4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada
|
|
- Patrícia Barreiro Ribeiro
- 2 Há anos
- Visualizações:
Transcrição
1 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t < 1 (d) ~r (t) = t~i + p 1 t 2~ j; 0 t 1 (e) ~r (t) = t~i + ln t~j; 1 t e (f) ~r (t) = cos t~i + sen t~j + t ~ k; 0 t 2 4.1B uas parametrizações para a circunferência. Considere a circunferência : x 2 + y 2 = 2x, percorrida no sentido positivo (anti-horário), como na gura ao lado. Parametrize a curva de duas maneiras: primeiro utilize o parâmetro t e, depois, o parâmetro. Usando as duas parmetrizações, mostre que xyds = 0: 4.1C Um caminho não regular. Seja o caminho dado por: ~r (t) = t~i+t 2 sen (1=t) ~j; 0 < t 1; e ~r (0) = ~0. Note que a coordenada y do caminho é: 8 < t 2 sen (1=t) ; se 0 < t 1 y (t) = : 0, se t = 0 com derivada y 0 (t) = 2t sen (1=t) descontínua em t = 0, concluímos que o caminho não é regular: cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Calcule o comprimento da hélice do Exercício 1.1(f). [resp. 2 p 2.] 4.1E Considere o caminho = 1 + 2, sendo 1 descrito por ~r 1 (t) = t~i + t 2 ~j; 0 t 1 e 2 por ~r 2 (t) = ~i + ~j + t ~ k; 0 t 1: Esboce o caminho c e veri que que o mesmo é simples e parcialmente regular etermine o vetor velocidade onde existir.
2 COMPLEMENTO 4 NTEGRAL E LNHA F Considere o caminho 1 : ~r 1 (t) = t ~i + t 2 ~j; 1 t 2; e seja 2 o caminho de nido por ~r 2 (t) = ~r 1 (3 caminhos. t) ; 1 t 2. Esboce os grá cos de 1 e 2, e veja a relação entre esses dois 4.2 ntegral de Linha 4.2A Seja f (x; y) uma função contínua sobre um caminho regular de comprimento L: Se jf (x; y)j M, em todos os pontos (x; y) do caminho, mostre que: f (x; y) ds ML: 4.2B Calcule as seguintes integrais de linha ao longo do caminho indicado: (a) 2ydx 3xdy ; : x = 1 t; y = 5 t ; 0 t 1: [resp. 15=2] (b) (c) (d) (1;1) ( 1;1) (4; 2) (3; 1) xydx y 2 dy ; ao longo da parábola y = x 2 : [resp. 0] y x dx x dy ; ao longo da reta y = 2 x: [resp. ln(4=9) 2] y ydx + 2xdy ; : x 2 + y 2 1; y x y; y 0: [resp. =4] (e) xyds; c : x = t; y = t ; 0 t 1: [resp. p 2=3] (f) x 2 ds; : x = cos 2t; y = sen 2t ; 0 t 2: [resp. 2] (g) ydx + 2xdy ; é o triângulo de vértices (0; 0) ; (1; 0) e (1; 1) : [resp. 1=2] c (h) (i) (j) (k) (0;1) (0; 1) (0;1) (1;0) x 2 y 2 ds; : x 2 + y 2 = 4: [resp. 0] y 2 dx + x 2 dy ; ao longo do semicírculo x = p 1 y 2 : [resp. 4=3] ydx xdy x 2 + y 2 ; ao longo da curva x = cos 3 t; y = sen 3 t; 0 t =2: [resp. =2] (ax + by) dx + (x + y) dy ; : x 2 + y 2 = 4: [resp. 4( b)] (l) xy (3ydx + 7xdy) ; : 9x 2 + 4y 2 = 36: [resp. 0]
3 18 CÁLCULO E VÁRAS VARÁVES MARVALO P. MATOS (m) xydx + y 2 x 2 dy ; consiste dos arcos y = x 2 e y = p x; 0 x 1: [resp. 9=20] (n) (x + y + z) dx+(x 2y + 3z) dy +(2x + y z) dz; é o caminho que liga a origem ao ponto A (2; 3; 4), através de três segmentos retilíneos: o primeiro uma porção do eixo x, o segundo paralelo ao eixo y e o terceiro paralelo ao eixo z: [resp. 19] 4.2C Calcule R ~ F d ~r; nos seguintes casos: (a) ~ F = x 2 + y 2 ~i + 3xy 2 ~j; é o círculo x 2 + y 2 = 9: [resp. 243=4] (b) ~ F = 3x 2 8y 2 ~i + (4y 6xy) ~j; é a fronteira da região : x + y 2; x 0; y 0: [resp. 40=3] (c) ~ F = xy~i y~j + ~ k; é o segmento de reta ligando a origem ao ponto A (1; 1; 1) : [resp. 5=6] (d) ~ F = y 2 ~i + x 2 ~j; é o arco da parábola x = t; y = t 2 ; z = 0; 1 t 2: [resp. 137=10] (e) ~ F = z 2 ~i + x 2 ~ k; é o segmento de (1; 0; 1) a (2; 0; 1), seguido do segmento de (2; 0; 1) a (2; 0; 4) : [resp. 13] 4.2 Considere as funções P (x; y) = (0; 0) e seja a região descrita por 0 < x 2 + y 2 R: (a) Mostre que P dx + Qdy = 2; (b) Mostre que @P dxdy = y x x 2 e Q (x; y) = + y2 x 2, de nidas para (x; y) 6= + y2 xdx + ydy x 2 + y 2 ; onde consiste do arco da parábola y = x 2 1, 1 x 2; seguido do segmento de reta que une os pontos (2; 3) e ( 1; 0) : [resp. 0] 4.2F Se F ~ = P ~i + Q~j + R ~ k e é o ângulo entre o campo F ~ e d ~r, mostre que: p ~F d ~r = P 2 + Q 2 + R 2 cos ds: c c 4.2G Se ~ F é um campo contínuo em uma região contendo as curvas 1 : ~r (t) = t ~i + t 3 ~j; 1 t 1; e 2 : ~r (s) = (1 s) ~i + (1 s) 3 ~j; 0 s 2;
4 COMPLEMENTO 4 NTEGRAL E LNHA 19 mostre que F ~ d~r = 1 É possível generalizar esse resultado? Como? 2 ~ F d~r: 4.3 O Teorema de Green no Plano 4.3A No Exercício 2.2 identi que as integrais de linha que podem ser calculadas diretamente com o Teorema de Green. O cálculo das integrais tornou-se mais simples? Qual di culdade você enfrenta ao usar o Teorema de Green? 4.3B Com auxílio do Teorema de Green, calcule as seguintes integrais de linha: (a) (sen x + 4xy) dx + 2x 2 cos y dy = 0; é um contorno simples fechado e regular [resp. 0]; p (b) x 2 + y 2 dx + y ln(x + p x 2 + y 2 )dy ; envolve a origem [resp. 0]; (c) 2dx + x 2 y tg y dy ; : (x 1) 2 + y 2 = 1: [resp. 2]; (d) P (x) dx + Q (y) dy ; é um contorno simples, regular e fechado, que não é um círculo de raio r e P (x) e Q (y) são de funções classe C 1 na região delimitada pela curva c: [resp. 0]; (e) e x sen ydx + e x cos ydy; é a elipse 3x 2 + 8y 2 = 24: [resp. 0] (f) x 2 dx + xydy; é a cardióide r = 1 + cos ; 0 2: [resp. 0] 4.3C Por que os resultados (a) e (b) do Exercício 2.4 não contradizem o Teorema de Green? 4.3 Seja o anel descrito por 1 x 2 + y 2 2 e sejam P (x; y) e Q (x; y) funções de classe C 1, isto é, com derivadas parciais de primeira ordem contínuas, tais que P y = Q x na região : Quantos valores são possíveis para a integral de linha H P dx + Qdy, sendo uma curva simples fechada regular por partes contida em? [resp. 3] 4.3E Considere uma curva simples fechada e suave, orientada no sentido positivo, que não passa por (0; 0), e seja ' (x; y) = ln x 2 + y 2 : Se ~n representa a normal exterior à curva, mostre
5 20 CÁLCULO E VÁRAS VARÁVES MARVALO P. MATOS que a integral de linha H r' ~nds assume apenas os valores 0 e 4, conforme a curva envolva ou não a origem. 4.3F Considere o campo vetorial: ~F (x; y) = x3 + 2 x 1 ~ y i + (y 2) 3~ j e sejam 1 ; 2 ; 3 e 4 os caminhos exibidos na gura ao lado. Sabendo que H ~ F d~r = 10, calcule H ~ F d~r Consequências do Teorema de Green Nos exercícios 3.3H a 3.3N, representa uma região do plano xy com fronteira simples, fechada e regular por partes. A área da região estamos representando por A () : Lembramos as fórmulas clássicas no caso bidimensional: Green iferencial: Green Vetorial: Gauss: P dx + Qdy = ( F ~ T ~ )ds = ( F ~ ~n)ds = (Q x P y ) da (r ~ F ) ~ kda r ~ F da onde r F ~ = P x + Q y é o divergente, r F ~ = (Q x P y ) ~ k é o rotacional do campo F ~ = P (x; y)~i + Q (x; y)~j e ~ é a normal exterior à fronteira : 4.3G Veri que o Teorema da ivergência no plano para os seguintes dados: (a) ~ F (x; y) = 3y~i 2x~j ; é a região delimitada por x 2=3 + y 2=3 = 1 (b) ~ F (x; y) = x 2 ~i + y 2 ~j ; é a região delimitada por 4x y 2 = 100: 4.3H Seja f (x; y) uma função de classe C 2, isto é, com derivadas parciais de segunda ordem contínuas, em uma região. Se f = 0 em ; use a Fórmula de Green e deduza que: f y dx f x dy = 0:
6 COMPLEMENTO 4 NTEGRAL E LNHA Nas condições do exercício precedente e considerando v de classe C 1, mostre que: (f x dy f y dx) v = (v x f x + v y f y ) dxdy: 4.3J Se x 0 e y 0 representam as coordenadas do centróide da região ; com densidade de massa 1; mostre que: 2x 0 A () = x 2 dy e y 0 A () = xydy : 4.3K Considerando F ~ = ru na Fórmula de Gauss, sendo u de classe C 2 ; deduza a u dxdy ds: 4.3L Com auxílio da Regra do Produto para derivação, obtenha a seguinte propriedade para o divergente: r (vru) = vu + ru rv: Agora, considere na Fórmula de Gauss F ~ = vru e deduza a identidade: dentidade de Green: vu dxdy + ru rv dxdy ds: 4.3M Se u = 0 na região, usando v = u na dentidade de Green, mostre que: jruj 2 dxdy ds: 4.3N Seja f (x; y) um campo de classe C 1 na região : Considerando na Fórmula de Gauss ~F = f (x; y)~i, dxdy = f 1 ds; onde ~ = 1 ~i + 2 ~j é a normal exterior à fornteira : 4.3O Um o tem o formato do círculo x 2 + y 2 = a 2. etermine sua massa e o momento de inércia em torno de um diâmetro, se a densidade no ponto (x; y) do o é (x; y) = jxj + jyj : [resp. m = 8a 2 L = 4a 4 ] 4.3P Seja ~ = 1 ~i+ 2 ~j o campo de vetores normais exteriores a uma curva simples fechada e regular. Use a Fórmula de Gauss com F ~ =~i e F ~ = ~j e deduza que: 1 (x; y) ds = 2 (x; y) ds = 0
7 22 CÁLCULO E VÁRAS VARÁVES MARVALO P. MATOS 4.4 Campos Conservativos 4.4A Seja ' (x; y; z) uma função de classe C 1 em uma região contendo uma curva regular com origem no ponto A e extremidade no ponto B. Mostre que: r' d ~r = ' (B) ' (A) : 4.4B Se ' e são duas funções potenciais de um mesmo campo vetorial F ~, em uma região ; mostre que existe uma constante C tal que ' (x; y; z) = (x; y; z) + C em qualquer ponto (x; y; z) da região : 4.4C Considere o campo de forças F ~ (x; y; z) = y~i + z~j + yz ~ k: (a) Veri que que F ~ não é conservativo; (b) Qual o trabalho realizado pelo campo F ~ para mover uma partícula do ponto A (1; 0; 1) ao ponto B ( 1; 0; e ) ao longo da curva ~r (t) = cos t~i + sen t~j + e t ~ k? [resp. (2e 2 5e 5 3)=10] 4.4 Um campo radial de forças no plano é descrito por F ~ (x; y) = f (r) ~r; onde ~r = x~i+y~j e r = k~rk. Admitindo f de classe C 1, veri que que um tal campo é conservativo e calcule a integral R f (r) ~r d~r sobre o semicírculo : x2 + y 2 = 1; y 0: [resp. 0. Note que ~r d~r = 0, ao longo do semi-círculo] 4.4E Encontre uma função potencial para o campo ~ F de nido em R 2 n f0; 0g por ~ F (~r) = r p ~r. [resp. '(~r) = 1 p+2 rp+2 ; se p 6= 2 e '(~r) = ln r + C; se p = 2] 4.4F Mostre que as funções P (x; y) = y x x 2 e Q (x; y) = + y2 x 2 satisfazem a relação @x, para (x; y) 6= (0; 0) ; mas o campo F ~ (x; y) = P (x; y) ~i + Q (x; y) ~j não é conservativo em região alguma contendo a origem. (veja o Exercício 4.2) 4.4G Veri que se o campo (respectivamente a forma) é conservativo (respectivamente exata) e determine uma função potencial em caso a rmativo. (a) ~ F (x; y) = x~i + y~j: [resp. 1 2 (x2 + y 2 ) + C] (b) ~ F (x; y) = 3x 2 y~i + x 3 ~j : [resp. x 3 y + C]
8 COMPLEMENTO 4 NTEGRAL E LNHA 23 (c) ~ F (x; y) = (2xe y + y) ~i + x 2 e y + x 2y ~j: [resp. x 2 e y + xy y 2 + C] (d) ~ F (x; y; z) = x~i + y~j + z ~ k: [resp. 1 2 (x2 + y 2 + z 2 ) + C] (e) ~ F (x; y) = y 2 3x ~i + (2xy + cos y) ~j: [resp. xy x2 + sin y + C] (f) (sen y y sen x + x) dx + (cos x + x cos y + y) dy. [resp. x sin y + y cos x (x2 + y 2 ) + C] (g) [sen (yx) + xy cos (xy)] dx + x 2 cos (xy) dy: [resp. x sin(xy) + C] (h) (x + z) dx (y + z) dy + (x y) dz: [resp. (x y)z (x2 y 2 ) + C] (i) 2xy 3 dx + x 2 y 3 dy + 3x 2 yz 2 dz: [resp. não conservativo] (j) 3y 4 z 2 dx + 4x 3 y 2 dy 3x 2 y 2 dz: [resp. não conservativo] (k) 2x 2 + 8xy 2 dx + 3x 3 y 3xy dy 4y 2 z 2 + 2x 3 z dz: [resp. não conservativo] (l) y 2 cos x + z 3 dx (4 2y sen x) dy + 3xz dz: [resp. y 2 senx + xz 3 4y + 2z + C] (m) 4xy 3x 2 z dx + 2x dy 2x 3 z + 3z 2 dz: [resp. x + 2x 2 y x 3 z 2 + 2y z 3 + C] (n) (e x sen z + 2yz) dx + (2xz + 2y) dy + e x cos z + 2xy + 3z 2 dz: [resp. e x sin z + 2xyz + y 2 + z 3 + C] 4.4H Em cada caso abaixo calcule a integral de linha indicada, observando que a mesma independe do caminho. (a) (b) (c) (d) (e) (f) (1;2) (0; 1) (4;=4) ( 2;0) (1;0) (0;2) (1;1;1) (0;0;0) (0;;3) (2;0;1) (2y x) dx + 2x + y 2 dy: [resp. 13=2] tg ydx + x sec 2 ydy: [resp. 4] 2ydx + 2xdy (xy + 1) 2 : [resp. 0] (y + z) dx + (x + z) dy + (x + y) dz: [resp. 3] (e x sen y + yz) dx + (e x cos y + z sen y + xz) dy + (xy cos y) dz: [resp. 4] e x sen ydx + e x cos ydy; é uma curva suave da origem ao ponto (1; 2 ): [resp. e] 4.4 Se f (t) é uma função de classe C 1 no intervalo a t b; veri que em que região do plano xy o campo vetorial ~ F (x; y) = yf (xy) ~i+xf (xy) ~j é conservativo: [resp. em qualquer região contida em : a xy b]
9 24 CÁLCULO E VÁRAS VARÁVES MARVALO P. MATOS 4.4J Suponha que e sejam constantes, u e v campos escalares e F ~ e G ~ campos vetoriais, deduza as seguintes relações do cálculo diferencial: (a) r (u + v) = ru + rv (b) r (uv) = vru + urv (c) r(u=v) = 1=v 2 [vru urv] (d) div( F ~ + G) ~ = div F ~ + div G ~ (e) div(rot( F ~ )) = 0 (f) div( F ~ G) ~ = G ~ rot( F ~ ) F ~ rot( G) ~ (g) rot(u F ~ ) = u rot( F ~ ) + ru F ~ (h) rot( F ~ + G) ~ = rot( F ~ ) + rot( G) ~ (i) div(vru) = vu + ru rv (j) div(u F ~ ) = ru F ~ + u div( F ~ ): Usando (e) conclua que não existe um campo vetorial F ~ com rotacional x~i + y~j + z ~ k: 4.5 Trabalho, Massa, Centro de Massa, A Utilizando a fórmula A () = xdy, calcule a área das seguintes regiões: (a) é a região limitada pelo eixo y, pelas retas y = 1 e y = 3 e pela parábola y 2 = x: [resp. 26=3] (b) é a região limitada pela elipse x2 a 2 + y2 = 1: [resp. b2 ab] (c) é o triangulo com vértices nos pontos (2; 0) ; (1; 3) e ( 1; 1) : [resp. 4] 4.5B Encontre a massa de um o cujo formato é aquele da curva interseção da esfera x 2 + y 2 + z 2 = 1 com o plano x + y + z = 0, se a densidade no ponto (x; y; z) do o é (x; y; z) = x 2 : [resp. 2=3] 4.5C Qual o trabalho realizado pelo campo de forças ~ F = (2x + 3y) ~i+xy~j, para levar uma partícula da origem até o ponto A (1; 1) ; ao longo do círculo x 2 +(y 1) 2 = 1? [resp. (22 3)=6] 4.5 A força gravitacional F ~ atuando em uma partícula de massa m, próxima da superfície da terra, é dada por F ~ = mg ~ k. Mostre que o trabalho W realizado pela força F ~ sobre a partícula, quando essa se move verticalmente de uma altura H a uma altura h; é W = mg (H h) : 4.5E Um o uniforme com densidade constante = 1 tem o formato da hélice do Exercício 1.1(f). etermine seu centro de massa e seu momento de inércia com relação ao eixo L : x = z; y = p 1: [resp. C M (0; 0; ) ; L = 2 2 ( =3)]
10 COMPLEMENTO 4 NTEGRAL E LNHA F Calcule a massa m e o momento de inércia z da hélice do Exercício 1.1(f), se a densidade no ponto (x; y; z) da mola é (x; y; z) = x 2 + y 2 + z 2 : [resp. m = p =3 ; z = m] 4.5G Se F ~ y (x; y) = x 2 + y ~ x 2 i + x 2 + y ~ 2 j; mostre que div( F ~ ) = 0 e rot( F ~ ) = ~0 em R 2 n f(0; 0)g : ê exemplo de um campo vetorial F ~ para o qual rot( F ~ ) = ~0 e div( F ~ ) = 5: [resp. ~F = 5x~i] 4.5H Se ~r = x~i + y~j + z ~ k, r = k~rk e f (t) é uma função real derivável; mostre que rf (r) = f 0 (r) ~r r e rot(f (r) ~r) = ~0: Encontre os inteiros k de modo que div(r k ~r) = 0. [resp. k = 3] 4.5 Use o exercício precedente e calcule r (r) ; r(1=r) e r (ln r). [resp. ~r r ; ~r r 3 e ~r r 2 ] 4.5J Um o uniforme de massa m tem o formato de um semicírculo de raio a. Mostre que o momento de inércia em torno do diâmetro é ma 2 =2 e que o centróide jaz no eixo de simetria a uma distância 2a= do centro. 4.5K Calcule a massa e o momento de inércia z do o descrito ~r (t) = t ~i + 2t ~j + 3t ~ k; 0 t 1, cuja densidade linear é (x; y; z) = x + y + z: [resp. m =]
4.1 Curvas Regulares. 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva.
4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação ositiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma
Cálculo Diferencial e Integral II
1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.
LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).
LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre
Exercícios resolvidos P2
Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte
MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.
MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/
1.1 Domínios e Regiões
1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R
Exercícios Complementares 5.2
Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;
1.1 Domínios e Regiões
1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R
Aula 19 Teorema Fundamental das Integrais de Linha
Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade
Universidade Federal do Paraná
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j
Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1
Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio
II Cálculo Integral em R n
Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de
1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2
Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo
CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ
CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3
CAMPOS CONSERVATIVOS NO PLANO
CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3
1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens
Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,
Lista 4. 2 de junho de 2014
Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua
MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN
MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,
POTENCIAL ELÉTRICO. por unidade de carga
POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para
CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza 1. Dado um campo vetorial bidimensional ÁLULO
MAT2454 - Cálculo Diferencial e Integral para Engenharia II
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre
Resolução da Prova da Escola Naval 2009. Matemática Prova Azul
Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova
Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:
Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,
Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici
8 C U RVA S 8.1 parametrização de curvas No Capítulo 3 estudamos as equações de uma reta no espaço e vimos que tal entidade geométrica pode ser representada pelas equações paramétricas: x r : z = a+v 1
1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente.
Lista de Exercícios de álculo 3 Módulo 3 - Nona Lista - 02/2016 Parte A 1. alcule a integral do fluxo F nd (i) diretamente e (ii) usando o teorema do divergente. (a) F = (x 3 y 3 )i + (y 3 z 3 )j + (z
Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C
Notas de Aulas de Cálculo III Prof. Sandro Rodrigues Mazorche 1 o semestre de 2015 Turmas: A e C Capítulo 4: Campos Escalares e Vetoriais Campo Escalar: Seja D uma região no espaço tridimensional e seja
1. Calcule as integrais de linha de primeira espécie. (a) (b)
Lista de Exercícios de álculo 3 Nona Semana Parte 1. alcule as integrais de linha de primeira espécie. xds sobre o arco da parábola y = x 2 de (0, 0) a (1, 1). x2 + y 2 ds sobre a curva r(t) = 4 cos ti
Exercícios Resolvidos Integrais de Linha. Teorema de Green
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo
PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL
PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma
Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x
Soluções abreviadas de alguns exercícios
Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.
Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Duplas e Coordenadas Polares Nas primeiras aulas discutimos integrais duplas em algumas regiões bem adaptadas às coordenadas
3.3 Espaço Tridimensional - R 3 - versão α 1 1
1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P
Lista de Exercícios - Integrais
Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)
MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005
MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),
Introdução ao estudo de equações diferenciais
Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações
Complementos de Análise Matemática
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
I. Cálculo Diferencial em R n
Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento
As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:
Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]
1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.
2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x
1. Extremos de uma função
Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)
x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3
1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x
CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01
CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé e-mail: rthome@cefet-rj.br homepage: www.rcthome.pro.br LISTA DE EXERCÍCIOS 01 1) Seja f = 36 9x 2 4y 2. Então : (a) Calcule f, f(2, 0) e
3.4 Movimento ao longo de uma curva no espaço (parte segunda)
3.4-17 3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4.4 Mais exemplos sobre curvas no espaço. No parágrafo anterior discutimos os elementos que entram na descrição de uma trajetória
MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015
MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2
Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241
Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam Lista 1 Curvas 1. Desenhe as imagens das seguintes curvas: (a) γ(t) = (1, t) (b) γ(t) = (cos
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016
MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin
(c) f(x, y) = x 2 + y 2. (3) Faça a correspondência entre a função dada e seu o gráfico. Justifique sua resposta.
UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta Lista de Exercícios de Cálculo II - MTM13 Prof. Júlio César do Espírito Santo (com colaboraçao
Aula 6 Derivadas Direcionais e o Vetor Gradiente
Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
Aula 9 Plano tangente, diferencial e gradiente
MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Universidade Federal do Rio de Janeiro Cálculo III
Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,
Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.
www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I
3.4 Movimento ao longo de uma curva no espaço (terça parte)
3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória
Campos Vetoriais e Integrais de Linha
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e
MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas
Exercícios Complementares 5.2
Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln
Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.
Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5
Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................
1 Transformada de Laplace
Dep. de Matemática da F..T.U.. - Análise Matemática IV - 5/6. Transformada de Laplace. Usando a definição de Transformada de Lapace, mostre que a) L{} = s, s>; b) L{e kt } = s k, s>k; c) L{t n } = n!,
Exercícios: Funções e Campos Vetoriais
Eercícios: Funções e Campos Vetoriais. Faça a representação gráfica dos campos vetoriais gerados por: a) V [, y] b) V y i j c) V [, y ]. Determine o lugar no espaço onde os vetores, do eercício anterior,
4.6 Campos de vetores gradientes
4.6-1 4.6 Campos de vetores gradientes Nesta seção vamos ver porque campos vetoriais de força independentes do caminho são também chamados conservativos. Pois, resulta: quando uma partícula se move sob
Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta
Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
MECÂNICA DOS FLUIDOS 2 ME262
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo
Lista 1 Cinemática em 1D, 2D e 3D
UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista
2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).
MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico
Exercícios de Matemática Geometria Analítica - Circunferência
Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas
Cálculo Diferencial e Integral III - EAD. Professor Paulo Cupertino de Lima
Cálculo Diferencial e Integral III - EAD Professor Paulo Cupertino de Lima Sumário Sumário i 0.1 Apresentação do livro............................. v 1 Revisão: retas, planos, superfícies cilíndricas
Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se
"Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
Lista 7 Funções de Uma Variável
Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta
28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior
MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
Lista 1 - Cálculo III
Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],
FICHA DE TRABALHO 6 - RESOLUÇÃO
ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento
Aula 16 Mudança de Variável em Integrais Múltiplas
Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).
1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.
Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4
Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,
O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.
Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de
Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia
Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move
Introdução às Equações Diferenciais
Introdução às Equações Diferenciais Prof. Eduardo Nobre Lages - EES/CTEC/UFAL enl@ctec.ufal.br Contatos: enlages@hotmail.com edunol UFAL Promoção: PEC/Engenharia Civil/UFAL Maceió/AL Novembro-Dezembro/2004
1 Módulo ou norma de um vetor
Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo
2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea
2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita