x8. Fonte: htt://t.wked.org/wk/problem_ds_oto_dms 64 b c d e f g h Um ds ossíves soluções ) (,5) Formule um lgortmo genétco (gen, cromossomo, oulção, função de custo, oulção ncl, evolução e crtéro de rd) r encontrr soluções do roblem ds 8 dms. b) (,5) Esboce um lgortmo convenconl (sequênc de ssos lógco-rtmétcos) r encontrr soluções. c) (,0) Qul dos métodos nterores ter menor esforço comutconl? Qul ser ms fácl de rogrmr (menor homem-hor)? Justfque. ) Um solução ossível: Cromossomo um sequênc bnár de 64 bts Gen 0 ou, 0 cs vz, um dm ocu cs Poulção um conjunto de cnddtos solução,. ex. 00 Obs: exstem 2 64 cromossomos váldos, mor sem sentdo r o roblem ds oto dms Função de custo Número de tques que s dms no tbulero sofrem. Um solução mlc função de custo zero. Obs: função de custo será semre r, os um dm tcd tmbém está tcndo dm resectv. Obs2: um cromossomo com ms de oto bts ode ser descrtdo os 8 dms é o máxmo dmssível. Obs: se os cnddtos solução (cromossomos) tverem 8 bts dferentes de zero sortedos letormente então o cruzmento roduzrá ouc dversdde. A tx de mutção deve ser ms lt do que tcmente utlzdo em AG. Poulção ncl um conjunto de cnddtos solução,. ex. 00 ndvduos Evolução: gerção segunte é obtd or cruzmento e mutção dos ndvíduos que resentm s menores funções de custo. O onto onde é feto o cruzmento é escolhdo or sorteo. Pode se utlzr o método d rolet. Os bts que sofrem mutção tmbém são escolhdos or sorteo. Crtéro de rd solução comlet do roblem consste em encontrr s 92 soluções dstnts. Assm o lgortmo deve r deos de encontrr ests 92 soluções. Em cd gerção se houver um ou ms cromossomos com função de custo zero este é rmzendo no vetor de soluções. O lgortmo rossegue buscndo s outrs soluções. Pr evtr um temo de rocessmento robtvo, devdo um lgortmo ouco efcente, é convenente estbelecer um número máxmo de terções.

2 ª Prov - 2 Sem Introdução o Controle Intelgente Numérco ENE/UnB 2/4 b) Um lgortmo convenconl não recs vlr tods s combnções de oto dms sobre o tbulero. Sbe-se tmbém que tods s soluções ossíves tem um únc dm or lnh e um únc dm or colun. Poscone um dm n róxm osção sem tques n colun Poscone um dm n róxm osção sem tques n colun b Poscone um dm n róxm osção sem tques n colun c Poscone um dm n róxm osção sem tques n colun d Poscone um dm n róxm osção sem tques n colun e Poscone um dm n róxm osção sem tques n colun f Poscone um dm n róxm osção sem tques n colun g Em qulquer momento, se não for ossível osconr um dm em um colun, vnce dm d colun nteror. Se sto tmbém não for ossível volte à osção de ded-lock e retorne ms um colun r vnçr dm. Obs: Observe que este lgortmo ode ser escrto de form comct utlzndo lços encdedos e lguns índces. Obs2: Este lgortmo não é do to forç brut os só um equeno conjunto de oções do esço solução é esqusdo. A obtenção de tods s soluções ode ser obtd em um temo rzoável de rocessmento. Obs: O método d forç brut que test cd um ds 2 64 é o ms smles de rogrmr, no entnto consumr 5,85x0 8 nos r ser executdo (ssumndo-se ms r o teste de cd osção) c) É eserdo que o lgortmo genétco obtenh s soluções com o menor esforço comutconl. Como város ssos deendem de números letóros não se ode nem grntr que s soluções sejm encontrds nem que sejm encontrds de form ms rád. O lgortmo convenconl é muto ms smles de rogrmr envolve ens lguns lços. No lgortmo evolução ds oulções e snton dos râmetros do lgortmo genétco costum demndr mut exerênc.

3 ª Prov - 2 Sem Introdução o Controle Intelgente Numérco ENE/UnB /4 2ª Questão (,0) Descrev de form sucnt e comrtv s técncs de trenmento ds seguntes redes neurs: ) ADALINE b) Rede Percetron Multcmds c) RBF d) Hofeld e) LVQ2. f) SOM ) ADALINE - rede dlne é lner e ossu um únc cmd de neurônos. Utlz um frção do sso ótmo (MMQ) r dtr os esos. A regr delt mlc que dtção dos esos é roorconl o erro e o snl de entrd. b) Rede Percetron Multcmds rede consttuíd de elo menos dus cmds, sendo elo menos um consttuíd de neurônos não lneres com função de tvção dferencável. Psso feed-forwrd r clculr o erro e sso bckrogton r dtr os esos segundo o erro dervtvo qudrátco. Possu mínmos locs e o trenmento é muto lento. Solução fortemente deendente ds condções ncs. c) RBF rede de dus cmds. A rmer cmd e consttuíd de neurônos de bse rdl que são crescentdos sucessvmente de form reduzr o máxmo o erro em cd terção. Trenmento muto rádo demnd em gerl ms neurônos que um MLP. d) Hofeld Rede neurl uto-ssoctv. Os esos são clculdos de form grntr estbldde. Função de Lyunov grnte que r qulquer condção ncl rede converge r mínmos locs de energ. Problem: nem semre se rmzenm ens os drões desejdos. Ccdde de rmzenmento lmtd. e) LVQ2.- Lernng Vector Quntzton. Trenmento suervsondo. Vs ssocr vetores de códgo segundo dstrbução e densdde de um conjunto de ddos. Cd ddo de trenmento está ssocdo um clsse. Neurôno vencedor e segundo colocdo são dtdos, desde que estejm dentro de um fx entre estes ontos. Vs, em comrção com s LVQ s nterores, um defnção ms recs d fronter entre s clsses. f) SOM Self Orgnzng M Rede de trenmento não suervsondo que vs ssocr vetores de códgo segundo dstrbução e densdde de um conjunto de ddos. Gerlmente utlzm-se relções de vznhnç hexgons de tl form que o neurôno vencedor e os seus vznhos ms róxmos são dtdos.

4 ª Prov - 2 Sem Introdução o Controle Intelgente Numérco ENE/UnB 4/4 ª Questão (,0) Um memór ssoctv de Hofeld deve rmzenr os drões bnáros P, P2 e P. Cd drão bnáro é ddo or: [ ] ou 0 com, 0 A K, :0, :. Consdere o lmr de dsro dos neurônos L j 0. A equção de trenmento d rede de Hofeld bnár é: m j j w ) )(2 2 ( ) Clcule mtrz de esos corresondente à rede de Hofeld (sem uto-relmentção). b) Consderndo oerção seqüencl d rede de Hofeld, clcule os drões que rede fornece ós su estblzção r os drões de teste Pt e Pt2: W

5 ª Prov - 2 Sem Introdução o Controle Intelgente Numérco ENE/UnB 5/4 Pdrão Incl Pt: EP dsrdo Som do EP Σ Síd do Novo vetor de síd w j. y EP Pdrão Fnl: P Pdrão Incl Pt2: EP dsrdo Som do EP Σ Síd do Novo vetor de síd w j. y EP Pdrão Fnl: P2

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores Exos e árvores Projeto pr exos: restrções geométrcs Aul 4 Elementos de máquns Exos e árvores 1 Exos e árvores Projeto pr exos: restrções geométrcs o Deflexões e nclnções: geometr de um exo corresponde

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a Versão Mtrcl do Splex VI Versão Mtrcl do Splex Introdução onsdere-se o segunte odelo de PL: Mx () 6x + 8x 2 sujeto : 3x + 2x 2 3 5x + x 2 x, x 2 Mtrzes ssocds o odelo: Mtrz Tecnológc 3 5 2 Mtrz-colun ds

Leia mais

Angela Nieckele PUC-Rio DIFUSÃO

Angela Nieckele PUC-Rio DIFUSÃO Angel ecele UC-Ro IFUSÃO Angel ecele UC-Ro q e qw q w e S w d qe W w e E dw de Angel ecele UC-Ro ossíves ers pr vlr o luo erl em egru: erl ms smples possível porém nclnção de d/d ns ces do volume de controle

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

Obtendo uma solução básica factível inicial. Método Simplex duas fases

Obtendo uma solução básica factível inicial. Método Simplex duas fases Obtendo um solução básc fctível ncl Método Smple dus fses Bse ncl FASE I Como determnr um prtção básc fctível ncl (A(B, N)). Algums clsses de problems de otmzção lner oferecem nturlmente solução básc fctível

Leia mais

1ª PROVA ICIN 1º/2015

1ª PROVA ICIN 1º/2015 ENE/FT/UnB Deartamento de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília Prof. Adolfo Bauchsiess Laboratório de Automação e Robótica 63848 INTRODUÇÃO AO CONTROLE INTELIGENTE NUMÉRICO

Leia mais

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B.

Leia mais

Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j

Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j lustermg lusterg Herárquco Aglomertvo Mtrz e roxme: NxN D: me e roxme ou smlre etre os rões e. Atrbur um rão or cluster N clusters. Ecotrr o r e clusters e ms semelhtes mtrz e smlre e utálos um úco cluster.

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores

Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores Busc e etores Prof. Dr. José Augusto Brnusks DFM-FFCP-USP Est ul ntroduz busc e vetores que está entre s trefs s freqüenteente encontrds e progrção de coputdores Serão borddos dos tpos de busc: lner (ou

Leia mais

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex Lst de Eercícos - Otmzção Lner Prof. Mr do Socorro DMAp/IBILCE/UNESP Método Smple Ref.: Bzr, M. e J.J. Jvs - Lner Progrmmng nd Network Flows - John Wley, 77. ) Resolv o problem bo pelo método smple começndo

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR Mecânc Computconl CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problem de derencção numérc prentemente é semelnte o de ntegrção numérc ou sej obtendo-se um polnômo nterpoldor ou outr unção nterpoldor d unção

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Uversdde de São ulo Isttuto de Físc FÍSIC MODERN I U 5 rof. Márc de lmed Rzzutto elletro sl 0 rzzutto@f.us.br o. Semestre de 08 ág do curso: htts:edscls.us.brcoursevew.h?d=695 0008 OERDORES OBSERVÁVEIS

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Dertento de Engenr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Gruo de nálse de Estruturs IST, IST - DECvl Gruo de nálse de Estruturs Foruláro de es Eq. de grnge: w w w q D Equção de

Leia mais

integração são difíceis de serem realizadas. Por exemplo, como calcular

integração são difíceis de serem realizadas. Por exemplo, como calcular 89. INTERPOAÇÃO Objetvo: Ddo um cojuto de + otos G; o lo e um cojuto de uções Ecotrr um ução gg que melhor reresete esse cojuto de ddos de cordo com lgum crtéro. Deção : Sejm os + otos. Dzemos que ução

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x).

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x). Integrção Muts vezes, conhecemos dervd de um função, y f (x) F(x), e queremos encontrr própr função f(x). Por exemplo, se semos que dervd de um função f(x) é função F(x) 2x, qul deve ser, então, função

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos

22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos Razão de crescmento desse temo Imortânca de análse de algortmos Um mesmo roblema ode, em mutos casos, ser resolvdo or város algortmos. Nesse caso, qual algortmo deve ser o escolhdo? Crtéro 1: fácl comreensão,

Leia mais

2 Teoria de membranas elásticas

2 Teoria de membranas elásticas Teor de membrns elástcs teor de membrn pr mters ltmente deformáves dfere d elstcdde clássc, á que s deformções n superfíce méd d membrn deformd são em módulo mores que undde. Dentro dests crcunstâncs utlz-se

Leia mais

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67 SEM004 - Aul Cnemátc e Cnétc de Corpos Rígdos Prof. Dr. Mrcelo Becker SEM - EESC - USP Sumáro d Aul ntrodução Cnemátc de Corpos Rígdos Cnétc de Corpos Rígdos Métodos Newton-Euler Eemplos EESC-USP M. Becker

Leia mais

CAP. VI Integração e diferenciação numéricas. 1. Introdução

CAP. VI Integração e diferenciação numéricas. 1. Introdução CAP. VI Integrção e dferencção numércs. Introdução Se um função f é contínu num ntervlo [ ; ] e é conecd su prmtv F, o ntegrl defndo dquel função entre e pode clculr-se pel fórmul fundmentl do cálculo

Leia mais

Capítulo 5 AJUSTAMENTO DOS VETORES OBSERVADOS. os possíveis vetores de serem formados entre as estações, ou seja,

Capítulo 5 AJUSTAMENTO DOS VETORES OBSERVADOS. os possíveis vetores de serem formados entre as estações, ou seja, 5 Cpítulo 5 JUSMENO DOS EORES OBSERDOS Como resultdo do processmento de fses observds por R, R 3, receptores, em um mesm sessão, obter-se-ão os vlores ds componentes de todos os possíves vetores de serem

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

MATEMÁTICA II - Engenharias/Itatiba MATRIZES

MATEMÁTICA II - Engenharias/Itatiba MATRIZES MTEMÁTI II - Engenhris/Ittib o Semestre de 9 Prof Murício Fbbri -9 Série de Eercícios MTRIZES Um mtriz de dimensões m n é um conjunto ordendo de mn elementos, disostos em um grde retngulr de m linhs e

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS NIESIDADE FEDEAL DA BAHIA DEPATAMENTO DE MATEMÁTICA MATA7 ÁLGEBA LINEA A POFESSOES: Glór Márc Enldo ergst LISTA DE EXECÍCIOS ) Sejm A B e C mtres nversíves de mesm ordem encontre epressão d mtr X nos tens

Leia mais

6º Teste de avaliação versão1. Grupo I

6º Teste de avaliação versão1. Grupo I Escol Secundár com 3º cclo D. Dns 0º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldde Fernndo Noger Dldde Fernndo Noger Dldde 8 6.5 M ( ) ( ) ( ).5.5.5.5.5.5.5.5.5 é m lmtnte speror é m lmtnte speror melhor Pr encontrr o lmtnte speror mltplc-se s restrções por constntes postvs e som-se

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

PARTE I. Figura Adição de dois vetores: C = A + B.

PARTE I. Figura Adição de dois vetores: C = A + B. 1 PRTE I FUNDENTS D ESTÁTIC VETRIL estudo d estátc dos corpos rígdos requer plcção de operções com vetores. Estes entes mtemátcos são defndos pr representr s grndes físcs que se comportm dferentemente

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:

Leia mais

CAP. 5. TÉCNICAS DE ORDENAÇÃO

CAP. 5. TÉCNICAS DE ORDENAÇÃO C.. ÉCC D DÇÃ UU D DD C- rof. aulo ndré Castro auloac@ta.br ala rédo da Comutação www.com.ta.br/~auloac C -.. ntrodução.. étodos smles de ordenação.. método hell-ort.. método Quck-ort. DUÇÃ rdenação é

Leia mais

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A 1 Verfcção Refno dos s I EEIMVR-UFF, Setembro de 11 Prov A 1. Clcule o vlor de γ no ferro, 168 o C, com os ddos fornecdos n prov. Vmos em ul que o S G e o γ estão relcondos trvés de, 5585γ G R ln M Logo,

Leia mais

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma:

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma: O lugr geométrco dos pontos P x, y cu dstânc o ponto Q, é gul y é um: prábol com foco no ponto Q crcunferênc de ro gul N fgur segur, o trângulo ABC é equlátero de ldo 0, crcunferênc mor é tngente os três

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexdde de Algortmos Prof. Dego Buchger dego.uchger@outlook.com dego.uchger@udesc.r Prof. Crsto Dm Vscocellos crsto.vscocellos@udesc.r Aálse de Complexdde de Tempo de Algortmos Recursvos Algortmos Recursvos

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I Escol Secundár com 3º cclo D. Dns 10º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

SOCIEDADE PORTUGUESA DE MATEMÁTICA

SOCIEDADE PORTUGUESA DE MATEMÁTICA SOCIEDADE PORTUGUESA DE MATEMÁTICA Propost de Resolução do Exme de Mtemátc A - º ANO Códgo 65 - Fse - 07 - de junho de 07 Grupo I 5 6 7 8 Versão A B D A B C D C Versão D D B C C A B A Grupo II. 0 5 5 5

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

Árvores Binárias de Busca Balanceadas

Árvores Binárias de Busca Balanceadas Árvores nárs de usc lnceds 8 9 4 12 8 2 6 13 7 1 3 5 7 9 11 14 15 6 O(log(n)) 4 5 O(n) 3 2 1 4/4/218 1 Número mínmo de nós num árvore che de lur h h = h = 2 4 1 2 6 h = 1 2 1 3 5 7 h = 3 8 1 3 4 12 2 6

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações 7//4 Unversdde do Vle do Ro dos Snos UNISINOS Progr de Pós-Grdução e Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e coportento de sstes tércos. Ddos representdos

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Primeira Prova de Mecânica A PME /08/2012

Primeira Prova de Mecânica A PME /08/2012 SL LITÉNI UNIVRSI SÃ UL eprtmento de ngenhr Mecânc rmer rov de Mecânc M 100 8/08/01 Tempo de prov: 110 mnutos (não é permtdo o uso de dspostvos eletrôncos) r r r r r r 1º Questão (3,0 pontos) onsdere o

Leia mais

Solução da Terceira Lista de Exercícios Profa. Carmem Hara

Solução da Terceira Lista de Exercícios Profa. Carmem Hara Exercíco 1: Consdere grmátc G xo: B ǫ ǫ B B Introdução eor d Computção olução d ercer Lst de Exercícos Prof. Crmem Hr. Mostre um dervção ms esquerd d plvr. B B B B B. Quntos pssos de dervção tem o tem

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

Funções de Transferência

Funções de Transferência Funções de Trnsferênc Em teor de controle, funções chmd funções de trnsferênc são comumente usds r crcterzr s relções de entrd-síd de comonentes ou sstems que odem ser descrtos or equções dferencs. FUNÇÃO

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

MATRIZES. pela matriz N = :

MATRIZES. pela matriz N = : MATQUEST MATRIZES PROF.: JOSÉ LUÍS MATRIZES - (CEFET-SP) Se A, B e C são mtres do tpo, e, respectvmente, então o produto A. B. C: ) é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; não é defndo.

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Materiais. Corrosão e Protecção de Materiais

Materiais. Corrosão e Protecção de Materiais Mters Corrosão e Proteção de Mters Doente: João Slvdor Fernndes Lb. de Tenolog Eletroquím Pvlhão de Mns, Pso 4 joo.slvdor@teno.ulsbo.pt Ext. 1964 Dgrms de Equlíbro E-pH (Pourbx) Comportmento de um metl

Leia mais

RESOLUÇÃO - 1ª PROVA ICIN 2º/2012

RESOLUÇÃO - 1ª PROVA ICIN 2º/2012 Deartamento de Engenharia Elétrica Prof. Adolfo Bauchsiess Faculdade de Tecnologia Laboratório de Automação e Robótica Universidade de Brasília 63848 INTRODUÇÃO AO CONTROLE INTELIGENTE NUMÉRICO - 2 /22

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Fusão (Intercalação) Exemplo. Exemplo. Exemplo. Exemplo. Ordenação por Fusão

Fusão (Intercalação) Exemplo. Exemplo. Exemplo. Exemplo. Ordenação por Fusão Ordenção por Fusão Fusão (Interlção) Prof. Dr. José Augusto Brnuss DFM-FFCRP-USP Est ul ntroduz métodos de ordenção por A é utlzd qundo dus ou ms seqüêns enontrm-se ordends O oetvo é nterlr s seqüêns ordends

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Integração Numérica Regras de Newton-Cotes

Integração Numérica Regras de Newton-Cotes Integrção Numérc Regrs de Newton-Cotes Aproxmr função ntegrnd por um polnómo nterpoldor, utlzndo pr nós de nterpolção os extremos do ntervlo e nós gulmente espçdos no nteror do ntervlo If ( ) fxdx ( )

Leia mais

6/22/2015. Física Geral III

6/22/2015. Física Geral III Físc Gerl III Aul Teórc 0 (Cp. 33 prte 1/): 1) evsão sore ndução ) Indutânc 3) Indutânc de um solenóde 4) Indutânc de um toróde 5) Auto-ndução 6) Indutores 7) Crcutos Prof. Mrco. oos evsão sore ndução

Leia mais

Calibração de Modelo Hidráulico de Rede de Distribuição de Água

Calibração de Modelo Hidráulico de Rede de Distribuição de Água RBR - Revst Brsler de Recursos ídrcos Volume n. Jul/Set, - Clbrção de Modelo dráulco de Rede de Dstrbução de Águ Antono Mrozz Rghetto LARISA - Depto. Eng. Cvl - Centro de Tecnolog UFRN - Centro Unverstáro

Leia mais

8/5/2015. Física Geral III

8/5/2015. Física Geral III Físc Gerl III Aul Teórc 0 (Cp. 33 prte 1/): 1) evsão sore ndução ) Indutânc 3) Indutânc de um solenóde 4) Indutânc de um toróde 5) Auto-ndução 6) Indutores 7) Crcutos Prof. Mrco. oos evsão sore ndução

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escol Secundári com º ciclo D. Dinis 11º no de Mtemátic Tem II Introdução o álculo Diferencil I Funções Rcionis e com Rdicis Tx de Vrição e Derivd Tref nº 0 1. Estude função f(x) = x, evidencindo s seguintes

Leia mais

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada.

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada. MTEMÁTI II - Engenhris/Itti o Semestre de Prof. Murício Fri - Série de Eercícios DETERMINNTES. Determinnte de ordem onsidere o sistem liner. s incógnits são e. Multilicndo rimeir eução r s or s, segund

Leia mais

Integração Numérica Regras de Newton-Cotes

Integração Numérica Regras de Newton-Cotes Integrção Numérc Regrs de Newton-Cotes Aproxmr função ntegrnd por um polnómo nterpoldor, utlzndo pr nós de nterpolção os extremos do ntervlo e nós gulmente espçdos no nteror do ntervlo If ( ) fxdx ( )

Leia mais

5945851-1 Psicologia Conexionista Antonio Roque Aula 6. A Adaline

5945851-1 Psicologia Conexionista Antonio Roque Aula 6. A Adaline 594585- Pscologa Conexonsta Antono Roque Aula 6 A Adalne Poucos meses aós a ublcação do teorema da convergênca do Percetron or Rosenblatt, os engenheros da Unversdade de Stanford Bernard Wdrow (99 ) e

Leia mais

FORMAÇÃO DE CLASSES DE PERFIS DE GERAÇÃO E DE CARGA EM SISTEMAS ELÉTRICOS USANDO UMA REDE NEURAL ART NEBULOSA

FORMAÇÃO DE CLASSES DE PERFIS DE GERAÇÃO E DE CARGA EM SISTEMAS ELÉTRICOS USANDO UMA REDE NEURAL ART NEBULOSA FORMAÇÃO DE CLASSES DE PERFIS DE GERAÇÃO E DE CARGA EM SISTEMAS ELÉTRICOS USANDO UMA REDE NEURAL ART NEBULOSA FERNANDA C. L. TRINDADE, CARLOS R. MINUSSI Deprtmento de Engenhr Elétrc, Unversdde Estdul Pulst,

Leia mais

Escalonamento de processos num sistema computacional multi-processo e uni-processador

Escalonamento de processos num sistema computacional multi-processo e uni-processador Sstems de empo el no ectvo / lgums Nots Muto áscs Sobre o º rblho Prátco Esclonmento de processos num sstem computconl mult-processo e un-processdor. Obectvo Notção escrção Máxmo tempo de computção de

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES NOTAS DE AULA DA DISCIPLINA CE76 3 DISTRIBUIÇÃO NORMAL MULTIVARIADA 3 DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES A densdade normal multvarada é uma generalação da densdade normal unvarada ara dmensões

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS O método das apromações sucessvas é um método teratvo que se basea na aplcação de uma fórmula de recorrênca que, sendo satsfetas determnadas condções de convergênca,

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

O MÉTODO LIVRE DE ELEMENTOS DE GALERKIN NA ANÁLISE NÃO-LINEAR DE ESTRUTURAS ANISOTRÓPICAS

O MÉTODO LIVRE DE ELEMENTOS DE GALERKIN NA ANÁLISE NÃO-LINEAR DE ESTRUTURAS ANISOTRÓPICAS Revst d Assocção Portugues de Análse Exermentl de ensões SSN 646-7078 O MÉODO LVRE DE ELEMENOS DE GALERKN NA ANÁLSE NÃO-LNEAR DE ESRUURAS ANSORÓPCAS Jorge Belnh, Lúc M.J.S. Dns nvestgdor no DMEC, nsttuto

Leia mais

Alocação de recursos e seqüenciamento de atividades no planejamento e controle de projetos

Alocação de recursos e seqüenciamento de atividades no planejamento e controle de projetos XXVI ENEGEP - Fortlez, CE, Brsl, 9 11 de Outubro de 006 Alocção de recursos e seqüencmento de tvddes no plnemento e controle de proetos Clrsse d Slv Ver (UFMG) cosver@terr.com.br Crlos Roberto Venânco

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 8º CONGREO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 25 de Outubro de 2007 PREDIÇÕE EM CURVA DE CALIBRAÇÃO UTILIZANDO COMBINAÇÕE DE REDE NEURAI ARTIFICIA DO TIPO MLP DE DUA CAMADA E POLINÔMIO Brbos,

Leia mais

SIMETRIA MOLECULAR E TEORIA DE GRUPOS

SIMETRIA MOLECULAR E TEORIA DE GRUPOS SIMETIA MOLECULA E TEOIA DE GUPOS Prof. rle P. Mrtns Flho Operções de smetr e elementos de smetr Operção de smetr : operção que dex um corpo em confgurção espcl equvlente à orgnl Elemento de smetr: ponto,

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais