Cálculo 3A Lista 12. Solução: O esboço do sólido W está representado na figura que se segue. Vemos que W = S 1 S 2, orientada positivamente.

Tamanho: px
Começar a partir da página:

Download "Cálculo 3A Lista 12. Solução: O esboço do sólido W está representado na figura que se segue. Vemos que W = S 1 S 2, orientada positivamente."

Transcrição

1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Verifique o teorema de Gauss para o campo vetorial F,,),,) no sólido limitado pelas superfícies + e. olução: O esboço do sólido está representado na figura que se segue. n n Vemos que, orientada positivamente. Logo, F nd F n d + F n d. Cálculo de F n d Temos : f,), com,) : +, n k e d +f ) +f ) dd ++dd dd. Então: Cálculo de F n d,,),,)dd A) π 6π. F n d

2 Cálculo 3A Lista 8 Temos : + g,), com,) : +. Um vetor normal a é dado por N g, g,),,) que está voltado para cima. Como n aponta para baio então n,, ) + +. Temos d N dd + + dd. Então: F n d,, + ),, )dd + ) dd + ) dd. Passando para coordenadas polares, temos: F n d r rdrdθ rθ π [ r 3 r dθdr π ] 8π. Então: F nd 6π +8π π. Por outro lado: 3 3 div F dv 3 dv 3 ) dd 3 ) π r r 3 dθdr 6π rθ + ddd r ) rdrdθ [r r ] 6π8 ) π. Eercício : Calcule o fluo do campo vetorial F através da superfície aberta, onde F,,) +e ) i + +sen ) j + + ) k e :,, com tendo componente positiva. olução: O esboço da superfície aberta está representado na figura que se segue.

3 Cálculo 3A Lista 8 Para aplicar o Teorema de Gauss, devemos considerar a superfície fechada, onde é dada por :,,) : + com k e também temos que: d + ) + ) dd ++dd dd. eja o sólido limitado por. Logo,. n Pelo Teorema de Gauss, temos F d + F d div F dv + + ) dv. Passando para coordenadas esféricas, temos: + + ) dv ρ ) ρ senφ dρdφdθ ρφθ π/ 6π [ senφ π ρ dθdρdφ π ] π/ cosφ 6π. π/ [ ρ senφ ] dφ

4 Cálculo 3A Lista 8 Cálculo de F d Temos: F d +e,+sen,+ ),, ) d Logo, A ) π ) π. F d 6π +π 6π. Eercício 3: Calcule F d, onde F,,) i + +e cos ) j + + ) k e é definida por 9 + ), ;, + e ), +, com n eterior a. olução: A superfície não é fechada e pode ser visualiada na figura que se segue Como div F +, vamos usar o teorema de Gauss. Para isso, é necessário fechar através da superfície, porção do plano com + 9, orientada com k.

5 Cálculo 3A Lista n eja o sólido limitado por e. Como está orientada positivamente, podemos aplicar o teorema de Gauss. Temos então, F d div F ddd ddd ou F d + F d. Mas F d, +e cos, + ),, ) d d onde é dada por, com,) : + 9, e, k. Logo: ) ) dd d dd dd. Então: F d dd em coordenadas polares) Logo: π 3 r 3 cos θ drdθ 3 3 π 8π. π F d 8π. cos θ dθ

6 Cálculo 3A Lista 8 Eercício : Calcule o fluo do campo 3 ) F,,) 3 +, 3 3, através da superfície do sólido definido por {,,) R 3 ; + +, + + ), + } com campo de vetores normais a apontando para fora de. olução: A figura que se segue mostra o sólido. Como estamos nas condições do teorema de Gauss, temos: F d div F ddd + + ) ddd ρ ρ senφ dρdφdθ ρφθ ρφθ ρ senφ dρdφdθ onde ρφθ {ρ,φ,θ) R 3 ; θ π, φ π }, ρ cosφ.

7 Cálculo 3A Lista 8 Então: F d π π/ cosφ ρ senφ dρdφdθ π π/ π π/ [ ρ senφ π 6 6 π π ] cosφ dφdθ cos φsenφ senφ ) dφdθ [ 6 cos6 φ+cosφ ) 6 + ] π/ 6 7 ) 8 + π ) 3 + π dθ ) π + 6 dθ ) ). Eercício : eja T o tetraedro de vértices O,,), A,,), B,6,) e C,,). ejam a superfície lateral de T constituída pelas faces de T que não estão no plano e F,,) 3 +, +, +) um campo vetorial de R 3. Calcule rot F d, com a normal eterior a. olução: A figura que se segue mostra o tetraedro T. C A B 6 Notemos que T onde é a porção do plano, limitada pelo triângulo de vértices O, A e B. Considere o vetor unitário normal a igual a k. Como T está orientada positivamente, podemos aplicar o teorema de Gauss. Temos: rot F nd div rot F ddd T

8 Cálculo 3A Lista 86 B A n 6 pois divrot F conforme observação importante) ou rot F nd + rot F d. Temos: rot F i j k ,, 3),, ). Logo: Portanto, rot F d,, ),, ) d d A ) 6. rot F d. Eercício 6: eja a superfície cônica de vértice,,h) e de base situada no plano com raio e com a componente k não negativa. eja F,,),,) i,,) j + +) k sendo f,,) de classe C. Calcule o fluo de F através de. olução: A superfície não fechada pode ser visualiada na figura a seguir.

9 Cálculo 3A Lista 87 h Como tem a componente k não negativa, então é eterior a. Temos: div F f f + pois f é de classe C e portanto, vale aqui o teorema de chwart. Para aplicarmos o teorema de Gauss, devemos considerar o sólido limitado por e porção do plano, com +, orientada com k. Temos então: F d + F d div F ddd Mas: V) 3 π h πh 3. F d Logo: ),,),,,), +),, )d )d A ) π. F d π 3 h+3). Eercício 7: eja Q uma carga elétrica localiada na origem. Pela Lei de Coulomb, a força elétrica F,,) eercida por essa carga sobre uma carga q localiada no ponto,,) com vetor posição

10 Cálculo 3A Lista 88 X é F X) εqq 3X onde ε é uma constante. Considere a força por unidade de carga εq EX) F X) q 3X εq,,) + + ) 3/ que é chamada campo elétrico de Q. Mostre que o fluo elétrico de E é igual a πεq, através de qualquer superfície fechada que contenha a origem, com normal apontando para fora se. Esta é a Lei de Gauss para uma carga simples. olução: eja uma superfície fechada contendo a origem. eja a região sólida limitada por. Como não está contida no domínio de E, R 3 {,,)}, então não podemos aplicar o Torema de Gauss no cálculo de E d. Então consideremos uma esfera : + + a, com a > tal que. n eja a região sólida limitada por e. Logo dom E. Temos. eja a normal a apontando para o interior de. Como está orientada positivamente, podemos aplicar o Teorema de Gauss. Temos então, E d div E ddd

11 Cálculo 3A Lista 89 ou E d + E d div E ddd. Verifique que div E. Então: E d E d E ) d. Cálculo de E ) d e aponta para o interior de então aponta para o eterior de. Logo,,). a Então: E εq,,),,) n ) d d + + ) 3/ a εq a ) 3/ d εq a εq a A) εq a πa πεq. a εq d d a ) 3/ a Eercício 8: eja f : R 3 R de classe C, tal que f + +. Calcule onde é a esfera + + com eterior a. olução: eja a região sólida limitada por. Pelo Teorema de Gauss, temos: f n d f ddd f ddd f d, + + ) ddd. Passando para coordenadas esféricas, temos: ρsenφcosθ ρsenφsenθ ρcosφ ddd ρ senφdρdφdθ + + ρ e ρφθ é dado por ρ ρφθ : φ π θ π

12 Cálculo 3A Lista 9 Então: π π f n d ρφθ ρ senφ dρdφdθ ρφθ ρ ρ senφ dρdφdθ π ρ senφ dφdθ π [ ρ ρ dρ π ] π. ρ π [ ρ π senφ ] π cosφ dθdφdρ dρ Eercício 9: eja f : R 3 R de classe C, tal que f + e,,), para todo 3,,) R 3. Calcule d, onde é a lata ciĺındrica com fundo e sem tampa dada por n +,, + e, com normal n apontando para fora de. olução: eja, onde é a tampa da lata. Logo, é dada por :, com,) : + e com n k e d dd. n eja o sólido limitado por. Pelo teorema de Gauss, temos n d f nd f dv π f dv [ r 3 r drddθ + ) dv ] π π ddθ π π. r rdrddθ

13 Cálculo 3A Lista 9 Mas n d n d + n d. Cálculo de n d Temos: Logo: d n f n d ),,),,,),,,),,)d,,)d 3 d 3 A) 3 π π 3. n d π π 3 π 6. Eercício : ejam c F,,) +e, c ) e,, com c > um campo vetorial em R 3 e a superfície aberta, união do hiperbolóide de uma folha +, c com o disco +,. Calcule o valor de c sabendo que rot F d 6π, onde é o campo de vetores normais apontando para fora de. olução: e + e c temos + +c. Logo, a interseção do hiperbolóide com o plano c é a circunferência + +c ), contida no plano c. O esboço de está representado na figura a seguir. c

14 Cálculo 3A Lista 9 Para aplicar o teorema de Gauss, devemos fechar com, porção do plano c, limitada pela circunferência + +c ). eja a região compacta do R 3 tal que. O esboço de está representado na figura a seguir. c n o teorema de Gauss, temos que: rot F n d + rot F d div rot ) F dv. Levando em conta que rot F d 6π e div rot F ), então rot F d 6π ) Mas rot F c i j k +e c e ) +e,e,c) +e,e, c + c e é dada por : c,,) : + +c ) com k e d dd. Então: rot F d +e,e,c),,) dd c dd ca) c [ +c ) ] π πc+c). ubstituindo em ), temos: πc+c) 6π c +c 6 c ou c 3. Como c > então c.

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015 MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

UC: Análise Matemática II. Caderno 1 : Integrais Duplos e Integrais de Linha

UC: Análise Matemática II. Caderno 1 : Integrais Duplos e Integrais de Linha ET / E, o Ano U: Análise Matemática aderno : ntegrais uplos e ntegrais de Linha (uplos, Volumes, Mudança de oordenadas, ntegrais de Linha) Elaborado de: iana Aldea Mendes e Rosário Laureano epartamento

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudança de Coordenadas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 13 de deembro de 2001 1 Rotação e Translação

Leia mais

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3 1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x

Leia mais

Exercícios: Funções e Campos Vetoriais

Exercícios: Funções e Campos Vetoriais Eercícios: Funções e Campos Vetoriais. Faça a representação gráfica dos campos vetoriais gerados por: a) V [, y] b) V y i j c) V [, y ]. Determine o lugar no espaço onde os vetores, do eercício anterior,

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici 8 C U RVA S 8.1 parametrização de curvas No Capítulo 3 estudamos as equações de uma reta no espaço e vimos que tal entidade geométrica pode ser representada pelas equações paramétricas: x r : z = a+v 1

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

A experiência de Oersted

A experiência de Oersted Os pólos de um ímã á séculos, o homem observou que determinadas pedras têm a propriedade de atrair pedaços de ferro ou interagir entre si. Essas pedras foram chamadas de ímãs e os fenômenos, que de modo

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

CAMPOS CONSERVATIVOS NO PLANO

CAMPOS CONSERVATIVOS NO PLANO CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio

Leia mais

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323.

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo B (Informática) Turmas 18 e 138 Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada:

Leia mais

Apostila de Cálculo Vetorial

Apostila de Cálculo Vetorial PET-EM Apostila de álculo Vetorial Iury de Araujo umário 1 Unidade I 5 1.1 Operações Vetoriais........................ 5 1.1.1 Adição e subtração.................... 5 1.1.2 Multiplicações Vetoriais.................

Leia mais

CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito

CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 009 e 1 o semestre letivo de 010 CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Duplas e Coordenadas Polares Nas primeiras aulas discutimos integrais duplas em algumas regiões bem adaptadas às coordenadas

Leia mais

II Cálculo Integral em R n

II Cálculo Integral em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de

Leia mais

Professor Bruno Alves

Professor Bruno Alves Professor Bruno Alves Engenharia maecânica Engenharia de produção Engenharia de controle e automação Poços de Caldas Segundo semestre de 1 Notas de aula da disciplina Cálculo III ministrada no segundo

Leia mais

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Considere uma transformação linear T(x,y) em que, 5 autovetores de T com relação aos auto valores -1 e 1, respectivamente. e,7 são os Determine

Leia mais

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013)

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) I N T E G R A L ac C Á L C U L O Prof. ADRIANO CATTAI 03 Apostila 03: Funções de Várias Variáveis (Atualizada em 13 de novembro de 2013) NOME: DATA: / / Não há ciência que fale das harmonias da natureza

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA ENSINO MÉDIO ÁREA CURRICULAR: CIÊNCIA DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS DISCIPLINA: MATEMÁTICA I SÉRIE 1.ª CH 68 ANO 2012 COMPETÊNCIAS:.

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA FUNÇÕES DE VÁRIAS VARIÁVEIS - DIFERENCIAÇÃO Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Funções de Várias Variáveis - Diferenciabilidade 2 1.1 Noções Topológicas no R n.............................

Leia mais

Cálculo III-A Módulo 5

Cálculo III-A Módulo 5 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 5 Aula 9 Mudança de Variáveis na Integral Tripla Objetivo Aprender a faer

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA Escrever a equação do movimento corresponde a escrever a 2ª Lei de Newton (F = ma) numa forma que possa ser aplicada à oceanografia. Esta Lei diz-nos que como resultado

Leia mais

FICHA DE TRABALHO 6 - RESOLUÇÃO

FICHA DE TRABALHO 6 - RESOLUÇÃO ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes

Leia mais

Seção de choque diferencial

Seção de choque diferencial Seção de choque diferencial Em uma postagem anterior, Seções de choque, apresentei o conceito de seção de choque como sendo uma medida da probabilidade de colisão entre uma partícula incidente e uma partícula

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Vectorial

Exercícios Resolvidos Integral de Linha de um Campo Vectorial Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ercícios Resolvidos Integral de inha de um ampo Vectorial ercício onsidere o campo vectorial F,, z =,, z. alcule o integral

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3 Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Famílias Indexadas de Conjuntos - ME. (Alguns Exemplos) Matemática Elementar - EAD. 4 de setembro de 2014

Famílias Indexadas de Conjuntos - ME. (Alguns Exemplos) Matemática Elementar - EAD. 4 de setembro de 2014 Alguns Exemplos: Famílias Indexadas de Conjuntos (Alguns Exemplos) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014 Exemplo 1 Alguns Exemplos:

Leia mais

Lei de Coulomb. Charles Augustin de Coulomb

Lei de Coulomb. Charles Augustin de Coulomb Lei de Coulomb Charles Augustin de Coulomb A Lei de Coulomb foi descoberta pelo físico francês Charles Augustin de Coulomb, trata do princípio fundamental da eletricidade. Em particular, diz-nos que o

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 17/dezembro/006 RACIOCÍNIO MATEMÁTICO 01. Em uma pesquisa de mercado feita com 50 entrevistados, todos responderam o seguinte questionário: I. Assinale

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Revisão Matemática Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br Metro é uma unidade básica para representação de medidas de comprimento no Sistema Internacional(SI). Prefixos

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA Professor, nós, da Editora Moderna, temos como propósito uma educação de qualidade, que respeita as particularidades de todo o país. Desta maneira, o apoio ao

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos. Exercício 1 (individual) - Entrega: quarta 13/08

Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos. Exercício 1 (individual) - Entrega: quarta 13/08 Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos Exercício 1 (individual) - Entrega: quarta 13/08 Escolha um objeto entre os que possivelmente compõem uma clínica médica de exames

Leia mais

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta.

(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta. UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta Lista de Exercícios de Cálculo II - MTM13 Prof. Júlio César do Espírito Santo (com colaboraçao

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Cálculo I -A- Humberto José Bortolossi. Parte 1 Versão 0.9. [Folha 1] Departamento de Matemática Aplicada Universidade Federal Fluminense

Cálculo I -A- Humberto José Bortolossi. Parte 1 Versão 0.9. [Folha 1] Departamento de Matemática Aplicada Universidade Federal Fluminense [Folha 1] Cálculo I -A- Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 1 Versão 0.9 Parte 1 Cálculo I -A- 1 Conteúdo do curso [Folha 2] Apresentação

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO ONDAS 2004 / 05. Exercícios teórico-práticos FILIPE SANTOS MOREIRA

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO ONDAS 2004 / 05. Exercícios teórico-práticos FILIPE SANTOS MOREIRA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO ONDAS 004 / 05 Eercícios teórico-práticos FILIPE SANTOS MOREIRA Ondas (EE) Eercícios TP Índice ÍNDICE I DERIVADAS E INTEGRAIS

Leia mais

XXIII OLIMPÍADA PAULISTA DE MATEMÁTICA

XXIII OLIMPÍADA PAULISTA DE MATEMÁTICA III OLIMPÍD PULIST DE MTEMÁTI 1999 - PROV D FSE FINL a SÉRIE - ENSINO FUNDMENTL Instruções: FOLH DE PERGUNTS duração desta prova é de 3 horas. O tempo mínimo de permanência é de 1h 30min. Nesta prova há

Leia mais

Elipses e Gravitação

Elipses e Gravitação Elipses e Gravitação Cássio dos Santos Sousa 6 de novembro de 2013 Sumário 1 Introdução 3 2 Definição 3 3 Nomenclaturas 3 4 Equação da elipse na forma cartesiana 4 5 Semi-latus rectum 5 6 Excentricidade

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5.

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5. UFPB/PRAI/CCT/DME - CAMPUS II DISCIPLINA: Álgebra Linear ALUNO (A): 2 a LISTA DE EXERCÍCIOS 1 a PARTE: QUESTÕES TIPO VERDADEIRO OU FALSO COM JUSTI- FICATIVA. 1. O conjunto dos polinômios de grau m com

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão 1º no º Semestre 1. Cálculo vectorial 1.1. Introdução análise vectorial é um assunto do âmbito da matemática e não propriamente da Engenharia. No entanto, é quase impossível estudar Electrostática e Magnetismo

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Autor: Josiane Bernini Jorente Martins NRE: Assis Chateaubriand Escola: Colégio Estadual Chateaubriandense

Autor: Josiane Bernini Jorente Martins NRE: Assis Chateaubriand Escola: Colégio Estadual Chateaubriandense Autor: Josiane Bernini Jorente Martins NRE: Assis Chateaubriand Escola: Colégio Estadual Chateaubriandense Disciplina: Matemática ( ) Ensino Fundamental Disciplina da relação interdisciplinar : Geografia

Leia mais

5 Movimento devido a forças centrais

5 Movimento devido a forças centrais 5.1-1 5 Movimento devido a forças centrais Forças centrais apontam sempre para o mesmo ponto do espaço e são da forma F(r) = F(r) r/r (1) Vimos nas seções anteriores, veja 4.6.2, que as forças centrais

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Análise Matemática III - Turma Especial

Análise Matemática III - Turma Especial Análise Matemática III - Turma Especial Ficha Extra 6 - Equações de Maxwell Não precisam de entregar esta ficha omo com todas as equações básicas da Física, não é possível deduzir as equações de Maxwell;

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade.

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. AULA 3 FORÇA ELÉTRICA O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. - Um objeto em repouso (v= 0) entra em movimento, mediante a aplicação de

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais