MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016"

Transcrição

1 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) x sin y dxdy, onde = {(x, y) : x, y π}. esp. 5( ). 6 (c) 7 dxdy, onde = [, ] [, ]. esp. (c) ln. x+y 6. etermine o volume do sólido limitado pela superfície z = x x + y e os planos x =, x =, y =, y = e z =. esp. 5 ( ).. (a) etermine o volume do sólido contido no primeiro octante limitado por z = 9 y e pelo plano x =. esp. 6. Uma piscina tem formato circular de raio m e profundidade variando linearmente de sul a norte, sendo que no extremo sul é de m e no extremo norte é de m. Calcule o volume da piscina. esp. 7π. Calcule as integrais iteradas x y (x + y) dydx e As respostas contradizem o Teorema de Fubini? xplique. x y (x + y) dxdy. esp. e. 5. Calcule as seguintes integrais duplas: (a) xy dxdy, onde = {(x, y) : x, x y x}. esp. (a). (x xy) dxdy, onde = {(x, y) : x, x y x}. esp. 9. (c) e x/y dxdy, onde = {(x, y) : y, y x y }. esp. (c) e e. (d) x cos y dxdy, onde é a região limitada por y =, y = x, x =. esp. (d) ( cos )/. (e) y dxdy, onde é a região limitada por y = x 6 e y = x. esp. (e) 5. (f) xy dxdy, onde é a região do primeiro quadrante limitada pela circunferência de centro (, ) e raio. esp. (f). 8 (g) (x tg x + y + ) dxdy, onde = {(x, y) : x + y }. esp. (g) 8π. (h) Calcule e y x dxdy sendo a região plana limitada por: y x = ; y x = ; y = x e y = x. esp. (h) e. 6. etermine o volume do sólido S em cada um dos seguintes casos: (a) S é limitado superiormente pelo parabolóide z = x + y e sua projeção no plano xy é a região limitada por y = x e x = y. esp. (a) 6 5.

2 S é limitado superiormente por z = xy e sua projeção no plano xy é o triângulo de vértices (, ), (, ) e (, ). esp. 8. (c) S é a região do primeiro octante limitada pelo cilindro x + z = 9 e pelo plano x + y =. esp. (c) 6 ( 5 7) + 9 arcsen( ). (d) S é limitado pelos planos x =, y =, z = e x + y + z =. esp. (d) 6. (e) S é a região do primeiro octante limitada pelo cilindro x + y = e pelos planos y = z, x = e z =. esp. (e). (f) S é limitado pelos cilindros x + y = a e y + z = a, onde a >. esp. (f) 6 a. 7. screva as duas integrais iteradas correspondentes à integral dupla f(x, y) dx dy, onde é a região do plano limitada pelas curvas y = x + x + e x y + =. 8. Calcule as seguintes integrais, invertendo a ordem de integração: (a) (d) y e x dxdy x e y dydx (e) 9 y y y cos(x ) dxdy y sen(x ) dxdy. (c) π/ arcsin y cos x + cos x dxdy esp. (a) (e 9 )/6, sin 8, (c) ( )/, (d) (e ), (e) (sin() ). 9. Calcule as integrais: (a) x dxdy, onde é o disco de centro na origem e raio 5. xy dxdy, onde é a região do primeiro quadrante limitada pelas circunferências x + y = e x + y = 5. (c) dxdy, onde é a região interior à cardioide r = +sin θ e exterior à circunferência x + y r =. (d) (x + y ) dxdy, onde é a região limitada pelas espirais r = θ e r = θ, com θ π. (e) (f) (e x y ) dxdy, onde é a região limitada pelo semicírculo x = y e o eixo y. (x ) + y dxdy sendo = {(x, y) : x + y, y }. esp. (a) zero, 69 8, (c), (d) π5 (e) π ( e ), (f) sboce a curva e calcule a área da região indicada: (a) a regio limitada por um laço da rosácea r = cos θ π esp. a região limitada pela lemniscata r = cos θ esp... etermine o volume da região interior à esfera x + y + z = a e exterior ao cilindro x( + y ) = ax, com a >. esp. 6a π +. etermine a massa e o centro de massa da lâmina que ocupa a região e tem densidade δ, nos seguintes casos: (a) = {(x, y) : x, y } e δ(x, y) = x.

3 é o triângulo de vértices (, ), (, ), (, ) e δ(x, y) = x + y. (c) é a região do primeiro quadrante limitada pela parábola y = x e a reta y = e δ(x, y) = xy. (d) é a região limitada pela parabola y = x e a reta y = x e δ(x, y) =. (e) = {(x, y) : y sin x, x π} e δ(x, y) = y. esp. (a), (, ), 6, (, ), (c), (, ), (d) 7, ( 8, ) (e) π, ( π, 6 ) π. etermine os momentos de inércia I x, I y e I das lâminas descritas nos itens (c) e (d) do exercício anterior. esp. (c),, 6 8, (d) 89, 69 8, (a) Calcule a massa de = {(x, y) : (x y + ) + (x + y ) }, com função densidade δ(x, y) = x y + 8. esp. 5π. Calcule a massa de = {(x, y) x, x y } com função densidade δ(x, y) = e y + x. esp. (e 5 ). (c) Calcule o momento de inércia I com relação a origem de = {(x, y) : x + y, x + y }, a b onde a >, b > e função densidade δ(x, y) =. esp. ab(a + b ) π π. 5. Calcule usando mudança de coordenadas: (a) (x y ) sen((x + y) ) dxdy, onde é o paralelogramo de vértice (, ), ( π, π), ( π, ) e ( ) ( π, π π ). esp. cos( π ). ( ) π(y x) cos dy dx, onde a região do o quadrante limitada pelas retas x + y = e (y + x) x + y =. esp.. π 6. Calcule as integrais iteradas: (a) z y xyz dxdydz π z z sin y dxdzdy. esp. (a) 8, Calcule as integrais triplas: (a) yz dxdydz, onde = {(x, y, z) : z, y z, x z + }. y dxdydz, onde é a região abaixo do plano z = x + y e acima da região no plano xy limitada pelas curvas y = x, y = e x =. (c) xy dxdydz, onde é o tetraedro sólido com vértices (,, ), (,, ), (,, ) e (,, ). (d) z dxdydz, onde é limitada pelos planos x =, y =, z =, y + z = e x + z =. (e) x dxdydz, onde é limitada pelo parabolóide x = y + z e pelo plano x =. esp. (a) 7, 5, (c), (d) 6π, (e) etermine a massa e o centro de massa do cubo Q = [, a] [, a] [, a] cuja densidade é dada pela função δ(x, y, z) = x + y + z. esp. a 5, (7a/, 7a/, 7a/). 9. etermine os momentos de inércia de um cubo de densidade constante k e aresta L se um dos seus vértices é a origem e três de suas arestas estão sôbre os eixos coordenados. esp. I x = I y = I z = kl5.

4 . Calcule as seguintes integrais: (a) (x +y ) dxdydz, onde é a região limitada pelo cilindro x +y = e pelos planos z = e z =. y dxdydz, onde é a região entre os cilindros x + y = e x + y =, limitada pelo plano xy e pelo plano z = x +. (c) x dxdydz, onde é o sólido limitado pelo cilindro x + y =, pelo cone z = x + y e contido no semiespaço z. esp. (a) π,, (c) π/5.. etermine o volume da região limitada pelos parabolóides z = x + y e z = 6 x y. esp.6π.. etermine a massa e o centro de massa do sólido S limitado pelo parabolóide z = x + y o pelo plano z = a (a > ), se S tem densidade constante K. esp. πka /8, (,, a/).. Calcule as integrais: (a) (x + y + z ) dxdydz, onde B é a bola unitária x + y + z. (c) B y dxdydz, onde é a parte da bola unitária x + y + z contida no primeiro octante. x + y + z dxdydz, onde é a região interior ao cone φ = π/6 e à esfera ρ =. esp. (a) π/5, π/, (c) π( ).. etermine a massa de um hemisfério sólido H de raio a se a densidade em qualquer ponto é proporcional a sua distância ao centro da base. esp. Kπa /, onde K é a constante de proporcionalidade. 5. Calcule o volume da região limitada pelo elipsóide x a 6. Calcule a integral + y b + z c = esp. πabc. x dxdydz, onde = {(x, y, z) : x + y 9 + z, x }. esp. π. 7. Calcule a massa do sólido = {(x, y, z) : x +y +z b, z a > }, com a < b e δ(x, y, z) = z. esp. π (b a ). 8. (a) Calcule o volume da região acima do cone z = x + y e dentro da esfera x + y + z = a. esp. a π ( ) Calcule a massa da região acima do cone z = x + y, dentro da esfera x +y +z = az, a > com δ(x, y, z) = x + y esp. πa5. (c) Calcule x + y + z dx dy dz, onde V o slido limitado por x + y + z = z, z = V x + y e z = (x + y ) esp. (9 )π 9. Calcule a massa da região limitada por:. (a) z(x + y ) =, z =, x + y =, x + y =, com x e y e δ(x, y, z) = esp. π ln. z = x + y, x + y y =, para x com δ(x, y, z) = esp. 9. (c) x + y = + z, x + y = com δ(x, y, z) = z ; esp. 9π.

5 (d) x + y = + z, x + y = z, para z a com δ(x, y, z) = z ; esp. πa. (e) x + y 9 = + z, x + y 9 = z com δ(x, y, z) = ; esp. 8π. (f) x + y = + z, x + y = + z, para z a com δ(x, y, z) = z. esp. π( a5 + a ). 5. (a) Calcule (x + y + z)(x + y z)dxdydz para limitada por: x + y + z =, x + y + z =, x + y z =, x + y z =, x y z = e x y z = ; esp.. Calcule a massa do sólido = {(x, y, z) (x + y + z) + (x + y z) + (x y z) 5, x + y + z, x + y z }, onde a densidade δ(x, y, z) = (x + y + z)(x + y z). esp. 65. Calcule z dxdydz, onde é limitada por: (a) x + y = + 9 z, x + y = + z 9, para z. esp. 7π. z = (x ) + y ; z = x + y ; x + y =. esp. π.. Seja a região do o octante limitada pela esfera x + y + z = e pelo plano y = x, e contida no semiespaço y /. Calcule a massa de sendo δ(x, y, z) = y a sua densidade. esp. π.. Calcule a integral 5 5 x 5 x y + x + y + z dzdydx. esp. π (5 arctan(5)).. Use a transformação x = u, y = v, z = w para calcular o volume da região limitada pela superfície x + y + z = e pelos planos coordenados esp Calcule a massa da região limitada por: x +y +z r ; x +y r +z, com δ(x, y, z) = x +y. esp. πr 5 /. 6. Calcule a massa do sólido limitado por u + v + w = v, u + v + w = v, com v u + w, sendo a densidade δ(u, v, w) = u + w. esp π. 7. Calcule a massa do sólido dado por S = {(u, v, w) : u + v + w, u + v + w u} sendo a densidade δ(u, v, w) = u. esp. 9 8 π. 6. 5

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015 MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais

3.2 Coordenadas Cilíndricas

3.2 Coordenadas Cilíndricas Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente.

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente. Lista de Exercícios de álculo 3 Módulo 3 - Nona Lista - 02/2016 Parte A 1. alcule a integral do fluxo F nd (i) diretamente e (ii) usando o teorema do divergente. (a) F = (x 3 y 3 )i + (y 3 z 3 )j + (z

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET CÁLCULO IV

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET CÁLCULO IV UNIVESIDADE ESTADUAL DE SANTA CUZ - UESC PÓ-EITOIA DE GADUAÇÃO - POGAD DEPATAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GUIA DE ESTUDO N 0 2 CÁLCULO IV OBJETIVOS: Proporcionar o ábito de leitura no

Leia mais

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

3.1 Integrais Iteradas

3.1 Integrais Iteradas .1 Integrais Iteradas ZZ.1A Em cada caso abaixo, observe a região D e escreva a integral dula uma integral iterada (reetida) de modo a obter o cálculo mais simles. D f (x; y) da como.1b Calcule as seguintes

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Valter B. Dantas. Momento de Inércia

Valter B. Dantas. Momento de Inércia Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

1 Transformada de Laplace

1 Transformada de Laplace Dep. de Matemática da F..T.U.. - Análise Matemática IV - 5/6. Transformada de Laplace. Usando a definição de Transformada de Lapace, mostre que a) L{} = s, s>; b) L{e kt } = s k, s>k; c) L{t n } = n!,

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

{ y} Cálculo III. 1 - Funções de Várias Variáveis

{ y} Cálculo III. 1 - Funções de Várias Variáveis 1 Cálculo III 1 - Funções de Várias Variáveis Em muitos casos, o valor de uma grandeza depende do valor de duas ou mais outras. O volume de água de um reservatório, por exemplo, depende das chuvas e da

Leia mais

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO ecc~ao de Algebra e Analise, Departamento de Matematica, Instituto uperior Tecnico Analise Matematica III A - o semestre de 6/7 FIHA DE TRABALHO 6 - REOLU ~AO ) Indique se as formas diferenciais seguintes

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

1. Calcule as integrais de linha de primeira espécie. (a) (b)

1. Calcule as integrais de linha de primeira espécie. (a) (b) Lista de Exercícios de álculo 3 Nona Semana Parte 1. alcule as integrais de linha de primeira espécie. xds sobre o arco da parábola y = x 2 de (0, 0) a (1, 1). x2 + y 2 ds sobre a curva r(t) = 4 cos ti

Leia mais

ÁLGEBRA 1. Departamento de Matemática UDESC - Joinville

ÁLGEBRA 1. Departamento de Matemática UDESC - Joinville ÁLGEBRA 1 Departamento de Matemática UDESC - Joinville Conteúdo 1 CURVAS 3 1.1 Cilindros projetantes de uma curva............................ 3 1.1.1 Exemplo....................................... 4 1.

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Matemática IV. Textos de Apoio

Matemática IV. Textos de Apoio Matemática IV 2 o semestre do ano lectivo 2004/2005 Engenharias de Materiais e Química Textos de Apoio Cristina Caldeira A grande maioria dos exercícios presentes nestes textos de apoio foram recolhidos

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

Lista de Exercícios de Cálculo 3 Terceira Semana

Lista de Exercícios de Cálculo 3 Terceira Semana Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Cálculo II - Cursão Exercício Extra n = 2 n = 3. Hiperesferas, hipercubos e hiperconfusões

Cálculo II - Cursão Exercício Extra n = 2 n = 3. Hiperesferas, hipercubos e hiperconfusões Cálculo II - Cursão - 9 Exercício Extra n = n = 3 n = 4? Hiperesferas, hipercubos e hiperconfusões Resumo As estranhas relações entre volumes e áreas de hiperesferas em diferentes dimensões é um problema

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana, denominada diretriz, paralelamente a uma reta

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais

II Cálculo Integral em R n

II Cálculo Integral em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Primeira Lista - lei de Coulomb

Primeira Lista - lei de Coulomb Primeira Lista - lei de Coulomb FGE211 - Física III 1 Sumário A força elétrica que uma carga q 1 exerce sobre uma carga q 2 é dada pela lei de Coulomb: onde q 1 q 2 F 12 = k e r 2 ˆr = 1 q 1 q 2 4πɛ 0

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

GABARITO ITA MATEMÁTICA

GABARITO ITA MATEMÁTICA GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

Professor Bruno Alves

Professor Bruno Alves Professor Bruno Alves Engenharia maecânica Engenharia de produção Engenharia de controle e automação Poços de Caldas Segundo semestre de 1 Notas de aula da disciplina Cálculo III ministrada no segundo

Leia mais

Resumo de Geometria Espacial Métrica

Resumo de Geometria Espacial Métrica 1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2 VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

MATEMÁTICA. Lucro = x x 11 1, = x. (19) O ELITE RESOLVE FUVEST 2006 SEGUNDA FASE - MATEMÁTICA.

MATEMÁTICA. Lucro = x x 11 1, = x. (19) O ELITE RESOLVE FUVEST 2006 SEGUNDA FASE - MATEMÁTICA. () 5- O ELITE RESOLVE FUVEST SEGUND FSE - MTEMÁTIC MTEMÁTIC QUESTÃO Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

Volume de um sólido de Revolução

Volume de um sólido de Revolução Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano GRUPO I. Vamos calcular o valor da função objetivo, L, em cada um dos vértices da região admissível. Vértice L O 0 0 L = 0 + 0 = 0 0 L = + 0 = L = + = C L = + = D 0 L = 0 + = função objetivo atinge o máimo,

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas

Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo erra Cunha Integrais riplas Nas primeiras aulas discutimos integrais duplas em vária regiões. Seja motivado pelas aplicações, seja apenas pelo

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na Cálculo Multivariado Lista numero integração múltipla tarcisio.praciano@gmail.com T. Praciano-Pereira Dep. de Computação alun@: de março de 13 Univ. Estadual Vale do Aca Documento escrito com L A TEX -

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,

Leia mais

2 Superfícies Quádricas

2 Superfícies Quádricas Dep. de Matemática da F..T.U.. - Análise Matemática IV - 006/007 11 uperfícies Quádricas 1. Identifique e faça um esboço gráfico das seguintes superfícies: a) x + y + z =1 f) y =3 z =4 b) y =3 g) x +y

Leia mais

(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6.

(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6. Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão Wellington José Corrêa Nome: 4 ā Lista de Geometria Analítica e Álgebra Linear No que segue, todas as bases utilizadas

Leia mais

Exercícios Resolvidos Esboço de Conjuntos. Cortes

Exercícios Resolvidos Esboço de Conjuntos. Cortes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço de Conjuntos. Cortes Eercício Descreva detalhadamente os cortes perpendiculares aos eios coordenados

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais