22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos

Tamanho: px
Começar a partir da página:

Download "22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos"

Transcrição

1 Razão de crescmento desse temo Imortânca de análse de algortmos Um mesmo roblema ode, em mutos casos, ser resolvdo or város algortmos. Nesse caso, qual algortmo deve ser o escolhdo? Crtéro 1: fácl comreensão, codfcação e correção Geralmente, são algortmos nefcentes Este crtéro sera adequado se o algortmo fosse executado oucas vezes: Custo de rogramação (C) > Custo de execução (Ce) Crtéro 2: efcênca no uso dos recursos comutaconas e radez na execução Geralmente, são algortmos mas comlcados Crtéro mas adequado ara o caso de algortmos muto utlzados ( C < Ce ) Exemlo: Regra de Cramer ara a solução de sstemas de equações lneares Medção de efcênca: uso de memóra e temo de execução Nesta dsclna, a ênfase é dada ara algortmos efcentes no temo de execução. Há mutos casos em que algortmos smles não são executados em temo vável Consderando n = 20, quantos determnantes seram calculados? 20 ara os numeradores e 1 ara o denomnador Cálculo do número m de multlcações: multlcações 21 det 20 = 21 ( 20m + 20 det 19 ) = 21 ( 20m + 20 ( 19m + 19 det 18 )) = 21 ( 20m + 20 ( 19m + 19 ( 18m + 18 det 17 ))) = 21 ( 20m + 20 ( 19m + 19 ( 18m + 18 ( 17m + 17 (... ( 3m + 3 ( 2m )...))))) Lembrando do cálculo recursvo de determnante: 1

2 = 21 ( 20m + 20 ( 19m + 19 ( 18m + 18 ( 17m + 17 (... ( 3m + 3 ( 2m )...))))) = m ( 2 x 3 x 4 x 5 x... x 20 x x 4 x 5 x... x 20 x x 5 x... x 20 x x... x 20 x 21 + : : + 19 x 20 x x 21 ) Utlzando um suercomutador atual: multlcações or segundo Temo gasto: 8,778 x 10 8 s = 27,8 anos! Um algortmo mas efcente é o Método da Elmnação de Gauss 209 dvsões multlcações Razão de crescmento desse temo AVALIAÇÃO DO TEMPO DE EXECUÇÃO Ex: método de ordenação Bubble-Sort aux = A[]; A[] = A[+1]; A[+1] = aux; trocou = TRUE; = 1; Ex: método de ordenação Bubble-Sort aux = A[]; A[] = A[+1]; A[+1] = aux; trocou = TRUE; = 1; Oeração Temo(ns) Oeração Temo(ns) Oeração Temo(ns) Atrb nt < <== nt < <== float 15 Atrb float 2 && 1,5 [ ] 8 * nt 5 * float 20 / nt 8 / float 30 aux = A[]; A[] = A[+1]; A[+1] = aux; trocou = TRUE; = 1; 3 Obs: suomos que vetor A contém números do to float 4 Mas quantas vezes cada trecho será executado? 2

3 Análse do or caso Ocorrerá quando o teste do f for semre verdadero O que sso sgnfca sso? aux = A[]; A[] = A[+1]; A[+1] = aux; trocou = TRUE; = 1; Vetor em ordem decrescente executado 1 vez executado n vezes executado +1 vezes a cada teração do whle externo 79 ns executado vezes a cada teração do whle externo Análse do or caso Ocorrerá quando o teste do f for semre verdadero O que sso sgnfca sso? aux = A[]; A[] = A[+1]; A[+1] = aux; trocou = TRUE; 79 ns Total = (n-1) = 1; Vetor em ordem decrescente executado 1 vez executado n vezes Total = n + (n-1) T(n) = 4 + 3,5n + 2(n-1) + 2 (n + (n-1) ) + 79 ((n-1) + (n-2) ) + 3(n-1) aux = A[]; A[] = A[+1]; A[+1] = aux; trocou = TRUE; 79 ns Total = (n-1) = 1; executado 1 vez executado n vezes Total = n + (n-1) Por caso do Bubble-Sort: T(n) = 4 + 3,5n + 2(n-1) + 2 (n + (n-1) ) + 79 ((n-1) + (n-2) ) + 3(n-1) T(n) = 40,5n 2-30n - 3 Quando n aumenta ndefndamente, o termo com n 2 redomna sobre os demas T(n) é roorconal a n 2 Também há casos melhores: nem todos os testes do comando f são semre verdaderos Casos mas estudados: Por caso Caso médo Razões ara estudar o or caso: O temo de execução do or caso de um algortmo é o lmte sueror do temo de execução ara uma entrada qualquer. Para alguns algortmos, o or caso ocorre com bastante frequênca. Geralmente, o caso médo não é fácl de ser calculado. Váras vezes, ele é quase tão rum quanto o or caso. Razão de crescmento desse temo 3

4 Ex1: Sejam A1 e A2 dos algortmos que resolvem o mesmo roblema, e com os resectvos temos de execução: T 1 ( n ) = 100n 2 T 2 ( n ) = 5n 3 Qual desses algortmos é o melhor? Deenderá do valor de n Emate: 100n 2 = 5n 3 => n = 20 Para n < 20, A2 é melhor Para n > 20, A1 é melhor A1 é consderado o melhor Ex2: Consdere 4 algortmos que resolvem o mesmo roblema de tamanho n. Abaxo, seus resectvos temos de execução: T 1 ( n ) = 100n T 2 ( n ) = 5n 2 T 3 ( n ) = n 3 /2 T 4 ( n ) = 2 n Suonha que esse roblema recse ser resolvdo em no máxmo segundos. T(n) n ara 10 3 seg 100n 10 5n 2 14,14 n 3 /2 12,60 2 n 9,97 Os roblemas soluconáves elos 4 algortmos têm tamanho da mesma ordem de magntude (em torno de 10). Consderando uma máquna mas ráda, elevemos esse temo ara segundos. T(n) n ara 10 3 seg n ara 10 4 seg Ganho 100n n 2 14,14 44,72 3,16 n 3 /2 12,60 27,14 2,15 2 n 9,97 13,28 1,33 Reare que o algortmo 4 só oderá resolver um roblema 1,33 vezes maor... Razão de crescmento desse temo Seja o temo de execução de um algortmo gual a uma somatóra de termos (funções do tamanho da entrada): T 1 (n) = O(n 3 ) T 1 (n) = c 1.n 3 + c 2.n 2 + c 3.n + c 4 T 2 (n) = 2 n + n 3 /2 + 5n n T 2 (n) = O(2 n ) À medda que n aumenta ndefndamente, um dos termos assa a ter domíno sobre os demas: T 1 (n) é roorconal a n 3 : é da ordem de n 3 T 2 (n) é roorconal a 2 n : é da ordem de 2 n 4

5 Defnção: T(n) = O (f(n)), ou seja, T(n) é da ordem de f(n) se e somente se exstrem constantes ostvas c e n 0 tas que, ara qualquer n n 0, T(n) c.f(n) Ex1: T(n) = (n+1) 2 = O(n 2 ) (n+1) 2 4n 2, n 1 (basta escolher n o = 1 e c = 4) Podera ser c = 2? Sm, mas n 0 = 3 n (n+1) n n Ex2: Por caso do Bublle Sort T(n) = 40,5n 2 30n 3 = O(n 2 ) T(n) 40,5n 2 (sendo n o = 1 e c = 40,5) Ex3: Seja T(n) o olnômo de grau N +, onde a 0 0: T(n) = a 0.n + a 1.n a -1.n + a a 0.n + a 1.n a -1.n + a a 0.n + a 1.n a -1.n + a.n (a 0 + a a -1 + a ).n c.n, ara n 1 T(n) = O(n ) T(n) = O(f(n)) f(n) é um lmte sueror ara a taxa de crescmento de T(n) Dado T(n), temos uma únca f(n)? Não, os váras funções odem satsfazer a defnção. Exemlo: T(n) = 4n 2 + 3n + 1 T(n) é O(n 2 ), O(n 3 ), O(n 10 ) No entanto, T(n) não é O(n) Na análse de algortmos, as taxas mas usadas são n 2, n 3, n, log n, n.log n, 2 n, 3 n, etc. Dentre todas as ossíves funções f(n), o objetvo é encontrar a que tenha o menor crescmento ossível Notações smlares: Bg-Omega T(n) = O(f(n)) T(n) c.f(n) ara n n 0 Bg-Teta f(n) é um lmte sueror ara T(n) T(n) = Ω(f(n)) T(n) c.f(n) ara n n 0 f(n) é um lmte nferor ara T(n) T(n) = Θ(f(n)) T(n) c 1.f(n) ara n n 0 T(n) c 2.f(n) ara n n 0 f(n) é um lmte nferor e sueror de T(n) Razão de crescmento desse temo 1. Provar que n 3 O(n 2 ) Por absurdo, suonhamos que n 3 = O(n 2 ) Pela defnção, exstem constantes ostvas c e n 0 tas que, ara n n o, n 3 c.n 2 Logo, c n. Portanto, à medda que n cresce ndefndamente, c também crescerá Isso contrara a defnção de c ser constante 5

6 2. Provar que 3 n O(2 n ) Por absurdo, suonhamos que 3 n = O(2 n ) Pela defnção, exstem constantes ostvas c e n 0 tas que, ara n n o, 3 n c.2 n Logo, c (3/2) n. Portanto, à medda que n cresce ndefndamente, (3/2) n também crescerá Assm, ara qualquer valor de n, não exste uma constante que exceda (3/2) n 3. Analsar o or caso de algortmo ao lado, que calcula o valor de n n nt func(nt n) { nt, r; r = 1; t 1 1 vez = 1; whle ( <= n) { r = r*n; ++; t 2 t 3 n+1 vezes n vezes nt func(nt n) { nt, r; r = 1; for (=1; <=n; ++) r = r*n; T(n) = t 1 + t 2.(n+1) + t 3.n = t 1 + t 2 + t 2.n + t 3.n = c 1 + c 2.n T(n) = O(n) 4. Analsar o or caso do algortmo abaxo: nt func (nt n) { nt a, b, c, r; b = n; c = n; r = 1; whle (b >= 1) { a = b % 2; f (a == 1) r = r * c; c = c * c * c; b = b / 2; t 3 x =? x vezes x = log 2 n + 1 t 1 t 2 1 vez x + 1 vezes n b terações 2 2,1, ,1, ,2,1, ,8,4,2,1, ,8,4,2,1, ,15,7,3,1,0 5 2 x-1 n < 2 x... x 4. Analsar o or caso do algortmo abaxo: nt func (nt n) { nt a, b, c, r; b = n; c = n; r = 1; whle (b >= 1) { a = b%2; f (a == 1) r = r*c; c = c*c*c; b = b/2; t 3 x vezes x = log 2 n + 1 t 1 t 2 1 vez x + 1 vezes T(n) = t 1 + t 2.(x+1) + t 3.x = t 1 + t 2 + (t 2 + t 3 ).x = c 1 + c 2.x = c 1 + c 2.( log 2 n + 1) = c 1 + c 2 + c 2 log 2 n = c 3 + c 2 log 2 n c 3 + c 2.log 2 n T(n) = O(log n) 5. Analsar o or caso do cálculo recursvo de fatoras nt fat(nt n) { d f (n <= 1) fat = 1; else fat = fat(n-1) * n; c T(n) = d, se n 1 T(n) = c + T(n-1), se n > 1 Para n > 1: T(n) = c + T(n-1) = c + c + T(n-2) = 2c + T(n-2) = 3c + T(n-3)... = (n-1)c + T(1) = (n-1)c + d T(n) = O(n) 6

CES-11. Noções de complexidade de algoritmos. Complexidade de algoritmos. Avaliação do tempo de execução. Razão de crescimento desse tempo.

CES-11. Noções de complexidade de algoritmos. Complexidade de algoritmos. Avaliação do tempo de execução. Razão de crescimento desse tempo. CES-11 Noções de complexidade de algoritmos Complexidade de algoritmos Avaliação do tempo de execução Razão de crescimento desse tempo Notação O Exercícios COMPLEXIDADE DE ALGORITMOS Importância de análise

Leia mais

CAP. 5. TÉCNICAS DE ORDENAÇÃO

CAP. 5. TÉCNICAS DE ORDENAÇÃO C.. ÉCC D DÇÃ UU D DD C- rof. aulo ndré Castro auloac@ta.br ala rédo da Comutação www.com.ta.br/~auloac C -.. ntrodução.. étodos smles de ordenação.. método hell-ort.. método Quck-ort. DUÇÃ rdenação é

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

Aula 1. Teoria da Computação III

Aula 1. Teoria da Computação III Aula 1 Teoria da Computação III Complexidade de Algoritmos Um problema pode ser resolvido através de diversos algoritmos; O fato de um algoritmo resolver um dado problema não significa que seja aceitável

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Agenda Análse e Técncas de Algortmos Jorge Fgueredo Ordenação baseada em comparação Inserton Sort Mergesort Qucksort Ordenação em tempo lnear Análse de de Algortmos de de Ordenação Problema da Ordenação

Leia mais

Métodos de Ordenação Parte 1

Métodos de Ordenação Parte 1 Métodos de Ordenação Parte 1 Introdução à Cênca da Computação II Prof. Dego Raphael Amanco Baseado no materal dos Profs. Rudne Goularte e Thago A. S. Pardo O Problema da Ordenação Ordenação (ou classfcação)

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

Métodos de Ordenação Parte 1

Métodos de Ordenação Parte 1 Métodos de Ordenação Parte 1 SCC-214 Proeto de Algortmos Prof. Thago A. S. Pardo Baseado no materal do Prof. Rudne Goularte O Problema da Ordenação Ordenação (ou classfcação) é largamente utlzada Lstas

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Classificação e Pesquisa de Dados

Classificação e Pesquisa de Dados Classcação por Trocas Classcação e Pesqusa de Dados Aula 05 Classcação de dados por Troca:, ntrodução ao Qucksort UFRGS INF01124 Classcação por comparação entre pares de chaves, trocando-as de posção caso

Leia mais

4 Autovetores e autovalores de um operador hermiteano

4 Autovetores e autovalores de um operador hermiteano T (ψ) j = ψ j ˆT ψ = k ψ j ˆT φ k S k = k,l ψ j φ l T (φ) S k = k,l φ l ψ j T (φ) S k = k,l SljT (φ) S k. Após todos esses passos vemos que T (ψ) j = k,l S jl T (φ) S k ou, em termos matrcas T (ψ) = S

Leia mais

Capítulo 2 Método de Cross

Capítulo 2 Método de Cross UNIERSIDDE NDRNTE DE SÃO PUO - Escola de Engenhara vl Notas de aula do curso Teora das Estruturas Prof. Dr. Rcardo de. lvm.. Introdução aítulo étodo de ross O étodo de ross é um método que ermte calcular

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

3 Método Numérico. 3.1 Discretização da Equação Diferencial

3 Método Numérico. 3.1 Discretização da Equação Diferencial 3 Método Numérco O presente capítulo apresenta a dscretação da equação dferencal para o campo de pressão e a ntegração numérca da expressão obtda anterormente para a Vscosdade Newtonana Equvalente possbltando

Leia mais

GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu.

GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu. GABARITO ERP9 Questão mpedânca total em pu. mpedânca lnha em pu; mpedânca carga em pu; tensão no gerador em pu. Assm, tem-se que: ( ). Mas, ou seja: : ( ).. Logo: pu. () A mpedânca da carga em pu,, tem

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Medida do Tempo de Execução de um Programa

Medida do Tempo de Execução de um Programa Medida do Tempo de Execução de um Programa Livro Projeto de Algoritmos Nívio Ziviani Capítulo 1 Seção 1.3.1 http://www2.dcc.ufmg.br/livros/algoritmos/ Comportamento Assintótico de Funções O parâmetro n

Leia mais

Complexidade de algoritmos Notação Big-O

Complexidade de algoritmos Notação Big-O Complexidade de algoritmos Notação Big-O Prof. Byron Leite Prof. Tiago Massoni Engenharia da Computação Poli - UPE Motivação O projeto de algoritmos é influenciado pelo estudo de seus comportamentos Problema

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérco SME0300 ICMC-USP Lsta 2: Sstemas Lneares Métodos Dretos Professora: Cyntha de O. Lage Ferrera Parte 1: Exercícos Teórcos 1. Consdere o sstema Ax = b, onde 1 α 3 α 1 4 ; x = 5 2 1 Para que

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

REGRESSÃO NÃO LINEAR 27/06/2017

REGRESSÃO NÃO LINEAR 27/06/2017 7/06/07 REGRESSÃO NÃO LINEAR CUIABÁ, MT 07/ Os modelos de regressão não lnear dferencam-se dos modelos lneares, tanto smples como múltplos, pelo fato de suas varáves ndependentes não estarem separados

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

Projeto e Análise. Aula 1: Algoritmos de Ordenação Prof. Carlos

Projeto e Análise. Aula 1: Algoritmos de Ordenação Prof. Carlos Proeto e Análse de Algortmos Aula 1: Algortmos de Ordenação Prof. Carlos de Salles Terças-feras, 8h20 às 11h10 Algortmos de Ordenação Insertsort Mergesort Heapsort Qucksort Algortmos de Ordenação Dado

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Parte 3 Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aula 06 Algoritmos e Estruturas de Dados I Como escolher o algoritmo mais adequado para uma situação? (continuação) Exercício

Leia mais

Cálculo Numérico BCC760 Interpolação Polinomial

Cálculo Numérico BCC760 Interpolação Polinomial Cálculo Numérco BCC76 Interpolação Polnomal Departamento de Computação Págna da dscplna http://www.decom.ufop.br/bcc76/ 1 Interpolação Polnomal Conteúdo 1. Introdução 2. Objetvo 3. Estênca e uncdade 4.

Leia mais

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) UNDADE V DELNEAMENTO NTERAMENTE CASUALZADO (DC) CUABÁ, MT 015/ PROF.: RÔMULO MÔRA romulomora.webnode.com 1. NTRODUÇÃO Este delneamento apresenta como característca prncpal a necessdade de homogenedade

Leia mais

Sumário, aula 6. Curva da procura. Curva da procura. Curva da procura. Curva da procura

Sumário, aula 6. Curva da procura. Curva da procura. Curva da procura. Curva da procura Sumáro, aula 6 ) Mercado Curva da Procura Agregação das curvas ndvduas Equlíbro de mercado (concorrênca erfeta) Já sabemos que os agentes económcos são esecalzados Produzem muta quantdade de oucos BS Consomem

Leia mais

Responda às questões utilizando técnicas adequadas à solução de problemas de grande dimensão.

Responda às questões utilizando técnicas adequadas à solução de problemas de grande dimensão. Departamento de Produção e Sstemas Complementos de Investgação Operaconal Exame Época Normal, 1ª Chamada 11 de Janero de 2006 Responda às questões utlzando técncas adequadas à solução de problemas de grande

Leia mais

Cap. IV Análise estatística de incertezas aleatórias

Cap. IV Análise estatística de incertezas aleatórias TLF 010/11 Cap. IV Análse estatístca de ncertezas aleatóras Capítulo IV Análse estatístca de ncertezas aleatóras 4.1. Méda 43 4.. Desvo padrão 44 4.3. Sgnfcado do desvo padrão 46 4.4. Desvo padrão da méda

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches Bibliografia T.H. Cormen, C.E. Leiserson and R.L. Rivest Introduction to algorithms R. Sedgewick

Leia mais

Problemas de engenharia

Problemas de engenharia Análse de Sstemas de otênca Análse de Sstemas de otênca ( AS ) Aula 3 Operação Econômca de Sstemas de otênca 03//008 roblemas de engenhara Análse de Sstemas de otênca ( AS ) ANÁLISE Defndo o sstema, determnar

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Método BubbleSort. Estrutura de Dados II Prof Jairo Francisco de Souza

Método BubbleSort. Estrutura de Dados II Prof Jairo Francisco de Souza Método BubbleSort Estrutura de Dados II Prof Jairo Francisco de Souza Introdução Ordenar corresponde ao processo de reorganizar um conjunto de objetos em uma ordem ascendente ou descendente Consiste em

Leia mais

Compacidade em espaços métricos

Compacidade em espaços métricos Comacdade em esaços métrcos Gselle Moraes Resende Perera, Lucana Yoshe Tsuchya e Geraldo Márco de Azevedo Botelho 3 de abrl de 2009 1 Introdução Comacdade é um dos concetos centras da toologa Na reta,

Leia mais

6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA)

6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA) ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA 7 6 ALOCAÇÃO POR ÚLTIMA ADIÇÃO (UA As desvantagens do método BM apresentadas no capítulo 5 sugerem que a alocação dos benefícos seja feta proporconalmente ao prejuízo causado

Leia mais

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos. Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS UIVERIDADE FEDERAL DO RIO GRADE DO ORE CERO DE CIÊCIA EXAA E DA ERRA DEARAEO DE EAÍICA DICILIA: E ROCEO EOCÁICO ROCEO EOCÁICO ª EAA ROFEOR: FERADO CÉAR DE IRADA AAL/R EADO ABORVEE Defção. Um estado de

Leia mais

3.3 Ordenação por Heap (Heapsort)

3.3 Ordenação por Heap (Heapsort) 3.3 Ordenação por Heap (Heapsort) Heap descendente (max heap ou arvore descendente parcalmente ordenada) de tamanho n é um array que pode ser vsto como uma arvore bnára quase completa de n nós tal que

Leia mais

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então

Leia mais

Comportamento Assintótico. Algoritmos e Estruturas de Dados Flavio Figueiredo (http://flaviovdf.github.io)

Comportamento Assintótico. Algoritmos e Estruturas de Dados Flavio Figueiredo (http://flaviovdf.github.io) Comportamento Assintótico Algoritmos e Estruturas de Dados 2 2017-1 Flavio Figueiredo (http://flaviovdf.github.io) 1 Até Agora Falamos de complexidade de algoritmos com base no número de passos Vamos generalizar

Leia mais

Jogos. Jogos. Jogo. Jogo. Óptimo alvo investigação

Jogos. Jogos. Jogo. Jogo. Óptimo alvo investigação Jogos Óptmo alvo nvestgação O seu estado é fácl de representar; As acções são bem defndas e o seu número lmtado; A presença de oponentes ntroduz ncerteza tornando o problema de decsão mas complcado. Estamos

Leia mais

Distribuição de uma proporção amostral

Distribuição de uma proporção amostral Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Teoria da Computação. Aula 3 Comportamento Assintótico 5COP096. Aula 3 Prof. Dr. Sylvio Barbon Junior. Sylvio Barbon Jr

Teoria da Computação. Aula 3 Comportamento Assintótico 5COP096. Aula 3 Prof. Dr. Sylvio Barbon Junior. Sylvio Barbon Jr 5COP096 Teoria da Computação Aula 3 Prof. Dr. Sylvio Barbon Junior 1 Sumário 1) Exercícios Medida de Tempo de Execução. 2) Comportamento Assintótico de Funções. 3) Exercícios sobre Comportamento Assintótico

Leia mais

4.1 Modelagem dos Resultados Considerando Sazonalização

4.1 Modelagem dos Resultados Considerando Sazonalização 30 4 METODOLOGIA 4.1 Modelagem dos Resultados Consderando Sazonalzação A sazonalzação da quantdade de energa assegurada versus a quantdade contratada unforme, em contratos de fornecmento de energa elétrca,

Leia mais

OPF básico - Exemplo de aplicação dos conceitos de optimização não linear Notas para a disciplina de DOSE (LEEC-FEUP)

OPF básico - Exemplo de aplicação dos conceitos de optimização não linear Notas para a disciplina de DOSE (LEEC-FEUP) OF básco - Exemlo de alcação dos concetos de otmzação não lnear Notas ara a dsclna de DOSE (EE-FEU Manuel Matos FEU, 4. Introdução A nclusão das equações do trânsto de otêncas no roblema do desacho económco

Leia mais

DETERMINAÇÃO DOS PARÂMETROS E SEQÜÊNCIA DE CORTE PARA A MÁXIMA PRODUÇÃO EM TORNOS CNC. Palavras-chave: Máxima produção, Seqüência de corte, Torno CNC.

DETERMINAÇÃO DOS PARÂMETROS E SEQÜÊNCIA DE CORTE PARA A MÁXIMA PRODUÇÃO EM TORNOS CNC. Palavras-chave: Máxima produção, Seqüência de corte, Torno CNC. DETERMINAÇÃO DOS PARÂMETROS E SEQÜÊNCIA DE CORTE PARA A MÁXIMA PRODUÇÃO EM TORNOS CNC. Patrck Lelou Noema Gomes de Mattos de Mesquta Hugo Marcelo Bezerra de Carvalho Sérgo Murlo Veríssmo de Andrade Unversdade

Leia mais

Análise de complexidade

Análise de complexidade Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

Programação Paralela e Distribuída 2010/11. Métricas de Desempenho. Ricardo Rocha DCC-FCUP

Programação Paralela e Distribuída 2010/11. Métricas de Desempenho. Ricardo Rocha DCC-FCUP Métricas de Desemenho Programação Paralela e Distribuída Métricas de Desemenho Métricas de Desemenho Desemenho! Dois dos rinciais objectivos do desenho de alicações aralelas são:! Desemenho: a caacidade

Leia mais

LENTES ESFÉRICAS I) TIPOS DE LENTES III) COMPORTAMENTO ÓPTICO. Lentes de bordos delgados: Lentes de bordos espessos:

LENTES ESFÉRICAS I) TIPOS DE LENTES III) COMPORTAMENTO ÓPTICO. Lentes de bordos delgados: Lentes de bordos espessos: LENTES ESFÉRICAS I) TIPOS DE LENTES III) COMPORTAMENTO ÓPTICO Lentes de bordos delgados: Lentes de bordos esessos: Sendo n = índce de reração do meo e n = índce de reração da lente Lentes Convergentes:

Leia mais

Modelo de Alocação de Vagas Docentes

Modelo de Alocação de Vagas Docentes Reunão Comssão de Estudos de Alocação de Vagas Docentes da UFV Portara 0400/2016 de 04/05/2016 20 de mao de 2016 Comssão de Estudos das Planlhas de Alocação de Vagas e Recursos Ato nº 009/2006/PPO 19/05/2006

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

Notação Assintótica Letícia Rodrigues Bueno

Notação Assintótica Letícia Rodrigues Bueno Notação Assintótica Letícia Rodrigues Bueno Notação Assintótica Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os algoritmos ineficientes; Notação

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

Termo-Estatística Licenciatura: 4ª Aula (08/03/2013)

Termo-Estatística Licenciatura: 4ª Aula (08/03/2013) Termo-Estatístca Lcencatura: 4ª Aula (08/03/013) Prof. Alvaro Vannucc RELEMBRADO Dstrbução dscreta (hstogramas) x contínua (curvas de dstrbução): Dada uma Função de Dstrbução de Densdade de Probabldade,

Leia mais

Cap 6: 4,5,8,9,10,11,12,15,16,21 fazer diagramas, usar análise por cálculo do tempo de resposta

Cap 6: 4,5,8,9,10,11,12,15,16,21 fazer diagramas, usar análise por cálculo do tempo de resposta QUESTÕES DO LIVRO Real-Tme Systems, Jane Lu Cap 6: 4,5,8,9,10,11,12,15,16,21 fazer dagramas, usar análse por cálculo do tempo de resposta Cap 8: 1,2,7 fazer dagramas Concetos Báscos e Técncas de Implementação

Leia mais

IMPACTOS DAS INEFICIÊNCIAS NAS ELASTICIDADES DE PRODUÇÃO DOS FATORES: UMA ANÁLISE DA AGROPECUÁRIA BRASILEIRA

IMPACTOS DAS INEFICIÊNCIAS NAS ELASTICIDADES DE PRODUÇÃO DOS FATORES: UMA ANÁLISE DA AGROPECUÁRIA BRASILEIRA IMACTOS DAS INEFICIÊNCIAS NAS ELASTICIDADES DE RODUÇÃO DOS FATORES: UMA ANÁLISE DA AGROECUÁRIA BRASILEIRA Adrano rovezano Gomes 1 Antono José Medna dos Santos Baptsta 2 Resumo: Mutos trabalhos utlzam a

Leia mais

COMPLEXIDADE DE ALGORITMOS

COMPLEXIDADE DE ALGORITMOS COMPLEXIDADE DE ALGORITMOS Algoritmos Seqüência de instruções necessárias para a resolução de um problema bem formulado Permite implementação computacional COMPLEXIDADE DE ALGORITMOS Um algoritmo resolve

Leia mais

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 0 a Fase Profa Mara Antôna Gouvea PROVA A QUESTÃO 0 Consdere as retas r, s e t de equações, resectvamente, y x, y x e x 7 y TRACE, no lano cartesano abaxo, os gráfcos

Leia mais

3. Coexistência entre Tecnologias 3.1. Fontes de Interferência Interferências co-canal A interferência co-canal ocorre quando duas ou mais

3. Coexistência entre Tecnologias 3.1. Fontes de Interferência Interferências co-canal A interferência co-canal ocorre quando duas ou mais 41 3. Coexstênca entre Tecnologas 3.1. Fontes de Interferênca 3.1.1 Interferêncas co-canal A nterferênca co-canal ocorre quando duas ou mas entdades na mesma área geográfca transmtem na mesma frequênca.

Leia mais

CEL033 Circuitos Lineares I

CEL033 Circuitos Lineares I // CEL Crcutos Lneares I NR- Prof.: Io Chaes da Sla Junor o.junor@ufjf.edu.br Métodos de Análses de Crcutos Análse Nodal Le de Krchhoff das Correntes Método de análse de crcutos elétrcos no qual se escolhe

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite 5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar

Leia mais

O F Í C I O C I R C U L A R. Participantes dos Mercados da B3 Segmento BM&FBOVESPA. Ref.: Nova Metodologia do Índice Dividendos BM&FBOVESPA (IDIV).

O F Í C I O C I R C U L A R. Participantes dos Mercados da B3 Segmento BM&FBOVESPA. Ref.: Nova Metodologia do Índice Dividendos BM&FBOVESPA (IDIV). 01 de novembro de 2017 069/2017-DP O F Í C I O C I R C U L A R Partcpantes dos Mercados da B3 Segmento BM&FBOVESPA Ref.: Nova Metodologa do Índce Dvdendos BM&FBOVESPA (IDIV). Concluída a fase de dscussão

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

MODELOS DE REGRESSÃO PARAMÉTRICOS

MODELOS DE REGRESSÃO PARAMÉTRICOS MODELOS DE REGRESSÃO PARAMÉTRICOS Às vezes é de nteresse nclur na análse, característcas dos ndvíduos que podem estar relaconadas com o tempo de vda. Estudo de nsufcênca renal: verfcar qual o efeto da

Leia mais

ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS

ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS 1/18 ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS Algoritmos 2/18 Algoritmos Algoritmo - sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador)

Leia mais

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo 3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Rede de Hopfield. Rede de camada única com realimentação x n x 2 x 1 w 1n. w n2. w n1 w 2n w 21. w 12

Rede de Hopfield. Rede de camada única com realimentação x n x 2 x 1 w 1n. w n2. w n1 w 2n w 21. w 12 Rede de Hopfeld Rede de camada únca com realmentação x n x 2 x n n2 2 n 2n 2 - b - - n b 2 b n 2 Memóra (auto-assocata) assocata (terata) ou memóra de conteúdo endereçáel não lnear Cada undade lga com

Leia mais

SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEPENDENTE DA TEMPERATURA E GERAÇÃO DE CALOR

SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEPENDENTE DA TEMPERATURA E GERAÇÃO DE CALOR SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEENDENTE DA TEMERATURA E GERAÇÃO DE CALOR E. T. CABRAL,. A. ONTES, H. K. MIYAGAWA, E. N. MACÊDO 3 e J. N. N. QUARESMA 3

Leia mais

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro UNIVERIDADE DE ÃO PAULO FACULDADE DE ECONOMIA, ADMINITRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINITRAÇÃO RAD1507 Estatístca Aplcada à Admnstração I Prof. Dr. Evandro Marcos adel Rbero

Leia mais

Variação ao acaso. É toda variação devida a fatores não controláveis, denominadas erro.

Variação ao acaso. É toda variação devida a fatores não controláveis, denominadas erro. Aplcação Por exemplo, se prepararmos uma área expermental com todo cudado possível e fzermos, manualmente, o planto de 100 sementes seleconadas de um mlho híbrdo, cudando para que as sementes fquem na

Leia mais

Seleção Exemplos... Ex3: Calcular o gano genétco na produção de ovos pela seleção de macos cujas médas de 5 rmãs fo de 120 ovos numa pop. de aves com

Seleção Exemplos... Ex3: Calcular o gano genétco na produção de ovos pela seleção de macos cujas médas de 5 rmãs fo de 120 ovos numa pop. de aves com Seleção Exemplos... Ex2: Se forem seleconados para reprodução 1% dos melores macos e 5% das melores fêmeas de uma pop. De aves que tem 2200 g de peso corporal aos 42 das, qual será o dferencal de seleção

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Estruturas de Dados Algoritmos

Estruturas de Dados Algoritmos Estruturas de Dados Algoritmos Prof. Eduardo Alchieri Algoritmos (definição) Sequência finita de instruções para executar uma tarefa Bem definidas e não ambíguas Executáveis com uma quantidade de esforço

Leia mais

Análise de Problemas Recursivos. Algoritmos e Estruturas de Dados Flavio Figueiredo (

Análise de Problemas Recursivos. Algoritmos e Estruturas de Dados Flavio Figueiredo ( Análise de Problemas Recursivos Algoritmos e Estruturas de Dados 2 2017-1 Flavio Figueiredo (http://flaviovdf.github.io) 1 Lembrando de Recursividade Procedimento que chama a si mesmo Recursividade permite

Leia mais

3 Elementos de modelagem para o problema de controle de potência

3 Elementos de modelagem para o problema de controle de potência 3 Elementos de modelagem para o problema de controle de potênca Neste trabalho assume-se que a rede de comuncações é composta por uma coleção de enlaces consttuídos por um par de undades-rádo ndvdualmente

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado

Leia mais

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

8 Estrutura horizontal da célula de chuva 8.1. Procedimentos iniciais

8 Estrutura horizontal da célula de chuva 8.1. Procedimentos iniciais 8 Estrutura horzontal da célula de chuva 8.1. Procedmentos ncas No caítulo 7 foram defndas as relações entre Z e R ara serem utlzadas na análse dos dados radares de Cruzero do Sul, Manaus e Tabatnga. A

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais