Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1"

Transcrição

1 Programação Dnâmca Fernando Noguera Programação Dnâmca

2 A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A resolução do problema orgnal de N varáves é caracterzado pela determnação de uma varável e pela resolução de um problema que possua uma varável a menos (N-). Este por sua vez é resolvdo pela determnação de uma varável e pela resolução de um problema de N- varáves e assm por dante. O problema a ser resolvdo é do tpo: -exstem N atvdades ou estágos numerados de a N. -X é a quantdade de recursos colocados nas atvdades ou estágos ( X ) -g (X ) é a unção que representa o ganho ou o retorno devdo a colocação de X recursos na atvdade, Q = x + x x N é a quantdade total de recursos dsponíves. -O objetvo é determnar a dstrbução de recursos X que maxmza o ganho total. R(X, X,...,X N ) = g (X ) + g (X ) +...g N (X N ). consderando que as atvdades são ndependentes e os ganhos g sejam adtvos. Fernando Noguera Programação Dnâmca

3 Formulação mzar R depende de Q e N. Esta dependênca é explcada da segunte manera: N = X ( Q) { R( X,X,..., X )} N (Q) representa o ganho máxmo devdo à dstrbução de Q quantdades de recursos nas N atvdades. Condção Incal a)g () = para cada atvdade (ganho nulo para zeros recursos dstrbuídos). b) N () = para N =,,... (se o total Q de recursos é nulo, o ganho máxmo também é nulo). c) (Q) = g (Q) se exstr N = atvdade, então R(X ) = g (X ). Relação de Recorrênca entre N (Q) e N- (Q) N Ao atrbur a quantdade X N ( X N Q) de recursos à atvdade N, restarão Q-X N recursos a serem dstrbuídos nas N- atvdades restantes e o ganho máxmo provenente dessas N- atvdades pode ser expresso por N- (Q-X N ). Sendo assm, o ganho total das N atvdades pode ser expresso por: g N ( X ) ( Q X ) N + N N Fernando Noguera Programação Dnâmca

4 e se escolhermos X, N que maxmze esse ganho, teremos o valor N (Q) do ganho máxmo devdo à aplcação de Q recursos em N atvdades. Temos então a relação undamental da Programação Dnâmca, dada por: N ( Q) = Q { g N ( X N ) + N ( Q X N )} para N =,,... X N para N = Q = g Q ( ) ( ) Exemplo : Problema de Investmento de Captal Q = $6, undades de captal dsponível N = atvdades derentes para nvestmento e as unções de ganho g (X ) dadas pelo quadro abaxo: Qual a dstrbução ótma do recurso Q = $6, nas atvdades? Fernando Noguera Programação Dnâmca 4

5 Obtenção da unção (Q) da atvdade Condção ncal = g = ( ) ( ) () = g() ( ) = g( ) () = g () = 5 = 4 = 8 ( 4) = g( 4) = 9 () 5 = g() 5 = 95 ( 6) = g ( 6) = Obtenção da unção (Q) da atvdade N (Q) para N= Para Q =, () = pela condção ncal (b) Para Q =, e como os valores possíves de X são e, temos: () = { g ( X ) + ( )} X X ( ) + ( ) () + ( ) g = + 5 = 5 () = = 5 para X = ou X = g = 5 + = 5 escolhemos, como solução ótma X = (podera ter sdo X = ). Para Q =, ( ) = { g ( X ) + ( )} X X Fernando Noguera Programação Dnâmca 5

6 e como os valores possíves de X são, e temos: ( ) + ( ) () + () ( ) + ( ) g = + 4 = 4 ( ) = g = = = 4 para X = ou X g 4 4 = + = = escolhemos, como solução ótma X = (podera ter sdo X = ). Para Q =, () = { g ( X ) + ( )} X X e como os valores possíves de X são,, e temos: ( ) + ( ) () + ( ) ( ) + ( ) () + () g = + 8 = 8 g = = 55 () = = 8 para X = g = = 55 g = 6 + = 6 Prossegundo, pode-se encontrar: Para Q = 4, (4) = 95, para X = Para Q = 5, (5) =, para X = Para Q = 6, (6) = 4, para X = Fernando Noguera Programação Dnâmca 6

7 Obtenção da unção (Q) da atvdade De manera análoga, obtemos (Q): Para Q =, Quadro dos Valores de N (Q) ( ) = { g ( X ) + ( )} X X ( ) + ( ) () + () ( ) + ( ) g = + 4 = 4 ( ) = g = = 4 = 4 para X g 4 4 = + = = Fernando Noguera Programação Dnâmca 7

8 Ganho Máxmo do Investmento Na coluna (Q) obtém-se como ganho máxmo correspondente ao nvestmento nas atvdades, o valor $46,, para Q = 6. A dstrbução é: a) para a atvdade : X = $, (Q) = 46 e subtrando o ganho g () = 6 (do quadro de ganhos) restam anda 46-6 = undades que correspondem ao ganho da aplcação de Q = 5 undades nas outras atvdades. b) para a atvdade, o ganho de undades corresponde a aplcação de X = undades na atvdade e c) para a atvdade, restam, portanto, Q-X -X = undades a serem aplcadas. Portanto, X =. Solução Ótma X = com g () = 8, X = com g () = 4, X = com g () = 6 e R = g + g + g = $46, Fernando Noguera Programação Dnâmca 8

9 Problema da Mochla (Knapsack problem) Objetvo: maxmzar a somatóra dos valores dos tens que serão colocados na mochla, respetando a sua capacdade. Exstem n tens. Cada tem possu um valor c e um peso w assocado. A capacdade da mochla é L. As varáves de controle são x tal que: x n = = w x n c {,} x L Códgo MPL para o exemplo da gura MAX 4X + X + X + X4 + X5 SUBJECT TO X + X + 4X + X4 + X5 <= 5; BINARY X X X X4 X5 Fernando Noguera Programação Dnâmca 9

10 Fernando Noguera Programação Dnâmca Outra versão deste problema é quando as varáves de controle não são bnáras, mas sm nteras (neste caso a solução rá determnar quantas undades de cada produto serão colocados na mochla): = = n n b x L w x x c Outra versão deste problema é quando as varáves de controle são reas, lmtadas por valores máxmos b (neste caso a solução rá determnar a quantdade (grandeza contínua) de cada produto que será colocado na mochla): Ζ = = e x L w x x c n n

11 Exemplo Um navo pode carregar 4 toneladas. Exstem tens. A segunte tabela ornece o peso untáro w em toneladas e o retorno untáro c em $ para cada tem. Como o navo deve ser carregado para maxmzar o retorno total? Item w Uma vez que os pesos w e o peso máxmo que o navo pode carregar W são nteros, as varáves x devem ser somente nteras também. c 47 4 Fernando Noguera Programação Dnâmca

12 Porque w =, o número máxmo de tens que o navo pode carregar é 4/ = 4, que sgnca que os valores de m são,,,,4. Uma alternatva m é vável somente se w m x ( x ) = max{ 4m },max{ m } = = 4 m 4m 4 Solução ótma x m = m = m = m = m =4 (x ) m Fernando Noguera Programação Dnâmca

13 4 ( x ) = max{ 47m + ( x m )},max{ m } = = m 47m + (x -m ) Solução ótma x m = m = (x ) m += +4=4 4 +8=8 8 +4=4 47+= = =6 6 Fernando Noguera Programação Dnâmca

14 4 ( x ) = max{ m + ( x m )},max{ m } = = m m + (x -m ) Solução ótma x m = m = m = (x ) m += +4=4 4 +8=8 += +47=47 +4= =6 +8=59 6+=6 6 Fernando Noguera Programação Dnâmca 4

15 Solução ótma m = x = x -m x = 4 x = => m = x = x m x = x = => m = m =, m =, m = Z = $6, Fernando Noguera Programação Dnâmca 5

Programação Linear 1

Programação Linear 1 Programação Lnear 1 Programação Lnear Mutos dos problemas algortmcos são problemas de otmzação: encontrar o menor camnho, o maor fluxo a árvore geradora de menor custo Programação lnear rovê um framework

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Adriana da Costa F. Chaves

Adriana da Costa F. Chaves Máquna de Vetor Suporte (SVM) para Regressão Adrana da Costa F. Chaves Conteúdo da apresentação Introdução Regressão Regressão Lnear Regressão não Lnear Conclusão 2 1 Introdução Sejam {(x,y )}, =1,...,,

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Introdução aos Problemas de Roteirização e Programação de Veículos

Introdução aos Problemas de Roteirização e Programação de Veículos Introdução aos Problemas de Roterzação e Programação de Veículos PNV-2450 André Bergsten Mendes Problema de Programação de Veículos Problema de Programação de Veículos Premssas Os roteros ncam e termnam

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

CARGA MÓVEL. Conjunto de cargas moveis que mantêm uma posição relativa constante.

CARGA MÓVEL. Conjunto de cargas moveis que mantêm uma posição relativa constante. CARGA MÓVEL Força generalsada com ntensdade, drecção e sentdo fxos, mas com uma posção varável na estrutura. COMBOIO DE CARGAS Conjunto de cargas moves que mantêm uma posção relatva constante. CARGA DISTRIBUIDA

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Alocação sequencial - filas

Alocação sequencial - filas Alocação sequencal - las Flas A estrutura de dados Fla também é bastante ntutva. A analoga é com uma la de pessoas aguardando para serem atenddas no guchê de um banco, ou aguardando o ônbus. Se houver

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas Análse de Projectos ESAPL / IPVC Taxas Equvalentes Rendas Taxas Equvalentes Duas taxas e, referentes a períodos dferentes, dzem-se equvalentes se, aplcadas a um mesmo captal, produzrem durante o mesmo

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

024/ ANÁLISE MULTICRITÉRIO DO PROBLEMA DE SELEÇÃO DE EQUIPAMENTOS EM AMBIENTE JUST IN TIME, UTILIZANDO-SE DE UM ALGORITMO GENÉTICO

024/ ANÁLISE MULTICRITÉRIO DO PROBLEMA DE SELEÇÃO DE EQUIPAMENTOS EM AMBIENTE JUST IN TIME, UTILIZANDO-SE DE UM ALGORITMO GENÉTICO ISSN 275-6295 Ro de Janero- Brasl, 05 e 06 de agosto de 2009. SPOLM 2009 024/2009 - ANÁLISE MULTICRITÉRIO DO PROBLEMA DE SELEÇÃO DE EQUIPAMENTOS EM AMBIENTE JUST IN TIME, UTILIZANDO-SE DE UM ALGORITMO

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

3 Algoritmo das Medidas Corretivas

3 Algoritmo das Medidas Corretivas 3 Algortmo das Meddas Corretvas 3.1 Introdução Conforme apresentado no Capítulo, o algortmo das Meddas Corretvas compõe o conjunto das etapas responsáves pela análse de desempenho do sstema de potênca.

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

GST0045 MATEMÁTICA FINANCEIRA

GST0045 MATEMÁTICA FINANCEIRA GST0045 MATEMÁTICA FINANCEIRA Concetos Báscos e Smbologa HP-12C Prof. Antono Sérgo A. do Nascmento asergo@lve.estaco.br GST0045 Matemátca Fnancera 2 Valor do dnhero no tempo q O dnhero cresce no tempo

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

MODELO PARA ALOCAÇÃO DE BANCOS DE CAPACITORES PARA REGULAÇÃO DE TENSÃO EM REDES DE DISTRIBUIÇÃO SÉRGIO HAFFNER

MODELO PARA ALOCAÇÃO DE BANCOS DE CAPACITORES PARA REGULAÇÃO DE TENSÃO EM REDES DE DISTRIBUIÇÃO SÉRGIO HAFFNER MODELO PARA ALOAÇÃO DE BANOS DE APAITORES PARA REGULAÇÃO DE TENSÃO EM REDES DE DISTRIBUIÇÃO SÉRGIO HANER Departamento de Engenhara Elétrca, UDES-T ampus Unverstáro Prof. Avelno Marcante s/n Barro Bom tro

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

Avaliação de Económica de Projectos e Cálculo de Tarifas

Avaliação de Económica de Projectos e Cálculo de Tarifas Gestão Avançada ada de Sstemas de Abastecmento de Água Avalação de Económca de Projectos e Cálculo de Tarfas Antóno Jorge Montero 26 de Mao de 2008 Aula 5-1 COCEITO DE PROJECTO Processo específco utlzado

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

UMA HEURÍSTICA PARA O PROBLEMA DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO

UMA HEURÍSTICA PARA O PROBLEMA DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO. UMA HEURÍSTICA PARA O PROBLEMA DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO Alexandre Venturn Faccn Pacheco (UFES) alexandreventurn@gmal.com

Leia mais

6 Otimização de Dimensões

6 Otimização de Dimensões 6 Otmzação de Dmensões 6.1 Consderações Geras O desejo de se obter o projeto deal, consderando aspectos relaconados ao consumo, desempenho ou efcênca, sempre fo um dos prncpas objetvos da engenhara estrutural.

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

4 Análise termoeconômica

4 Análise termoeconômica 4 Análse termoeconômca Os capítulos precedentes abordaram questões emnentemente térmcas da aplcação de nanofludos em sstemas ndretos de refrgeração. Ao tratar das magntudes relatvas e da natureza das componentes

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 4.3 Decsão Intertemporal do Consumdor O Mercado de Captal Isabel Mendes 2007-2008 4/17/2008 Isabel Mendes/MICRO II 1 3. EQUILÍBRIO

Leia mais

), demonstrado no capítulo 3, para

), demonstrado no capítulo 3, para 6 Conclusão Neste trabalho foram realzados cnco estudos de casos como meo de nvestgar a nfluênca de trbutos no processo decsóro de localzação. Buscou-se realzar as entrevstas em dferentes negócos para

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

Rede de Hopfield. Rede de camada única com realimentação x n x 2 x 1 w 1n. w n2. w n1 w 2n w 21. w 12

Rede de Hopfield. Rede de camada única com realimentação x n x 2 x 1 w 1n. w n2. w n1 w 2n w 21. w 12 Rede de Hopfeld Rede de camada únca com realmentação x n x 2 x n n2 2 n 2n 2 - b - - n b 2 b n 2 Memóra (auto-assocata) assocata (terata) ou memóra de conteúdo endereçáel não lnear Cada undade lga com

Leia mais

Alocação de Dispositivos PLC Numa Rede de Distribuição Elétrica de Baixa Tensão Usando Programação Linear Inteira Mista

Alocação de Dispositivos PLC Numa Rede de Distribuição Elétrica de Baixa Tensão Usando Programação Linear Inteira Mista Alocação de Dspostvos PLC uma Rede de Dstrbução Elétrca de Baxa Tensão Usando Programação Lnear Intera sta Fabano J. L. Pádua, Insttuto Federal de Educação, Cênca e Tecnologa de ato Grosso - IFT Campus

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Algoritmos Genéticos com Parâmetros Contínuos

Algoritmos Genéticos com Parâmetros Contínuos com Parâmetros Contínuos Estéfane G. M. de Lacerda DCA/UFRN Mao/2008 Exemplo FUNÇÃO OBJETIVO : 1,0 f ( x, y) 0, 5 sen x y 0, 5 1, 0 0, 001 x 2 2 2 y 2 2 2 0,8 0,6 0,4 0,2 0,0-100 -75-50 -25 0 25 50 75

Leia mais

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x):

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x): POLINÔMIO INTERPOLAOR E NEWTON ) IFERENÇAS IVIIAS.) IFERENÇAS IVIIAS ORINÁRIAS () Sejam n pontos de uma função f():... n f( )... n - ferença dvdda de ordem zero: n n M - ferença dvdda de ordem um: M M

Leia mais

3 O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS

3 O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS 39 3 O PROBLEMA DA REPARTIÇÃO DOS BENEFÍCIOS Como fo vsto na seção 1.3, a produção frme total do sstema resultante de uma operação ntegrada das usnas, onde todas

Leia mais

Tese de Doutorado em Computação Aplicada, orientada pelo Dr. Luiz Antonio Nogueira Lorena e pelo Prof. Dr. Edson Luiz França Senne.

Tese de Doutorado em Computação Aplicada, orientada pelo Dr. Luiz Antonio Nogueira Lorena e pelo Prof. Dr. Edson Luiz França Senne. MÉTODOS DE GERAÇÃO DE COLUNAS PARA PROBLEMAS DE ATRIBUIÇÃO Slvely Noguera de Almeda Salomão Tese de Doutorado em Computação Aplcada, orentada pelo Dr. Luz Antono Noguera Lorena e pelo Prof. Dr. Edson Luz

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

PROSPETO INFORMATIVO EUR NB DUAL DESEMPENHO EUROPEU PRODUTO FINANCEIRO COMPLEXO

PROSPETO INFORMATIVO EUR NB DUAL DESEMPENHO EUROPEU PRODUTO FINANCEIRO COMPLEXO PROSPETO INFORMATIVO EUR NB DUAL DESEMPENHO EUROPEU 07-09 PRODUTO FINANCEIRO COMPLEXO Desgnação EUR NB DUAL DESEMPENHO EUROPEU 07-09 Classcação Caracterzação do produto Produto Fnancero Complexo Depósto

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca Undade B Capítulo 9 Geradores elétrcos esoluções dos testes propostos 1 T.195 esposta: d De U r, sendo 0, resulta U. Portanto, a força eletromotrz da batera é a tensão entre seus termnas quando

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil Unversdade Federal de Santa Catarna UFSC Departamento de Engenhara Cvl Laboratóro de Efcênca Energétca em Edfcações - LabEEE Netuno 4 Manual do Usuáro Enedr Ghs Marcelo Marcel Cordova Floranópols, Junho

Leia mais

Estudo de Curto-Circuito

Estudo de Curto-Circuito Estudo de Curto-Crcuto Rotero. Objetvo / aplcações. Natureza da corrente de defeto 3. Resposta em regme (4 tpos de defeto) 4. Resposta transtóra 5. Conclusões Objetvo Determnação de correntes e tensões

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Dssertação de mestrado em matemátca aplcada fnancada pelo CNPq IMECC - UNICAMP Pedro Ferraz Vllela Prof.

Leia mais

Classificação e Pesquisa de Dados

Classificação e Pesquisa de Dados Classcação por Trocas Classcação e Pesqusa de Dados Aula 05 Classcação de dados por Troca:, ntrodução ao Qucksort UFRGS INF01124 Classcação por comparação entre pares de chaves, trocando-as de posção caso

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

3.2. Solução livre de ciclos e solução como uma árvore geradora

3.2. Solução livre de ciclos e solução como uma árvore geradora Smplex Para Redes.. Noções Incas O algortmo Smplex para Redes pode ser entenddo como uma especalzação do método Smplex para aplcação em problemas de programação lnear do tpo fluxo de custo mínmo. O Smplex

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

MODELO DE OTIMIZAÇÃO PARA O PROBLEMA DO TRANSPORTE DE DERIVADOS DE PETROLEO COM BUSCA LOCAL POR MIP E SIMULAÇÃO

MODELO DE OTIMIZAÇÃO PARA O PROBLEMA DO TRANSPORTE DE DERIVADOS DE PETROLEO COM BUSCA LOCAL POR MIP E SIMULAÇÃO MODELO DE OIMIZAÇÃO PARA O PROBLEMA DO RANSPORE DE DERIVADOS DE PEROLEO COM BUSCA LOCAL POR MIP E SIMULAÇÃO Luz Azemberg, Eduardo Uchoa Barboza, Artur Alves Pessoa Unversdade Federal Flumnense Departamento

Leia mais

Resolução de Conflitos

Resolução de Conflitos Mestrado em Engenhara Informátca Tecnologas do Conhecmento e Decsão Sstemas Baseados em Agentes Resolução de Confltos Abrl de 2008 Realzado por: 1020541 Ivo Perera Índce Índce... 1 1. Introdução... 2 2.

Leia mais

4 Análise de confiabilidade de estruturas

4 Análise de confiabilidade de estruturas 4 Análse de confabldade de estruturas Nos prmórdos da engenhara cvl, o desconhecmento técnco-centífco conduza a proetos excessvamente seguros, mas em contrapartda de custo muto elevado. Hoe em da, o progresso

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson Trabalho apresentado no III CMAC - SE, Vtóra-ES, 015. Proceedng Seres of the Brazlan Socety of Computatonal and Appled Mathematcs Procedmento Recursvo do Método dos Elementos de Contorno Aplcado em Problemas

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais