1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:

Tamanho: px
Começar a partir da página:

Download "1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:"

Transcrição

1 2. NTEGRAL E LNHA CÁLCULO :::: :::::::::::::::::::::::: ARCOS REGULARES Um arco (ou trajetória) : ~r (t) = x (t)~i + y (t)~j + z (t) ~ k; a t b; denomina-se arco regular quando as componentes x (t) ; y (t) e z (t) forem continuamente deriváveis e o vetor velocidade é não nulo, isto é, r 0 (t) 6= ~0, em cada t: A orientação positiva do arco é aquela correspondente ao sentido crescente de t (de a para b). O arco com a orientação invertida é representado por e este é parametrizado por: : ~r 1 (t) = ~r ( t) ; b t a: 1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0: (c) ~r (t) = (1=t)~i + t~j; 1 t < 1: (d) ~r (t) = t~i + p 1 t 2~ j; 0 t 1: (e) ~r (t) = t~i + ln t~j; 1 t e: (f) ~r (t) = (cos t)~i + (sen t)~j + t ~ k; 0 t 2: 2. UM ARCO NÃO REGULAR. Seja o arco dado por: ~r (t) = t~i + t 2 sen (1=t) ~j; 0 < t 1; e ~r (0) = ~0. Note que a coordenada y do arco é: 8 < t 2 sen (1=t) ; se 0 < t 1 y (t) = : 0, se t = 0 com derivada y 0 (t) = 2t sen (1=t) descontínua em t = 0, concluímos que o caminho não é regular: cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 3. Calcule o comprimento da hélice do Exercício 1(f). (resp.: 2 p 2) 2.2. :::: ::::::::::::::::::::::::::::::::::::::::: CALCULANO NTEGRAL E LNHA 1. Seja f (x; y) uma função contínua sobre um arco regular de comprimento L: Se jf (x; y)j M, em todos os pontos (x; y) do arco, mostre que: f(x; y)ds ML:

2 2 CÁLCULO E VÁRAS VARÁES MARVALO P. MATOS 2. PARAMETRANO A CRCUNFERÊNCA. Considere a circunferência : x 2 + y 2 = 2x, percorrida no sentido positivo (anti-horário), como na gura ao lado. Parametrize a curva de duas maneiras: primeiro utilize o parâmetro t e, depois, o parâmetro. Usando as duas parmetrizações, mostre que xyds = 0: 3. Calcule as seguintes integrais de linha ao longo do caminho indicado: (a) (b) (c) 2ydx 3xdy ; : x = 1 t; y = 5 t ; 0 t 1: (resp.: 15=2) (1;1) ( 1;1) (4; 2) (3; 1) xydx y 2 dy ; ao longo da parábola y = x 2 : (resp.: 0) y x dx x dy ; ao longo da reta y = 2 x: (resp.: ln(4=9) 2) y (d) ydx + 2xdy ; : x 2 + y 2 1; y x y; y 0: (resp.: =4) p (e) xyds; : x = t; y = t ; 0 t 1: (resp.: 2=3) (f) (g) (h) (i) (j) (k) (i) (m) c x 2 ds; : x = cos 2t; y = sen 2t ; 0 t 2: (resp.: 2) (0;1) ydx + 2xdy ; é o triângulo de vértices (0; 0) ; (1; 0) e (1; 1) : (resp.: 1=2) (0; 1) (0;1) (1;0) x 2 y 2 ds; : x 2 + y 2 = 4: (resp.: 0) y 2 dx + x 2 dy ; ao longo do semicírculo x = p 1 y 2 : (resp.: 4=3) ydx xdy x 2 + y 2 ; ao longo da curva x = cos 3 t; y = sen 3 t; 0 t =2: (resp.: =2) (ax + by) dx + (x + y) dy ; : x 2 + y 2 = 4: (resp.: 4( b)) xy (3ydx + 7xdy) ; : 9x 2 + 4y 2 = 36: (resp.: 0) xydx + y 2 x 2 dy ; consiste dos arcos y = x 2 e y = p x; 0 x 1: (resp.: 9=20)

3 COMPLEMENTOS & EXERCÍCOS 2. NTEGRAL E LNHA 3 (n) (x + y + z) dx + (x 2y + 3z) dy + (2x + y z) dz; o caminho que liga a origem ao ponto A (2; 3; 4), através de três segmentos retilíneos: o primeiro uma porção do eixo x, o segundo paralelo ao eixo y e o terceiro paralelo ao eixo z: (resp.: 19) 4. Calcule ~F d ~r; nos seguintes casos: (a) F ~ = x 2 + y 2 ~i + 3xy 2 ~j; é o círculo x 2 + y 2 = 9: (resp.: 243=4) (b) F ~ = 3x 2 8y 2 ~i + (4y 6xy) ~j; é a fronteira da região : x + y 2; x 0; y 0, orientada no sentido horário. (resp.: 40=3) (c) F ~ = xy~i y~j + ~ k; é o segmento de reta da origem ao ponto A (1; 1; 1) : (resp.: 5=6) (d) F ~ = y 2 ~i + x 2 ~j; é o arco da parábola x = t; y = t 2 ; z = 0; 1 t 2: (resp.: 137=10) (e) F ~ = z 2 ~i + x 2 ~ k; consiste do segmento de reta de (1; 0; 1) a (2; 0; 1), seguido do segmento de reta de (2; 0; 1) a (2; 0; 4) : (resp.: 13) 5. etermine a massa e o momento de inércia, em torno de um diâmetro, do o : x 2 + y 2 = a 2, com densidade (x; y) = jxj + jyj :. (resp.: m = 8a 2 e L = 4a 4 ) 6. Considere P (x; y) = y x 2 + y 2 1 e Q (x; y) = x x 2 + y 2 1, de nidas para (x; y) 6= (0; 0) e seja a região descrita por 0 < x 2 + y 2 R: Mostre que: (a) P dx + Qdy = @P dxdy = 7. Qual o trabalho realizado pelo campo de forças ~ F = (2x + 3y) ~i + xy~j, para levar uma partícula da origem até o ponto A (1; 1) ; ao longo do círculo x 2 + (y 1) 2 = 1? [resp.: (22 3)=6] 8. Sob a ação da força ~ F (x; y) = 3y~i + 3x~j, um objeto percorre a elipse : 4x y 2 = 100; no sentido anti-horário. Qual o trabalho realizado pelo campo ~ F? [resp.: 60] 9. Um arame tem o formato da parte da elipse : 4x 2 + 9y 2 = 36 situada no primeiro quadrante e a densidade no ponto (x; y) é (x; y) = xy: Qual a massa do arame? [resp.: 38=5] 10. Um arame tem a forma da curva interseção do hemisfério x 2 + y 2 + z 2 = 4; z 0, com o plano x + z = 2 e a densidade no ponto (x; y) é (x; y; z) = xy: Qual a massa do arame? [resp.: 4]

4 4 CÁLCULO E VÁRAS VARÁES MARVALO P. MATOS 11. Seja a parte da curva interseção das superfícies S 1 : x 2 + y 2 + z 2 = R 2 e S 2 : x 2 + y 2 = R 2 =4; R > 0; situada no primeiro octante. Qual valor de R faz com que (xyz) ds = 81 p 3=2? (resp.: 6) 2.3. :::: :::::::::::::::::::::::::::::::::::::: TEOREMA E GREEN NO PLANO 1. Com auxílio do Teorema de Green, calcule as seguintes integrais de linha: (a) (sen x + 4xy) dx + 2x 2 cos y dy; é um arco simples fechado e regular. (resp.: 0) p (b) x 2 + y 2 dx + y ln(x + p x 2 + y 2 )dy ; é um contorno simples, regular e fechado, que não envolve a origem. (resp.: 0) (c) 2dx + x 2 y tg y dy ; : (x 1) 2 + y 2 = 1: (resp.: 2) (d) P (x) dx + Q (y) dy ; é um círculo de raio r e P (x) e Q (y) são de funções classe C 1 na região delimitada pela curva : (resp.: 0) (e) e x sen ydx + e x cos ydy; é a elipse 3x 2 + 8y 2 = 24: (resp.: 0) (f) x 2 dx + xydy; é a cardióide r = 1 + cos ; 0 2: (resp.: 0) 2. Por que os resultados (a) e (b) do Exercício 2.2(5) não contradizem o Teorema de Green? 3. Sejam P (x; y) e Q (x; y) funções de classe C 1 na região : 1 x 2 + y 2 2; tais que P y = Q x Quantos valores são possíveis para a integral de linha P dx + Qdy, sendo uma curva simples fechada regular por partes contida em? (resp.: 3) 4. Se ' (x; y) = ln x 2 + y 2, quais os possíveis valores de r' ~nds, sobre um arco ; simples fechado e suave, orientado no sentido positivo, que não passa por (0; 0) : (resp.: 0 e 4) ydx + xdy 5. Calcule x 2 + y 2, onde 1 é a circunferência x 2 +y 2 = 1, percorrida no sentido positivo, e 2 é a circunferência (x 2) 2 + y 2 = 1; percorrida no sentido horário. (resp.: 2) xdx + ydy 6. Calcule x 2 + y 2 ; onde consiste do arco da parábola y = x 2 1, 1 x 2; seguido do segmento de reta que une os pontos (2; 3) e ( 1; 0) : (resp.: 0)

5 COMPLEMENTOS & EXERCÍCOS 2. NTEGRAL E LNHA 5 7. Na região ; interior à elipse b 2 x 2 + a 2 y 2 = a 2 b 2 e exterior à circunferência x 2 + y 2 = R 2, com 0 < R < min fa; bg, considere o campo vetorial F ~ = 2xy + sen x 2 ~i + x 2 + 2x + cos y 2 ~j. Calcular a integral de linha ~F d~r: (resp.: 2(ab R 2 )) 8. Quando a curva não é fechada e deseja-se usar o Teorema de Green, é possível "fechar" a curva com um arco auxiliar e observar que F dr = F dr + F dr Seja o arco constituído do segmento de reta de (1; 1) até (0; 0), seguido do segmento de (0; 0) até (1; 0) : Calcule y 2 + sen x 3 dx + x + y 5 dy: (resp.: 1) 9. Considere a curva ; descrita por x 2 + y 2 6x + 8 = 0; y 0, e orientada de (4; 0) para (2; 0) : Mostre que: (e x sen y 2y ) dx + (e x cos y + e y ) dy = 3: 2.4. :::: ::::::::::::::::::::::::::::::::::::::::::::::::: CONSEQUÊNCAS O TEOREMA E GREEN No que se segue, representa uma região do plano xy com fronteira ; simples, fechada e regular por partes, e a área da região estamos representando por A () : Lembramos as fórmulas clássicas no caso bidimensional: GREEN GREEN GAUSS (FORMA FERENCAL): (FORMA VETORAL): (VERGÊNCA): P dx + Qdy = ( F ~ T ~ )ds = ( F ~ ~n)ds = (Q x P y ) da (r ~ F ) ~ kda r ~ F da onde ~ F = P (x; y)~i + Q (x; y)~j e ~ é a normal exterior à fronteira. Os operadores r ~ F = P x + Q y e r ~ F = (Q x P y ) ~ k são, respectivamente, o divergente e o rotacional do campo ~ F : 1. Veri que o Teorema da ivergência de Gauss, no plano xy, para os seguintes dados: (a) ~ F (x; y) = 3y~i 2x~j ; é a região delimitada por x 2=3 + y 2=3 = 1: (b) ~ F (x; y) = x 2 ~i + y 2 ~j ; é a região delimitada por 4x y 2 = 100:

6 6 CÁLCULO E VÁRAS VARÁES MARVALO P. MATOS 2. Seja f (x; y) uma função de classe C 2, isto é, com derivadas parciais de segunda ordem contínuas, em uma região. Se f = 0 em ; use a Fórmula de Green e deduza que: f y dx f x dy = 0: 3. Nas condições do exercício precedente e considerando v de classe C 1, mostre que: (f x dy f y dx) v = (v x f x + v y f y ) dxdy: 4. Se x 0 e y 0 representam as coordenadas do centróide da região ; com densidade de massa 1; mostre que: 2x 0 A () = x 2 dy e y 0 A () = xydy : 5. Considerando F ~ = ru na Fórmula de Gauss, sendo u de classe C 2 ; deduza a u dxdy ds: 6. Com auxílio da Regra do Produto para derivação, obtenha a seguinte propriedade para o divergente: r (vru) = vu + ru rv: Agora, considere na Fórmula de Gauss F ~ = vru e deduza a identidade: ENTAE E GREEN: vu dxdy + ru rv dxdy = 7. Se u = 0 na região, usando v = u na dentidade de Green, mostre que: jruj 2 dxdy ds: onde ~ = 1 ~i + 2 ~j é a normal exterior à fornteira : 8. As curvas 1 : x 2 + y 2 = 4; 2 : (x 2) 2 + y 2 = 1 e 3 : (x + 2) 2 + y 2 = ds: são percorridas no sentido anti-horário e considere um campo ~ F (x; y) ; de classe C 1 no domínio f(2; 0)g ; tal que: rot( F ~ (x; y)) = ~0, F ~ d~r = 6 2 e F ~ d~r = 9: 3 Qual o valor da integral de linha F ~ d~r? 1 [resp.: 15] R 2

7 COMPLEMENTOS & EXERCÍCOS 2. NTEGRAL E LNHA 7 9. Utilizando a fórmula A () = xdy, calcule a área das seguintes regiões: (a) é a região delimitada pelas retas x = 0; y = 1 e y = 3 e pela curva y 2 = x: [resp.: 26=3] (b) é a região limitada pela elipse x2 a 2 + y2 = 1: b2 [resp.: ab] (c) é o triangulo com vértices nos pontos (2; 0) ; (1; 3) e ( 1; 1) : [resp.: 4]

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

4.1 Curvas Regulares. 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva.

4.1 Curvas Regulares. 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação ositiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas Departamento de Matematica Prof. Juan arlos Vila Bravo Lista de exercicios de cálculo II uritiba, 28 de Maio de 2014 INTEGRAL DE LINHA DE AMPO VETORIAL:

Leia mais

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos:

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos: Lista álculo III -A- 201-1 10 Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 201-1 Integral de Linha de ampo Vetorial Teorema de Green ampos

Leia mais

CÁLCULO II - MAT0023. F (x, y, z) =

CÁLCULO II - MAT0023. F (x, y, z) = UNIERIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da ida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO II - MAT0023 17 a Lista de exercícios 1.

Leia mais

CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens.

CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO IV - MAT0041 1 a Lista de exercícios 1.

Leia mais

Cálculo 3. Integrais de Linha Resumo e Exercícios P2

Cálculo 3. Integrais de Linha Resumo e Exercícios P2 Cálculo 3 Integrais de Linha Resumo e Exercícios P2 Integrais de Linhas de Campos Vetoriais Calculo pelo produto escalar Dado um campo vetorial F e uma curva γ e sua orientação com parametrização γ t a

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas epartamento de Matematica Prof. Juan arlos Vila Bravo 5 ta Lista de exercicios de cálculo II uritiba, 02 de Junho de 2010 INTEGRAL E LINHA E FUNÇÃO

Leia mais

Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk

Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk Lista 3 Cálculo Vetorial Integrais de Linha e o Teorema de Green Parametrizações Encontre uma parametrização apropriada para a curva suave por partes em R 3. a) intersecção do plano z = 3 com o cilindro

Leia mais

4.1 Trajetórias & Integral de Linha

4.1 Trajetórias & Integral de Linha CÁLCULO AVANÇADO 4. CÁLCULO INTEGRAL NO R N 4. Trajetórias & Integral de Linha. Calcule a integral de linha do campo vetorial f x; y; z) = y 2 z 2 i + 2yzj x 2 k, ao longo do caminho descrito por t) =

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2 Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente.

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente. Lista de Exercícios de álculo 3 Módulo 3 - Nona Lista - 02/2016 Parte A 1. alcule a integral do fluxo F nd (i) diretamente e (ii) usando o teorema do divergente. (a) F = (x 3 y 3 )i + (y 3 z 3 )j + (z

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes.

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes. Se tima Lista de Exercı cios a lculo II - Engenharia de Produc a o extraı da do livro A LULO - vol, James Stewart a lculo Vetorial 1) Determine o campo vetorial gradiente de f. a) f (x, y) = ln(x + y)

Leia mais

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas

Leia mais

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x

Leia mais

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c)

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c) VAIÁVEL COMPLEXA 4. INTEGAÇÃO COMPLEXA 4. Função Complexa de uma Variável eal. Calcule as seguintes integrais: =4 e it dt e wt dt; (e w > ) (c) 2 e imt e int dt; m; n 2 : 2. Calcule as integrais trigonométricas:

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFGS Instituto de Matemática 2015/1 MAT0154 álculo e Geometria Analítica IIA POVA 2 15 de maio de 2015 08h0 1 2 4 5 081 Nome artão Turma hamada 0811 Seja a região plana delimitada pela curva de equação

Leia mais

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL: 5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas

Leia mais

1. Calcule as integrais de linha de primeira espécie. (a) (b)

1. Calcule as integrais de linha de primeira espécie. (a) (b) Lista de Exercícios de álculo 3 Nona Semana Parte 1. alcule as integrais de linha de primeira espécie. xds sobre o arco da parábola y = x 2 de (0, 0) a (1, 1). x2 + y 2 ds sobre a curva r(t) = 4 cos ti

Leia mais

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza 1. Dado um campo vetorial bidimensional ÁLULO

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017

MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 MAT2455 - Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 1. Determine uma representação paramétrica de cada uma das superfícies abaixo e calcule sua área:

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 4 Superfícies parametrizadas 1. Determine uma representação paramétrica de cada

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule UFPR - Universidade Federal do Paraná etor de Ciências Exatas Departamento de Matemática CM139 - Cálculo III Turma A Prof. Zeca Eidam Lista 2 uperfícies parametrizadas 1. Determine uma representação paramétrica

Leia mais

UNIDADE III LISTA DE EXERCÍCIOS

UNIDADE III LISTA DE EXERCÍCIOS Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

CÁLCULO II. Lista Semanal 3-06/04/2018

CÁLCULO II. Lista Semanal 3-06/04/2018 CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 3-06/04/2018 Questão 1. Um tetraedro é um sólido com quatro vértices P, Q, R e S e quatro faces triangulares e seu volume é um terço

Leia mais

1. Em cada caso abaixo, observe a região D e escreva a integral dupla integral iterada (repetida) de modo a obter o cálculo mais simples.

1. Em cada caso abaixo, observe a região D e escreva a integral dupla integral iterada (repetida) de modo a obter o cálculo mais simples. . INTEGRAL MÚLTIPLA CÁLCULO 3-8... :::: :::::::::::::::::::::::::::::::::::: INTEGRAIS UPLAS ITERAAS. Em cada caso abaixo, observe a região e escreva a integral dula integral iterada (reetida) de modo

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014 Cálculo 2 Cálculo Vetorial ECT1212 Prof. Ronaldo Carlotto Batista 20 de novembro de 2014 Integrais de linha Podemos integrar uma função escalar f = f (x, y, z) em um dado caminho C, esta integral é dada

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Cálculo III-A Módulo 9

Cálculo III-A Módulo 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3. AS CÔNICAS CÁLCULO VETORIAL - 2017.2 3.1 A circunferência 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa pelos pontos A (5; 1) ;

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES

LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES LITA DE EXERCÍCIO OBRE FLUXO, TEOREMA DE GAU E DE TOKE (1) Fazer exercícios 1), 2), 3), 4) da seção 10.4.4 pgs 235, 236 do livro texto. (2) Fazer exercícios 1), 2), 3), 5) da seção 10.5.3 pgs 241, 242

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA 1. Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens estavam em R. Essas funções são chamadas de funções com valores

Leia mais

Cálculo Diferencial e Integral 2: Integrais Duplas

Cálculo Diferencial e Integral 2: Integrais Duplas Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:

Leia mais

Figura6.1: A regiãoàesquerdanão ésimples;adadireitaésimples..

Figura6.1: A regiãoàesquerdanão ésimples;adadireitaésimples.. apítulo 6 TEOREMA E GREEN Nesta seção apresentaremos uma versão simplificada de um dos teoremas clássicos da Análise Vetorial, o teorema de Green. Utilizaremos alguns argumentos intuitivos aceitavéis,

Leia mais

Cálculo III-A Módulo 9 Tutor

Cálculo III-A Módulo 9 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Tutor Eercício : alcule a integral de linha diretamente e, também, pelo teorema

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln

Leia mais

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores FAULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de omputadores Análise Matemática 2 Apontamentos das aulas teóricas - Integrais de Linha 29/21 Maria do

Leia mais

1.1 Domínios & Regiões

1.1 Domínios & Regiões 1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Cálculo III-A Lista 8

Cálculo III-A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

FUNÇÕES VETORIAIS. f t = at + bt. g t ti sen t j tk. f t g t. , com a= i+ 1. Sejam ( ) e ( ) . Calcular: a) ( ) ( ) e) lim ( ) ( ) 2.

FUNÇÕES VETORIAIS. f t = at + bt. g t ti sen t j tk. f t g t. , com a= i+ 1. Sejam ( ) e ( ) . Calcular: a) ( ) ( ) e) lim ( ) ( ) 2. DEPARTAMENTO DE MATEMÁTIA APLIADA ITE Lisa 03 álculo Dierencial e Inegral II Proa.: LIDIANE SARTINI FUNÇÕES VETORIAIS = a + b b= i j;0 π. alcular: + g 1. Sejam ( a ( ( b ( g( g i sen j k e ( = + + cos

Leia mais

Capítulo 6. Integrais de Superfície. Situando a Temática. Problematizando a Temática

Capítulo 6. Integrais de Superfície. Situando a Temática. Problematizando a Temática Capítulo 6 ntegrais de Superfície Situando a Temática Não sendo possível utilizar um instrumento adequado de medição, para conhecermos a área de uma superfície qualquer, precisamos nos deslocar sobre todos

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Cálculo IV EP10 Tutor

Cálculo IV EP10 Tutor Fundação entro de iências e Educação Superior a istância do Estado do Rio de Janeiro entro de Educação Superior a istância do Estado do Rio de Janeiro álculo IV EP Tutor Eercício : alcule a integral de

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se encontra

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017 Instituto de Matemática e Estatística da USP MAT55 - Cálculo iferencial e Integral III para Engenharia a. Prova - 1o. Semestre 17-3/5/17 Turma A Questão 1: Calcule xy ds, onde é dada pela interseção das

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17; PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém

Leia mais

3.6 O Teorema de Stokes

3.6 O Teorema de Stokes 18 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.6 O Teorema de tokes Definição 3.41 eja K R um conjunto fechado e limitado, com interior não vazio, cuja fronteira K é uma curva fechada, simples e regular ou regular

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Funções de Duas ou Mais Variáveis Professora Renata Alcarde Sermarini Notas de aula do

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG INTITUTO E MATEMÁTIA epartamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/1 Prova da área I 1-8 9 10 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Z 1 Z p y. f(x, y) dxdy. 0 1 y 2. (c) y 2 = x, x y = 4, y = 1 e y =2 Z 1. (c) Z 2 Z 0. (d) Z 1 Z p 1 y. (e)

Z 1 Z p y. f(x, y) dxdy. 0 1 y 2. (c) y 2 = x, x y = 4, y = 1 e y =2 Z 1. (c) Z 2 Z 0. (d) Z 1 Z p 1 y. (e) Lista álculo III -A- 5- Universidade Federal Fluminense EGM - Instituto de Matemática e Estatística GMA - Deartamento de Matemática Alicada LISTA - 5- Integral Dula. Troque a ordem de integração em: (a)

Leia mais

Cálculo III-A Módulo 7

Cálculo III-A Módulo 7 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Módulo 7 Aula 13 Aplicações da Integral de Linha de ampo Escalar Objetivo Apresentar

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais