Cálculo III-A Lista 5

Tamanho: px
Começar a partir da página:

Download "Cálculo III-A Lista 5"

Transcrição

1 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Lista 5 Eercício : Calcule + dv onde é a região contida dentro do cilindro + = 4 e entre os planos = e = 4. Solução: O esboço de está representado na figura que se segue. 4 D D Como o integrando envolve + e a região de integração é um cilindro, devemos calcular a integral utiliando coordenadas ciĺındricas. Temos, = rcosθ = rsenθ = dv = rdrdθd + = r

2 Cálculo III-A Lista 5 87 r e a descrição de é dada pelas seguintes desigualdades rθ : θ π 4. + dv = r r drdθ = r drdθd = rθ = = 6π r 4 π rθ dθddr = π [ r r dr = 6π ] = 6π. 4 r ddr = π r [ ] 4. Então, dr = Eercício : Calcule + + dv, onde é limitado inferiormente pelo cone = + ) e superiormente pela esfera + + = 4. Solução: De + + = 4 e = + ), tem-se + = que é a projeção, no plano, da curva interseção das duas superfícies. A projeção do sólido é o disco D : +. O sólido e sua projeção D são mostrados a seguir: φ senφ = φ = π 6 D Passando para coordenadas esféricas, tem-se: = ρsenφcosθ = ρsenφsenθ = ρcosφ ddd = ρ senφ dρdφdθ + + = ρ. A equação da esfera + + = 4 fica em coordenadas esféricas ρ = 4 ou ρ =. Então, ρφθ = { ρ,φ,θ); ρ, φ π/6, θ π }.

3 Cálculo III-A Lista 5 88 Logo, + + ddd = ρφθ ρ ρ senφ dρdφdθ = π/6 π π/6 = ρ senφ dθdρdφ = π senφ ρ dρdφ = [ ρ 4] π/6 [ ] π/6 = π senφ dφ = 8π cosφ = 8π cos π ) = 4 6 ) = 8π = 4π ). Eercício : Calcule a massa do sólido limitado pelo paraboloide = + e pelo plano = 4, sendo a densidade em cada ponto do sólido dada por δ,,) = + ) /. Solução: O esboço de está representado na figura que se segue. 4 = 4 = + D A massa de é dada por: M = δ,,) dv = + ) / ddd. Passando para coordenadas ciĺındricas, tem-se: = rcosθ = rsenθ = ddd = r drdθd + = r

4 Cálculo III-A Lista 5 89 Como é dado por : Assim, {,) D + 4 então rθ é dado por rθ : M = + ) / ) ddd = r / r drdθd = r θ π r 4. = r drdθd = rθ r 4 π r rθ dθddr = π r 4 r ddr = = π r 4 r ) dr = π 4r r 4) dr = π[ 4r r5 5 ] = 8π 5 u.m. Eercício 4: Determine o volume e o centroide do sólido limitado pelo paraboloide = +, pelo cilindro + = 4 e pelo plano. Solução: De = + e + = 4, temos = 4. Isso significa que as duas superfícies se interceptam no plano = 4, segundo a circunferência + = 4. Considerando que o sólido é limitado também pelo plano, de equação =, temos o esboço de. 4 D

5 Cálculo III-A Lista 5 9 Como o sólido é limitado pelo cilindro + = 4, vamos aplicar a transformação ciĺındrica: = rcosθ = rsenθ =. dv = r drdθd + = r O paraboloide = + se converte em = r e o cilindro + = 4 se converte em r = 4 ou r =. Observemos que a projeção de sobre o plano é o disco D : + 4. Como as variações de r e θ são determinadas na projeção D, então r e θ π. Considerando um ponto,,) no interior de e pelo ponto uma paralela ao eio, vemos que a essa paralela intercepta a fronteira inferior no plano, onde =, e intercepta a fronteira superior no paraboloide = + onde = r. Então r. Assim, a região transformada é: Como V) = dv então: rθ = { r,θ,); r, θ π, r }. V) = rdrdθd = rθ = π r r dr = π r π r [ r r 4 dr = π 4 dθddr = π ] = 8π u.v. r r ddr = Ocentro demassadeumsólidohomogêneoéditocentroideecomoadensidadeδ,,)éconstante ela pode ser cancelada e temos: V) = dv V) = V) = dv dv. Cálculo de dv Temos, dv = + D ddd = D + ) dd = pois a função + ) é ímpar na variável e D tem simetria em relação ao eio. Logo, =.

6 Cálculo III-A Lista 5 9 Cálculo de dv Temos, dv = + D ddd = D + ) dd =, pois a função + ) é ímpar na variável e D tem simetria em relação ao eio. Logo, =. Cálculo de dv Temos, dv = r drdθd = rθ r r π dθddr = Logo portanto = π = π r r ddr = π r [ r 5 r 6] dr = π = π 6. 8π = π = 4. [ ] r dr = π r r 4 dr = Portanto, o centroide localia-se em,, 4/). Eercício 5: Considere o sólido homogêneo, limitado pelo plano =, o cilindro + = e pelo cone = +. Calcule o momento de inércia em relação ao eio. Solução: O esboço do sólido, limitado superiormente pelo cone = +, inferiormente pelo plano = e lateralmente pelo cilindro + = ou + ) = está representado na figura que se segue.

7 Cálculo III-A Lista 5 9 = + P =,,) = Passando para coordenadas ciĺındricas, temos: = rcosθ = rsenθ = dv = r drdθd + = r. Seja P =,,). A reta passando por P e paralela ao eio intercepta a fronteira de em = e = + = r. As variações de r e θ são olhadas na projeção de no plano : + ) ou +.,) r = senθ r = { θ π De + =, temos r = rsenθ ou r = senθ se r. Então r senθ. Logo θ π rθ : r senθ. O momento de inércia em relação ao eio é: r I = + ) δ,,) dv

8 Cálculo III-A Lista 5 9 onde δ,,) = k. Logo, I = k + ) dv = k r rdrdθd = rθ = k = k π senθ π [ r 5] senθ 5 = k π 5 = k π 5 = k 5 r r ddrdθ = k dθ = k 5 π cos θ) senθdθ = π senθ sen 5 θdθ = cos θ +cos 4 θ)senθdθ = [ cosθ cos θ r 4 drdθ = ] π + cos5 θ = 64k ) = k. Eercício 6: Considere o cilindro homogêneo + a) a e h. Calcule o momento de inércia em relação ao eio, em função da massa M do cilindro. Solução: O esboço do cilindro está representado na figura que se segue. h a a a a Se a densidade constante for denotada por k, então o momento de inércia em relação ao eio é I = k + ) ddd.

9 Cálculo III-A Lista 5 94 Passando para coordenadas ciĺındricas, tem-se: = rcosθ = rsenθ = ddd = r drdθd + = r h O conjunto rθ é dado por rθ : θ π r asenθ.. Logo, I = k r r drdθd = k r drdθd = rθ rθ = k = hk Da trigonometria, tem-se: Então, Logo, pois M = kπa h. π asenθ π [ r 4] asenθ 4 h r ddrdθ = hk π asenθ π dθ = 4a 4 hk sen 4 θ dθ. r drdθ = ) sen 4 θ = sen θ) cosθ = = cosθ+cos θ ). 4 π/4 sen 4 θ dθ = π cosθ+cos θ ) dθ) = 4 = [ θ senθ+ θ+ sen4θ )] π = 8 8 π +π) = π 8. I = πa4 hk = Ma Eercício 7: Calcule + + dv, sendo aregiãointerior aocone = +, limitada superiormente pela esfera + + = 4 e inferiormente pela esfera + + =. Solução: O esboço de está representado na figura que se segue.

10 Cálculo III-A Lista 5 95 ρ = P ρ = π/4 Descrição de em coordenadas esféricas Consideremos um ponto P =,,) qualquer em ; observemos que o raio OP intercepta a superfície do sólido ou a fronteira do sólido) inicialmente em ρ = e depois em ρ =. Logo, ρ. O ângulo φ varia de eio positivo) até π/4 parede do cone); a variação do ângulo θ é encontrada na projeção de no plano : θ π. Logo, ρφθ é dado por: ρφθ : ρ φ π/4 θ π Como + + = ρ e dv = ρ senφdρdφdθ, então: + + dv = ρ ρ senφdρdφdθ = = π/4 = π senφdφ ) + ρφθ π dρ = π ).. dθ = π [ ρ ] [ ] π/4 cosφ = Eercício 8: Calcule a massa do sólido inferior ao cone = + ) e limitado pela esfera + + ) =, sendo a densidade igual ao quadrado da distância de,,) ao plano =. Solução: Primeiramente, calculemos a interseção das duas superfícies. { + + ) = = + ) { + + = = + ) + = 4 6 = = ou =.

11 Cálculo III-A Lista 5 96 Logo, a interseção se dá no plano = /, e a sua projeção no plano é a circunferência + = /4. Assim, o esboço de está representado na figura que se segue. / = π/ / / Como o ângulo da reta = corte do cone = + ), considerando = ) é o ângulo π/, então φ varia de eio positivo) a π/ π/ = π/6. Transformando a equação + + ) = ou + + = para coordenadas esféricas temos ρ = ρcosφ logo ρ = ou ρ = cosφ. Isso significa que ρ varia de a cosφ. A variação de θ é encontrada na projeção de no plano. Logo, θ π. Assim, ρφθ é dado por: ρφθ : θ π φ π/6 ρ cosφ. Como a distância de,,) ao plano = é então δ,,) = =. A massa de é: M = δ,,)dv = dv = ρcosφ) ρ senφdρdφdθ = ρφθ π π/6 cosφ = ρ 4 cos φsenφdρdφdθ = cos φsenφ ρ 4 dρdφdθ = ρφθ π π/6 [ = cos ρ 5] cosφ φsenφ 5 [ ] cos 8 π/6 π φ dθ = 8π 8 5 = 5 dφdθ = 5 [ ) ] 8 π π/6 cos 7 φsenφdφdθ = = 8π = 5π 8 u.m. Eercício 9: Epresse a integral I = ddd

12 Cálculo III-A Lista 5 97 como uma integral tripla em coordenadas ciĺındricas, e calcule a integral obtida. Solução:TemosqueI = + + dv,onde éosólidodadopor : 4 4 Também podemos descrever por = = {,,); {,) D, 4} onde D é a projeção de sobre o plano e é dado por D : = 4 D Logo, o esboço de está representado na figura que se segue. 4

13 Cálculo III-A Lista 5 98 θ π/ Descrevendo em coordenadas ciĺındricas, temos rθ : r 4 I = = 4 rθ π/ +r r drdθd = π/ 4. Então, +r ) / r ddrdθ = [ +r ) ] / = dθ 4 5 ) π 5 = 5 ) 5 π. Eercício : Epresse cada integral como uma integral tripla iterada em coordenadas esféricas e calcule a integral obtida: a) b) 9 ddd ddd. Solução: a) Denotando a integral iterada por I, temos, I = ddd onde ou = {,,) R ;, }{{}, } D = {,,) R ;,) D e } onde D : { é a projeção de no plano.

14 Cálculo III-A Lista 5 99 Sai em = D + = D Entra em = De concluímos que o sólido é limitado superiormente pela superfície = ou + + =, com, que é a semiesfera superior de raio e centro,,), e é limitado inferiormente pelo plano de equação =. Considerando que a projeção de no plano é a região D, temos: Passando para coordenadas esféricas, temos: = ρsenφcosθ = ρsenφsenθ = ρcosφ ddd = ρ senφ dρdφdθ + + = ρ. Como a projeção de no plano é o conjunto D, vemos que θ varia de a π/ : θ π/. Efetuando uma varredura em, a partir do eio positivo vemos que φ varia de no eio positivo) até π/ no plano ): φ π/. Considerando um ponto P no interior de e a semirreta OP, vemos que ela entra em na origem onde ρ = e sai de em um ponto da esfera + + = onde ρ =. Logo, ρ.

15 Cálculo III-A Lista 5 Assim, transforma-se em: Como o integrando I = = θ π/ ρφθ : φ π/ ρ transforma-se em ρ então: ρφθ [ = π = π = π +ρ ρ senφ dρdφdθ = ρ π/ +ρ ] π/ cosφ π/ senφ ρ +ρ dρ = π )dρ = π +ρ ) π 4 = π 8 4 π). dθdφdρ = π [ ρ arctgρ. ρ π/ +ρ +ρ +ρ dρ = ] = π arctg) = senφ dφdρ = b) Temos, onde ou onde D : = I = 9 9 ddd = ddd {,,) R ;, 9 }{{}, } 9 D = {,,) R ;,) D e } 9 { 9 é a projeção de D no plano. Sai em = 9 D D Entra em =

16 Cálculo III-A Lista 5 Considerando um ponto P no interior de e uma reta paralela ao eio, passando por P e levando em conta que 9, concluímos que a reta entra em em = e sai de em = 9 ou + + = 9, com. Logo, é limitado superiormente pela semiesfera superior e limitado inferiormente pelo plano =. Passando para coordenadas esféricas temos: θ π/ ρφθ : φ π/ ρ e Então, I = ρφθ = = = ρsenφcosθ)ρcosφ) = ρ senφcosφcosθ. ρ senφcosφcosθ ) ρ senφ ) dρdφdθ = ρφθ ρ 4 sen φcosφcosθ dρdφdθ = ρ 4 π/ [ ] π/ = senθ }{{} = = [ ρ 5] 5 π/ sen φcosφ cosθ dθdφdρ = π/ [ ρ 4 sen sen φcosφ dφdρ = φ = 8 5. ] π/ ρ 4 dρ =

Cálculo IV EP5 Tutor

Cálculo IV EP5 Tutor Eercício : Calcule esfera + + =. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP

Leia mais

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2 Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7. Eercício : ada a integral dupla I Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista 7 f,)dd + f,)dd. a) Esboce a região. b) Inverta

Leia mais

Cálculo III-A Módulo 2 Tutor

Cálculo III-A Módulo 2 Tutor Eercício : Calcule Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor + e +. + da onde é a região compreendida pelas retas,,

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

Cálculo IV EP2 Tutor

Cálculo IV EP2 Tutor Eercício : Calcule + e +. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor da

Leia mais

Cálculo III-A Lista 10

Cálculo III-A Lista 10 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : eja a parte do cilindro + entre os planos e +. a) Parametrie e esboce.

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

Cálculo 3A Lista 12. Solução: O esboço do sólido W está representado na figura que se segue. Vemos que W = S 1 S 2, orientada positivamente.

Cálculo 3A Lista 12. Solução: O esboço do sólido W está representado na figura que se segue. Vemos que W = S 1 S 2, orientada positivamente. Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Verifique o teorema de Gauss para o campo vetorial F,,),,) no sólido

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo A Lista 9 Eercício : eja uma superfície parametriada por com u π e v. ϕu,v) vcosu, vsenu,

Leia mais

Cálculo III-A Módulo 13

Cálculo III-A Módulo 13 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 4 Teorema de Gauss Objetivo Estudar um teorema famoso que permite calcular

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds. Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 3 Eercício : Verifique o Teorema de tokes, calculando as duas integrais do enunciado,

Leia mais

Cálculo IV EP12 Tutor

Cálculo IV EP12 Tutor Eercício : Calcule com u e v. Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,]. +

Leia mais

Cálculo III-A Lista 14

Cálculo III-A Lista 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Eercício : Mostre que álculo III-A Lista 4 I + +ln) d+ d é independente do caminho e calcule o valor

Leia mais

Coordenadas esféricas

Coordenadas esféricas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas

Leia mais

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y Universidade Federal Fluminense Andrés Gabarito - Primeira Verificação Escolar de álculo IIIA GMA - Turma. onsidere a integral dupla a Esboce a região. y Temos que onde Observando que f(x, ydxdy + y {(x,

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

Cálculo III-A Módulo 10 Tutor

Cálculo III-A Módulo 10 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : eja a superfície parametriada por ϕ(u,v) = (u,v, v ), com

Leia mais

3.2 Coordenadas Cilíndricas

3.2 Coordenadas Cilíndricas Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Cálculo III-A Módulo 1 Tutor

Cálculo III-A Módulo 1 Tutor Eercício : Calcule as integrais iteradas: Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor a) e dd b) dd Solução: a) Temos:

Leia mais

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=

Leia mais

Cálculo IV EP11 Tutor

Cálculo IV EP11 Tutor Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor Eercício : eja a superfície parametriada

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

Cálculo III-A Módulo 9 Tutor

Cálculo III-A Módulo 9 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Tutor Eercício : alcule a integral de linha diretamente e, também, pelo teorema

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2. Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo A List Eercício :Usemudnçu + ev eclculeintegrldef,) +) sen ) sobre região : + π. Solução: O esboço d

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

Cálculo III-A Módulo 10

Cálculo III-A Módulo 10 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 10 Aula 19 Superfícies Parametriadas Objetivo Estudar as superfícies parametriadas,

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

Dessa forma, podemos reescrever o domínio

Dessa forma, podemos reescrever o domínio Turma A Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. Semestre - 9// Questão. (. pontos) Calcule as seguintes integrais: (a) arctg(y)

Leia mais

Cálculo IV EP10 Tutor

Cálculo IV EP10 Tutor Fundação entro de iências e Educação Superior a istância do Estado do Rio de Janeiro entro de Educação Superior a istância do Estado do Rio de Janeiro álculo IV EP Tutor Eercício : alcule a integral de

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Cálculo III-A Módulo 3

Cálculo III-A Módulo 3 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 5 Aplicações da Integrais uplas Objetivo Estudar algumas aplicações

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões

Leia mais

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21)

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21) UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam PROFMAT - MA - Fundamentos de Cálculo Integrais definidas e indefinidas. Calcule as integrais

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 11.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 11. Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo A List Eercício : ej o cmpo vetoril F,,),+,). Clcule o fluo de F trvés de, orientd com n eterior se:

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula Departamento de Matemática Secção de Álgebra e Análise Última actualização: 6/Out/5 ANÁLISE MATEMÁTICA III A OUTONO 5 PATE II INTEGAÇÃO EM N EXECÍCIOS COM POSSÍVEIS SOLUÇÕES ABEVIADAS acessível em http://www.math.ist.utl.pt/

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Cálculo III-A Módulo 9

Cálculo III-A Módulo 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação

Leia mais

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014 Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.

Leia mais

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18)

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) UFPR - Universidade Federal do Paraná Departamento de Matemática CM4 - Cálculo I a. Lista de Eercícios Integrais definidas. Calcule as integrais definidas abaio: () (4) (7) () () (6) (9) () (5) (8) /4

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

Primitva. Integral Indenida

Primitva. Integral Indenida Primitva Denição. 1 Uma função F (x) é chamada uma primitiva da função f(x) em um intervalo I (ou simplesmente uma primitiva de f(x), se para todo x I, temos F (x) = f(x). Exemplo. 1 1. emos que cos(x)

Leia mais

Ferramentas complementares para cálculo do momento de inércia. 1 Preparação. Nathan P. Teodosio. 1.1 Integração múltipla

Ferramentas complementares para cálculo do momento de inércia. 1 Preparação. Nathan P. Teodosio. 1.1 Integração múltipla Ferramentas complementares para cálculo do momento de inércia Nathan P. Teodosio Não espere encontrar aqui o rigor matemático, isto é um guia que tentei fazer o mais sucinto possível. Se estiver à procura

Leia mais

Cálculo III-A Módulo 3 Tutor

Cálculo III-A Módulo 3 Tutor Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia.

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP3 Aula Aplicações da Integrais uplas

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Teorema da Divergência

Teorema da Divergência Instituto Superior Técnico epartamento de atemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema da ivergência Nestas notas apresentaremos o teorema da divergência em R 3 (Teorema de Gauss devido

Leia mais

MAT Cálculo a Várias Variáveis I. Período

MAT Cálculo a Várias Variáveis I. Período MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma

Leia mais

P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro

P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro P3 de Cálculo a Várias Variáveis I MAT 62 23.2 Data: 23 de novembro Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 3. 2 2. 3 3. Teste 2. Total. Instruções Mantenha seu celular desligado

Leia mais

Capítulo X Parte I Momentos de Inércia

Capítulo X Parte I Momentos de Inércia Universidade Federal Fluminense - UFF Escola de Engenharia de Volta Redonda EEMVR Departamento de Ciências Eatas Capítulo X Parte Momentos de nércia Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete

Leia mais

Cálculo III-A Lista 8

Cálculo III-A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se encontra

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

CÁLCULO II: VOLUME II

CÁLCULO II: VOLUME II CÁLCULO II: VOLUME II MAURICIO A. VILCHES - MARIA LUIZA CORRÊA epartamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 1a. Prova - 1o. Semestre /04/2010

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 1a. Prova - 1o. Semestre /04/2010 Turma A Questão : (a) (, pontos) Calcule Instituto de Matemática e Estatística da USP MAT - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. Semestre - // 8 ( y e x dx ) dy. (b) (, pontos)

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:

Leia mais

2.1 Mudança de variáveis em integral dupla

2.1 Mudança de variáveis em integral dupla ! "! # $! % & #! ' ( $ Objetivos. Os objetivos desta Aula são: apresentar a ideia de mudança de variáveis no plano para calcular integrais duplas; usar as coordenadas polares para calcular a integral dupla

Leia mais

Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira. Aula 14

Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira. Aula 14 Eletromagnetismo I Prof. Dr. R.M.O Galvão - Semestre 014 Preparo: Diego Oliveira Aula 14 Campo Magnético de uma Espira de Corrente Um exemplo de cálculo do campo magnético é o de uma espira de corrente,

Leia mais

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária)

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) 9 de Maio de 9. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: (a) O triângulo de vértices

Leia mais

Cálculo III-A Módulo 14

Cálculo III-A Módulo 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 4 Aula 25 Teorema de tokes Objetivo Estudar um teorema famoso que generalia

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS INTEGAIS DE FUNÇÕES DE VÁIAS VAIÁVEIS Gil da Costa Marques. Introdução. Integrais Duplas.. Propriedades das Integrais Duplas.. Cálculo de Integrais Duplas..4 Integrais duplas em regiões não retangulares.

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada).

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada). APOIO À FICHA 7 MAGAIDA BAÍA, DM, IST (Alguns) Exemplos das aulas teóricas de 5-4-219 (revistos e com solução detalhada). 1. Calcule o volume de = {(x, y, z) 3 : x 2 + y 2 + z 2 16, z } esolução: Queremos

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

3 a Ficha de Exercícios de AMIII

3 a Ficha de Exercícios de AMIII 3 a Ficha de Exercícios de MIII Resolução Sumária. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: O triângulo de vértices,,, e, ; região entre os gráficos

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j).

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j). MAT1153 / 2008.1 LISTA DE EXECÍCIOS : EGIÕES DO PLANO, INTEGAIS DUPLAS E VOLUMES (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) (2) Fazer

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

Cálculo III-A Módulo 5 Tutor

Cálculo III-A Módulo 5 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : Calcule + )dv, onde é a região interior ao cilindro + = e

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais