IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO"

Transcrição

1 IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados; E-mal: Professora do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados; E-mal: Área Temátca: Teora Computaconal dos Números Resumo. O Crvo Quadrátco é consderado como um dos métodos de fatoração de nteros mas mportantes da atualdade. No entanto, mplementar este método não é uma tarefa trval, pos envolve estudos sobre aspectos matemátcos e computaconas envolvdos em seu funconamento. O objetvo deste trabalho é apresentar uma descrção de uma mplementação realzada durante o desenvolvmento do mesmo. Palavras-chave: Algortmo.Congruênca. Dferença de quadrados. 1. Introdução O problema de fatoração de números nteros tem ocupado lugar de destaque na Teora dos números. Essa mportânca deve-se ao fato de que sstemas crptográfcos como o RSA têm sua segurança baseada na dfculdade de fatorar um número ntero qualquer dado, afrma Coutnho (000). O método de fatoração de nteros Crvo Quadrátco, devdo a Pomerance (1985, p.169), é consderado como um dos métodos de fatoração mas potentes, sendo utlzado na fatoração de números de aproxmadamente 100 dígtos decmas. Esse trabalho tem como objetvo realzar um estudo prátco do método Crvo Quadrátco, apresentando uma descrção de uma mplementação realzada durante o desenvolvmento do mesmo, e a análse dos resultados obtdos.. Materas e Métodos Para o alcance do objetvo proposto, foram realzados as seguntes etapas: 1. Estudo do manual da bbloteca GMP;. Integração da GMP em um complador C;

2 3. Estudo e mplementação do método de fatoração de nteros Crvo Quadrátco, utlzando as funções da bbloteca GMP; 4. Documentação do processo de mplementação do método Crvo Quadrátco, para um maor entendmento. 3. Resultados e Dscussão 3.1. Crvo Quadrátco A fatoração de nteros através do método Crvo Quadrátco tem como base o fato de que se exstrem números x e y que satsfaçam a condção x y (mod, então tem-se n que ( x y) ( x y) 0 (mod. Logo, ( x y) ( x y) ( x y ) e os números d mdc( x y, e f mdc( x y, poderão ser fatores não trvas de n. Ou seja, a déa básca do método consste em encontrar congruêncas da forma r y (mod, onde y y é um quadrado perfeto. Se x r, então x y (mod. De acordo com Crandall e Pomerance (00, p.01), na prátca, para encontrar x e y, em prmero lugar deve-se encontrar uma base de fatores, que é um conjunto de números prmos como, por exemplo, o conjunto 1,, p,..., p }, tal que p B, para um certo lmte B e, { para cada prmo p, o número n deve ser um resíduo quadrátco módulo p. Em seguda, são calculados números f ( r ) s dados por f ( r ) r n para r próxmo de n. Num segundo momento, devem-se determnar r s sufcentes para os quas f ( r ) pode ser completamente fatorado pela base de fatores. A quantdade desses f r ) s deve ser maor do que o número de prmos e menores do que B. Armazenando os f r ) s, em um vetor na base bnára, utlza-se a adção de vetores para descobrr uma combnação lnear que produz um vetor nulo que corresponderá a um quadrado perfeto. Então x será dado pelo produto dos r s correspondentes módulo n, e y será dado pela raz do produto dos fatores dos f r ) s correspondentes. Em seguda é calculado d mdc( x y,. Se d é fator não trval de n, então um fator fo encontrado e, para determnar o segundo fator basta calcular a dvsão de n por d. Em resumo, pode-se dzer que os passos para a fatoração de n pelo método Crvo Quadrátco, são: 1º Encontrar uma base de fatores.

3 º Determnar um conjunto de números que podem ser completamente fatorados sobre a base de fatores. 3º Usar a Elmnação Gaussana para encontrar um produto dos números determnados no º passo que seja um quadrado perfeto. Algortmo (Crvo Quadrátco) Entrada: n, B // número a ser fatorado e lmte B// Saída: fator1, fator //fatores de n// [Iníco] //Nessa etapa é determnada a base de fatores e calculado o símbolo de Legendre// p 1 =, r 1 = 1 ; n Para encontre números prmos p B tas que = 1; p Para encontre as raízes r com r n(mod p ); n, n1 ² Determne um conjunto S de +1 pares r, r ² n onde r é dado pela seqüênca de números r,... e n pode ser totalmente fatorado pela base de fatores; Para (( r, S) { e n p 1 ; v( ( e1, e,... e ); } Construa a matrz de ordem ( 1) com os vetores v( reduzdos (mod ); Através da Elmnação Gaussana encontre uma combnação lnear de vetores v r ) v( r )... v( r ) 0. ( 1 x r1 r... r mod n; y (...( mod n ( 1 fator 1 mdc( x y, ; fator 1 mdc( x y, ; retorne fator1, fator; [Fm algortmo] 3.. Implementação do Crvo Quadrátco Ambente de desenvolvmento O método Crvo Quadrátco, fo mplementado na lnguagem C em uma plataforma Pentum IV, 300 MHz, 51 MB de RAM, usando o sstema operaconal Lnux Ubuntu. Para a representação de números grandes de tamanho arbtráro fo utlzada a bbloteca GMP, versão 4.3.1, escrta na lnguagem C, dsponblzada no ste

4 3... Etapas da mplementação O prmero passo do método Crvo Quadrátco é encontrar uma base de fatores. Os números pertencentes a essa base, devem satsfazer as seguntes condções: Ser prmo Ser menor que um lmte dado B Atender a condção do Símbolo de Legendre onde n / p 1 Para sso fo utlzada a função mpz_nextprme, que lsta os prmos até o lmte B especfcado. Para cada prmo fo calculado o símbolo de Legendre. Assm fo crado um vetor com os números para os quas as condções foram satsfetas. O segundo passo é determnar um conjunto de números que podem ser completamente fatorados sobre a base de fatores. Para sso, ncalmente foram calculados os f r ) s usando a fórmula f ( r ) r n. Na mplementação desta fórmula foram utlzadas as funções de adção mpz_add_u, potencação mpz_pow_u e subtração mpz_sub. Para determnar se os números f r ) s são completamente fatorados pela base de fatores fo utlzada a função mpz_cmp_u, que compara os fatores f r ) s com os prmos da base de fatores. Os f r ) s que satsfazem essa condção são armazenados em um vetor. O mesmo procedmento é feto para os r s correspondentes. O tercero passo é usar a Elmnação Gaussana para encontrar um produto dos números determnados no º passo que seja um quadrado perfeto. Para sso é crada uma matrz determnada pelos f r ) s, onde cada lnha representa um vetor de 0 s e 1 s correspondentes a um f r ), como segue: em prmero lugar é calculada a fatoração do f r ) dado; se o expoente do fator de f r ) for par atrbu-se 0 e, se for ímpar atrbu-se 1. Em seguda é utlzada a função ncalza_matrz_dentdade, que cra uma matrz dentdade cuja ordem é dada pelo número de f r ) s determnados. Após essas etapas, chama-se a função elmnação_gaussana_mod_, que realza a Elmnação Gaussana nas duas matrzes, procurando uma ou mas lnhas nulas. Encontrada uma lnha nula, deve-se tomar a lnha correspondente da matrz dentdade onde os 1 s que aparecerem correspondem aos r s determnados anterormente. Para calcular x e y como especfcado no algortmo apresentado fo utlzada, além das funções de multplcação e cálculo de raz quadrada, a função de operação modular mpz_mod. O mdc fo calculado utlzando-se a função mpz_gcd. Dessa forma foram retornados os fatores de n.

5 tempo de execução em segundos Testes e análse dos resultados Foram testados números compostos ( contendo de a 30 dígtos decmas. O tempo de execução do algortmo fo meddo em segundos. Os resultados obtdos podem ser vsualzados na Fgura 1 a segur numero de dígtos decmas de n Fgura 1: Tempo de execução Com base nos resultados obtdos, percebe-se que o tempo fatoração aumenta exponencalmente de acordo com a quantdade de dígtos de n. Não foram apresentados resultados de números maores devdo ao aumento muto sgnfcatvo do tempo de execução e à problemas de overflow (memóra nsufcente). Para uma mplementação mas efcente são necessáros estudos mas aprofundados de cada etapa do processo de fatoração. 5. Agradecmentos Os autores agradecem pelo apoo fnancero (bolsa) conceddo pela Unversdade Estadual de Mato Grosso do Sul e também por todos os acadêmcos, coordenadores, professores e técncos que, dretamente ou ndretamente, contrbuíram para a realzação desse trabalho. 6. Referêncas Crandall, R., Pomerance, C. 00. Prme Numbers- A Computatonal Perspectve. New Yor: Sprnger-Verlag, 1º Edção, 7p. Coutnho, S Números nteros e Crptografa RSA. IMPA-SBM. Pomerance, C The Quadratc Seve Factorng Algorthm. New Yor: Sprnger- Verlag, Ed. T. Beth, N. Cot, and I. Ingemarsson, 13p.

CRIVO QUADRÁTICO: UM ESTUDO DA OBTENÇÃO DE UM QUADRADO PERFEITO

CRIVO QUADRÁTICO: UM ESTUDO DA OBTENÇÃO DE UM QUADRADO PERFEITO CRIVO QUADRÁTICO: UM ESTUDO DA OBTENÇÃO DE UM QUADRADO PERFEITO Marcelo Figueiredo Terenciani 1 ; Adriana Betânia de Paula Molgora 2 1 Estudante do Curso de Ciência da Computação da UEMS, Unidade Universitária

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

O Algoritmo Polinomial de Shor para Fatoração em um Computador Quântico

O Algoritmo Polinomial de Shor para Fatoração em um Computador Quântico Unversdade Federal de Pernambuco Departamento de Matemátca Dssertação de Mestrado: O Algortmo Polnomal de Shor para Fatoração em um Computador uântco por Máro Sansuke Maranhão Watanabe Manoel Lemos Orentador

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

MODELAGEM DE CURVAS DE MAGNETIZAÇÃO PARA SOLUÇÃO ITERATIVA DE CIRCUITOS MAGNÉTICOS NÃO LINEARES

MODELAGEM DE CURVAS DE MAGNETIZAÇÃO PARA SOLUÇÃO ITERATIVA DE CIRCUITOS MAGNÉTICOS NÃO LINEARES MODELAGEM DE CURVAS DE MAGNETIZAÇÃO PARA SOLUÇÃO ITERATIVA DE CIRCUITOS MAGNÉTICOS NÃO LINEARES MEZA, Rafael Argüello, estudante de graduação, CEFET-PR, 2005 Centro Federal de Educação Tecnológca do Paraná

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

Programação de Computadores II TCC 00.174/Turma A 1

Programação de Computadores II TCC 00.174/Turma A 1 Programação de Computadores II TCC 00.174/Turma A 1 Professor Leandro A. F. Fernandes http://www.c.uff.br/~laffernandes Conteúdo: Introdução ao Java (exercícos) Materal elaborado pelos profs. Anselmo Montenegro

Leia mais

UMA FORMULAÇÃO DE PROGRAMAÇÃO INTEIRA PARA O PROBLEMA DE CRIAÇÃO DE ÁREAS DE PONDERAÇÃO AGREGADAS

UMA FORMULAÇÃO DE PROGRAMAÇÃO INTEIRA PARA O PROBLEMA DE CRIAÇÃO DE ÁREAS DE PONDERAÇÃO AGREGADAS UMA FORMULAÇÃO DE PROGRAMAÇÃO INTEIRA PARA O PROBLEMA DE CRIAÇÃO DE ÁREAS DE PONDERAÇÃO AGREGADAS José André de M. Brto IBGE Insttuto Braslero de Geografa e Estatístca emal: brtom@bge.gov.br Av. Chle,

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro.

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. Estmatva dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. O. L. L. Moraes 1, H. R. da Rocha 2, M. A. Faus da Slva Das 2, O Cabral 3 1 Departamento

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Redespacho da Geração para Melhoria da Segurança Dinâmica de Sistemas Elétricos de Potência Usando Inteligência Computacional

Redespacho da Geração para Melhoria da Segurança Dinâmica de Sistemas Elétricos de Potência Usando Inteligência Computacional 1 Redespacho da Geração para Melhora da Segurança Dnâmca de Sstemas Elétrcos de Potênca Usando Intelgênca Computaconal A. L. B. Corrêa, B. C. Bernardes, W. D. Olvera, J. P. A. Vera Member, IEEE, I. Ohana,

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO I Congresso Baano de Engenhara Santára e Ambental - I COBESA NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO Marcos Vnícus Almeda Narcso (1)

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

XII SIMPÓSIO INTERNACIONAL DE CIÊNCIAS INTEGRADAS DA UNAERP CAMPUS GUARUJÁ. Sustentabilidade - Mudança dos Padrões de Consumo

XII SIMPÓSIO INTERNACIONAL DE CIÊNCIAS INTEGRADAS DA UNAERP CAMPUS GUARUJÁ. Sustentabilidade - Mudança dos Padrões de Consumo XII SIMPÓSIO INTERNACIONAL DE CIÊNCIAS INTEGRADAS DA UNAERP CAMPUS GUARUJÁ Sustentabldade - Mudança dos Padrões de Consumo Formulação de Ração de Mínmo Custo Um Sstema de Otmzação para Nutrção Anmal Marco

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Circuitos Eletrônicos Analógicos:

Circuitos Eletrônicos Analógicos: Crcutos Eletrôncos Analógcos: Crcutos com Amplfcadores Operaconas Prof. Pedro S. Almeda Pedro de Asss Sobrera Jr. 2 Conteúdo da aula Introdução ao amplfcador operaconal Conceto dealzado Análse com crcutos

Leia mais

ALGORITMO E PROGRAMAÇÃO

ALGORITMO E PROGRAMAÇÃO ALGORITMO E PROGRAMAÇÃO 1 ALGORITMO É a descrção de um conjunto de ações que, obedecdas, resultam numa sucessão fnta de passos, atngndo um objetvo. 1.1 AÇÃO É um acontecmento que a partr de um estado ncal,

Leia mais

Software para Furação e Rebitagem de Fuselagem de Aeronaves

Software para Furação e Rebitagem de Fuselagem de Aeronaves Anas do 14 O Encontro de Incação Centífca e Pós-Graduação do ITA XIV ENCITA / 2008 Insttuto Tecnológco de Aeronáutca São José dos Campos SP Brasl Outubro 20 a 23 2008. Software para Furação e Rebtagem

Leia mais

MODELO DE ALOCAÇÃO DE RECURSOS NO SETOR DE COMPRAS: UMA PROPOSTA PARA O RAMO SUPERMERCADISTA

MODELO DE ALOCAÇÃO DE RECURSOS NO SETOR DE COMPRAS: UMA PROPOSTA PARA O RAMO SUPERMERCADISTA XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO. MODELO DE ALOCAÇÃO DE RECURSOS NO SETOR DE COMPRAS: UMA PROPOSTA PARA O RAMO SUPERMERCADISTA MAURICIO JOAO ATAMANCZUK (UTFPR) atamanczuk@hotmal.com Yslene

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Desenvolvimento de software dedicado à gestão de estoques em indústrias de polpa de fruta

Desenvolvimento de software dedicado à gestão de estoques em indústrias de polpa de fruta SCIENTIA PLENA VOL. 9, NUM. 5 2013 www.scentaplena.org.br Desenvolvmento de software dedcado à gestão de estoques em ndústras de polpa de fruta Software development dedcated to nventory management n frut

Leia mais

BUSCA TABU: UMA APLICAÇÃO AO PROBLEMA DE SEQÜÊNCIAÇÃO DE ORDENS DE PRODUÇÃO

BUSCA TABU: UMA APLICAÇÃO AO PROBLEMA DE SEQÜÊNCIAÇÃO DE ORDENS DE PRODUÇÃO BUSCA TABU: UMA APLICAÇÃO AO PROBLEMA DE SEQÜÊCIAÇÃO DE ORDES DE PRODUÇÃO Renato de Olvera Moraes Departamento de Cêncas Exatas e Aplcadas da Unversdade Federal de Ouro Preto Rua 37, nº 115 Barro Loanda.

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

3 O Problema de Fluxo de Potência Ótimo

3 O Problema de Fluxo de Potência Ótimo 3 O Problema de Fluxo de Potênca Ótmo 3.. Introdução Como fo vsto no capítulo anteror, para realzar uma repartção de custos ou benefícos, é necessáro determnar a função de custo do servço que será utlzado

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

DIMENSIONAMENTO ÓTIMIZADO DE TRELIÇAS DE ALUMÍNIO: ANÁLISE NUMÉRICA E EXPERIMENTAL

DIMENSIONAMENTO ÓTIMIZADO DE TRELIÇAS DE ALUMÍNIO: ANÁLISE NUMÉRICA E EXPERIMENTAL DIMENSIONAMENTO ÓTIMIZADO DE TRELIÇAS DE ALUMÍNIO: ANÁLISE NUMÉRICA E EXPERIMENTAL Moacr Krpka, Prof. Dr. Zacaras M. Chamberlan Prava, Prof. Dr. Maga Marques Das, Acadêmca, Bolssta UPF Gulherme Fleth de

Leia mais

AUTOMAÇÃO DA RESSEÇÃO ESPACIAL DE IMAGENS COM USO DE HIPÓTESES DE RODOVIAS COMO APOIO DE CAMPO DERIVADAS DO SISTEMA DE VARREDURA LASER

AUTOMAÇÃO DA RESSEÇÃO ESPACIAL DE IMAGENS COM USO DE HIPÓTESES DE RODOVIAS COMO APOIO DE CAMPO DERIVADAS DO SISTEMA DE VARREDURA LASER DANIEL RODRIGUES DOS SANTOS AUTOMAÇÃO DA RESSEÇÃO ESPACIAL DE IMAGENS COM USO DE HIPÓTESES DE RODOVIAS COMO APOIO DE CAMPO DERIVADAS DO SISTEMA DE VARREDURA LASER Tese apresentada como requsto parcal à

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Experiência I (aulas 01 e 02) Medidas de Tempo e Pêndulo simples

Experiência I (aulas 01 e 02) Medidas de Tempo e Pêndulo simples Experênca I (aulas 01 e 02) Meddas de Tempo e Pêndulo smples 1. Objetvos 2. Introdução 3. O pêndulo smples 4. Medda do período de osclação de um pêndulo 5. Arranjo e procedmento expermental 6. Análse de

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

PLANIFICAÇÃO DE PEÇAS OBTIDAS PELA INTERSEÇÃO DE SUPERFÍCIES CILINDRICAS

PLANIFICAÇÃO DE PEÇAS OBTIDAS PELA INTERSEÇÃO DE SUPERFÍCIES CILINDRICAS PLANIFICAÇÃO DE PEÇAS OBTIDAS PELA INTERSEÇÃO DE SUPERFÍCIES CILINDRICAS PLANNING FOR PIECES OBTAINED BY THE INTERSECTION OF CYLINDRICAL SURFACES Marcelo Lacortt, Neuza Tereznha Oro Professores do Insttuto

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais