CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens.

Tamanho: px
Começar a partir da página:

Download "CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens."

Transcrição

1 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO IV - MAT a Lista de exercícios 1. alcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens. (a) f(x, y) = (x + y) i + (y 2 x) j, sobre a curva fechada que começa em ( 1, 0), continua ao longo do eixo X até (1, 0) e volta a ( 1, 0) pela parte superior da circunferência unitária. (b) f(x, y) = xy i + e x j, ao longo da curva α(t) = t i + t j, t [ 1, 1] percorrida em sentido horário. (c) f(x, y) = x 2 i + xy j, ao longo da curva fechada que consiste do segmento de parábola y = x 2 entre (0, 0) e (1, 1), e o segmento de reta desde (1, 1) a (0, 0). (d) f(x, y) = (x 2 2xy) i + (y 2 2xy) j, ao longo da parábola y = x 2 desde ( 1, 1) a (1, 1). (e) f(x, y) = (2a y) i + x j, ao longo da curva dada por α(t) = a(t sen t) i + a(1 cos t) j, 0 t 2π. (f) f(x, y) = (x 2 + y 2 ) i + (x 2 y 2 ) j, ao longo da curva y = 1 1 x, desde (0, 0) a (2, 0). (g) f(x, y) = (x + y) i + (x y) j, ao redor da elipse b 2 x 2 + a 2 y 2 = a 2 b 2 em sentido anti-horário. (h) f(x, y, z) = (y 2 z 2 ) i + 2yz j x 2 k, ao longo da curva descrita por α(t) = t i + t 2 j + t 3 k, 0 t 1. (i) f(x, y, z) = 2xy i + (x 2 + z) j + y k, desde (1, 0, 2) a (3, 4, 1) ao longo de um segmento de reta. (j) f(x, y, z) = x i + y j + (xz y) k, desde (0, 0, 0) a (1, 2, 4) ao longo de um segmento retilíneo. (k) f(x, y, z) = x i + y j + (xz y) k, ao longo da curva dada por α(t) = t 2 i + 2t j + 4t 3 k, 0 t 1. (l) f(x, y, z) = (2x + 3y) i + (3x + 2y) j + 3z 2 k, ao longo da trajetória de (0, 0, 0) a (4, 2, 3) que consta de três segmentos de retas paralelos aos eixos X, Y e Z, nessa ordem. (m) f(x, y, z) = ye xy i + xe xy j + xyz k, ao longo da curva de interseção do cone x 2 + y 2 = (z 1) 2 com os planos coordenados no primeiro octante, em sentido horário, visto desde (0, 0, 0). 2. alcule o valor da integral de linha dada em cada um dos seguintes itens. (a) (x 2 2xy)dx + (y 2 2xy)dy, sendo o arco de parábola y = x 2 que une os pontos ( 2, 4) e (1, 1). (x + y)dx (x y)dy (b) x 2 + y 2, onde é a circunferência x 2 + y 2 = a 2, percorrida em sentido anti-horário. dx + dy (c), onde é o contorno do quadrado de vértices (1, 0), (0, 1), ( 1, 0) e (0, 1), x + y percorrido em sentido anti-horário. (d) ydx + zdy + xdz, onde (d.1) é curva de interseção das duas superfícies x + y = 2 e x 2 + y 2 + z 2 = 2(x + y). A curva é percorrida de tal modo que olhando desde a origem o sentido horário. (d.2) é a interseção das duas superfícies z = xy e x 2 + y 2 = 1, percorrida em sentido, que visto desde acima do plano XY, é anti-horário. 3. (Integração omplexa) Seja U aberto e considere a função f : U, f(z) = u(x, y) + iv(x, y). Seja : [a, b] R 2 uma curva de classe 1 (isto é, é diferenciável e tem derivada continua) tal que ([a, b]) U (olhando este como um conjunto do plano R 2 ). Sendo z = x + iy, consideremos 1

2 a diferencial de z, de maneira formal, como dz = dx + idy, e fazendo o produto formal f(z)dz, como f(z)dz = (u(x, y) + iv(x, y))(dx + idy) = u(x, y)dx v(x, y)dy + i(v(x, y)dx + u(x, y)dy) A integral da função f(z) define-se ao longo da curva, denotada por f(z)dz, como (note que podemos escrever f(z)dz = u(x, y)dx v(x, y)dy + i (v(x, y)dx + u(x, y)dy) f(z)dz é um número complexo). Em termos das integrais de linha de campos vetoriais, f(z)dz = F d + i G d onde F, G : U R 2 R 2 são os campos F (x, y) = u(x, y) i v(x, y) j, G(x, y) = v(x, y) i + u(x, y) j. Se f, g : U são duas funções definidas no aberto U, defina sua soma f + g, e o produto de f pelo número real c, de modo natural. Mostre que (f + cg)(z)dz = f(z)dz + c g(z)dz e f(z)dz = f(z)dz onde : [a, b] R 2, ( )(t) = (a + b t). Se = 1 + 2, mostre que f(z)dz = f(z)dz + 1 f(z)dz alcule a integral (z 3 + iz + 2 i)dz, onde é a curva cuja imagem é o arco de parábola cubica y = x 3 compreendido entre x = 1 e x = 1, percorrido do ponto ( 1, 1) ao ponto (1, 1). 5. alcule a integral z 2 dz, ao longo da curva que vai do ponto p = (0, 1) ao ponto q = (1, 0), em cada um dos seguintes casos: (a) é um segmento de reta. (b) é um arco de parábola y = 1 x 2. (c) é um arco de parábola x = 1 y alcule a integral dz ao longo da curva cuja imagem é: z (a) o círculo x 2 + y 2 = 1 percorrido em sentido anti-horário. (b) o quadrado x + y = 1 percorrido em sentido anti-horário. (c) o quadrado com vértices em A = (1, 0), B = (3, 0), = (3, 2), D = (1, 2), com o percorrido A B D A. 7. Um campo de forças f do espaço de três dimensiones vem dado por f(x, y, z) = x i + y j + (xz y) k. alcule o trabalho realizado por essa força ao mover uma partícula desde (0, 0, 0) a (1, 2, 4) ao longo do segmento de reta que une esses pontos. 8. Encontre o trabalho realizado pela força f(x, y) = (x 2 y 2 ) i + 2xy j ao mover uma partícula em sentido anti-horário percorrendo uma vez o contorno do quadrado limitado pelos eixos coordenados e as retas x = a e y = a, a > Um campo de forças bi-dimensional f vem dado pela equação f(x, y) = cxy i + x 6 y 2 j sendo c uma constante positiva. Essa força atua sobre uma partícula que move-se desde (0, 0) até a reta x = 1 seguindo uma curva da forma y = ax b, onde a > 0 e b > 0. Encontre o valor de a (em função de c) tal que o trabalho realizado por esta força seja independente de b. 2

3 10. Um campo de forças f no espaço de três dimensões vem dado pela fórmula f(x, y, z) = yz i + xz j + x(y + 1) k. alcule o trabalho realizado por f ao mover uma partícula percorrendo uma vez o contorno do triângulo de vértices (0, 0, 0), (1, 1, 1), ( 1, 1, 1) em este ordem. 11. alcule o trabalho realizado pelo campo de forças f(x, y, z) = (y z) i + (z x) j + (x y) k ao longo da curva de interseção da esfera x 2 + y 2 + z 2 = 4 e o plano z = y tan θ, onde 0 < θ < π/2. A curva é percorrido de modo que, observado o plano XY desde o eixo Z positivo, o sentido aparece anti-horário. 12. alcule o trabalho realizado pelo campo de forças f(x, y, z) = y 2 i + z 2 j + x 2 k ao longo da curva de interseção da esfera x 2 + y 2 + z 2 = a 2 e o cilindro x 2 + y 2 = ax, sendo z 0 e a > 0. A curva é percorrida de modo que, observado o plano XY desde o eixo Z positivo o sentido seja horário. 13. onsidere o campo de forças F (x, y, z) = 3x 2 i + (2xz 1) j + z k. Encontre o trabalho realizado ao deslocar-se uma partícula ao longo de (a) a reta que une os pontos (0, 0, 0) e (2, 1, 3). (b) a curva x = 2t 2, y = t, z = 4t 2 1 desde t = 0 a t = alcule o trabalho que necessita-se para levar uma partícula de (1, 0) a ( 1, 0), pelo círculo x 2 +y 2 = 1, por meio de um campo de forças que atua em cada ponto com uma força constante de magnitude igual a 2, apontando na direção positiva do eixo Y. 15. Em cada ponto do plano atua uma força de magnitude constante igual a 2, a qual forma sempre projeções iguais com os eixos coordenados. alcule o trabalho necessário para deslocar-se uma partícula por meio deste campo de forças, do ponto p = (0, 0), ao ponto q = (2, 2), em cada um dos seguintes casos: (a) ao longo do segmento de reta que une p com q. (b) seguindo a trajetória (de segmentos de reta): p = (0, 0) (1, 0) (1, 1) (2, 1) (2, 2) = q. (c) ao longo da parábola y = x 2 / Seja F (x, y, z) = (6xy 3 z + 4y 2 z 3 ) i + (9x 2 y 2 z + z 4 ) j + (3x 2 y xy 2 z 2 + 4yz 3 ) k um campo de forças. Encontre o trabalho que realiza F ao mover uma partícula desde a origem ao ponto (1, 1, 1) seguindo a curva = onde 1 : semi-circunferência no plano XY que une (0, 0, 0) com (0, 2, 0), x 0; 2 : semi-circunferência no plano ZY que une (0, 2, 0) com (0, 4, 0), z 0; 3 : reta que une (0, 4, 0) com (1, 1, 1). 17. onsidere o campo de forças F (x, y) = (x + y) i + (x y) j. alcule o trabalho que é necessário para trasladar uma partícula por meio deste campo desde a origem de coordenadas hasta o ponto (2, 0) em cada um dos seguintes casos: (a) ao longo do eixo X. (b) seguindo a trajetória do semi-círculo (x 1) 2 + y 2 = 1, y 0. (c) seguindo a trajetória do semi-círculo (x 1) 2 + y 2 = 1, y Seja f : U R n R um campo escalar e α : [a, b] R n uma curva regular por partes tal que α([a, b]) U. Por definição a integral de linha sobre o campo escalar f é b fds = f(α(t)) α (t) dt. Se β : [c, d] R n é uma curva equivalente a α mostre que α a α fds = 19. alcule a integral de linha do campo escalar f com respeito ao comprimento de arco em cada um dos seguintes items. (a) (x + y)ds, onde tem a equação vetorial α(t) = (e t + 1) i + (e t 1) j, 0 t ln 2. (b) (x + y)ds, sendo o triângulo de vértices (0, 0), (1, 0) e (0, 1), percorrido em sentido antihorário. β fds. 3

4 (c) (d) (e) (f) (g) y 2 ds, onde tem a equação vetorial α(t) = a(t sen t) i + a(1 cos t) j, 0 t 2π. (x 2 + y 2 )ds, onde é dada por α(t) = a(cos t + tsen t) i + a(sen t t cos t) j, 0 t 2π. zds, onde é dada pela equação vetorial α(t) = t cos t i + t sen t j + t k, 0 t t 0. (x 4/3 + y 4/3 )ds, onde é o arco da astroide x 2/3 + y 2/3 = a 2/3 no primeiro quadrante. xyds, onde é a quarta parte da elipse b 2 x 2 + a 2 y 2 = a 2 b 2 situada no primeiro quadrante, em sentido anti-horário. 20. onsidere um fio homogêneo de forma semicircular de raio a. (a) Mostre que o centroide está situado sobre o eixo de simetria a uma distância de 2a/π do centro. (b) Mostre que o momento de inércia em relação ao diâmetro passando pelas extremidades do fio é 1 2 Ma2, onde M é a massa do fio. 21. Um fio tem a forma do circulo x 2 + y 2 = a 2. Determine a sua massa e o momento de inércia em relação a um diâmetro. sabendo que a densidade em (x, y) é x + y. 22. Determine a massa de um fio cuja forma é a da curva de intersecção da esfera x 2 + y 2 + z 2 = 1 e o plano x + y + z = 0, se a densidade do fio em (x, y, z) é x Um fio homogêneo tem a forma da porção da curva de intersecção da superfície x 2 + y 2 = z 2 com a superfície y 2 = x, compreendida entre os pontos (0, 0, 0) e (1, 1, 2). Determine a coordenada z do seu centroide. 24. Determine as coordenadas x e y do centro de massa de uma espira completa da mola descrita pela equação vetorial α(t) = a cos t i + a sen t j + bt k se a densidade em (x, y, z) é x 2 + y 2 + z Para a espira completa da mola referida no Exercício anterior, calcule os momentos de inércia I x e I y. 26. Ana Beatriz pensa pintar ambas caras de um muro cuja base está no plano XY, que tem a forma x = 30sen 3 t, y = 30cos 3 t, 0 t π/2, e cuja altura correspondente ao ponto (x, y) é y, todo medido em centímetros. (a) Faça um esboço do muro. (b) alcule que quantidade de galões de pintura é necessário, se um galão cobre 200 cm Encontre a massa da primeira espiral da hélice x = a cos t, y = asen t, z = bt, cuja densidade em cada ponto é igual ao quadrado da distância deste ponto a origem. 28. alcule a massa do arco de circunferência x = cos t, y = sen t, 0 t π, se sua densidade no ponto (x, y) é igual a y. 29. Encontre as coordenadas do centro de gravidade do arco de cicloide x = t sen t, y = 1 cos t, 0 t π, se sua densidade é constante. 30. Encontre o centro de massa de um arame de densidade constante enrolado no gráfico da hélice α(t) = 4 cos t i + 4sen t j + 3t k, t [0, π]. 31. Encontre a massa total de um arame cujo gráfico é a curva y = ln x, 1 x e, se a densidade no ponto (x, y) é igual a x Utilize a integral de linha para encontrar a área da parte determinada pela interseção do cilindro quadrado vertical x + y = a com a esfera x 2 + y 2 + z 2 = a 2. Verifique sua resposta encontrando uma maneira trivial de resolver este problema. 4

5 33. alcule as coordenadas do centro de gravidade do arco da curva y = cosh x, 0 x ln 2, se sua densidade es constante. 34. Seja g : [a, b] R uma função de classe 1 e seja f : U R 2 R 2 una função continua e positiva, onde g([a, b]) U. Mostre que a área da parte do cilindro y = g(x) que encontra-se por cima do plano z = 0 e por baixo da superfície z = f(x, y) é igual ao produto do comprimento do gráfico de y = g(x), a x b, vezes o valor médio da função f sobre o caminho α : [a, b] R 2, α(t) = (t, g(t)). 35. Determinar quais dos seguintes conjuntos abertos S de R 2 são conexos. Para cada conjunto conexo, escolher dois pontos distintos quaisquer de S e explicar como se poderia encontrar em S uma curva regular por partes que os une. (a) S = {(x, y) R 2 ; x 2 + y 2 0}. (b) S = {(x, y) R 2 ; x 2 + y 2 > 0}. (c) S = {(x, y) R 2 ; x 2 + y 2 < 1}. (d) S = {(x, y) R 2 ; 1 < x 2 + y 2 < 2}. (e) S = {(x, y) R 2 ; x 2 + y 2 > 1 e (x 3) 2 + y 2 > 1}. (f) S = {(x, y) R 2 ; x 2 + y 2 < 1 ou (x 3) 2 + y 2 < 1}. 36. Dado um campo vetorial bidimensional f(x, y) = P (x, y) i + Q(x, y) j, onde as derivadas parciais P y e Q são continuas em um conjunto aberto S. Se f é o gradiente x de um certo potencial ϕ, mostrar que P y = Q x em cada ponto de S. 37. Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 1 para mostrar que f não é um gradiente. A continuação encontre uma curva fechada tal que f 0. (a) f(x, y) = y i x j. (b) f(x, y) = y i + (xy x) j. 38. Dado um campo vetorial tridimensional onde as derivadas parciais f(x, y, z) = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k, P y, P z, Q x, Q z, R x, R y, são continuas em um conjunto aberto S. Se f é o gradiente de um certo potencial ϕ, mostrar que em cada ponto de S. P y = Q x, P z = R x e Q z = R y 39. Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f não é um gradiente. A continuação encontre uma curva fechada tal que f 0. (a) f(x, y, z) = y i + x j + x k. (b) f(x, y, z) = xy i + (x 2 + 1) j + z 2 k. (c) f(x, y, z) = y i + (x + z) j y k. (d) f(x, y, z) = (z + y) i + z j + (y + x) k. 5

6 40. Um campo de forças f está definido no espaço de três dimensões pela equação (a) Determinar se f é ou não conservativo. f(x, y, z) = y i + z j + yz k (b) alcule o trabalho realizado ao mover uma partícula ao longo da curva de equação quanto t varia de 0 a π. α(t) = cos t i + sen t j + e t k 41. Um campo de forças bidimensional F tem por equação F (x, y) = (x + y) i + (x y) j. (a) Mostrar que o trabalho realizado por essa força ao mover uma partícula seguindo a curva curva α(t) = f(t) i + g(t) j, a t b. depende unicamente de f(a), f(b), g(a) e g(b). (b) Encontre o trabalho realizado quando f(a) = 1, f(b) = 2, g(a) = 3 e g(b) = Um campo de forças vem dado em coordenadas polares pela equação F (ρ, θ) = 4sen θ i + 4sen θ j. alcule o trabalho realizado ao mover um partícula desde o ponto (1, 0) ao origem seguindo a espiral cuja equação polar é ρ = e θ. 43. Um campo de forças radial ou central F no plano pode-se expressar na forma F (x, y) = f(r)r, onde, r = x i + y j e r = r. Mostrar que um tal campo de forças é conservativo. 44. Encontre o trabalho realizado pela força F (x, y) = (3y 2 + 2) i + 16x j ao mover uma partícula desde ( 1, 0) a (1, 0) seguindo a metade superior da elipse b 2 x 2 + y 2 = b 2. Qual é a elipse (isto é, que valor de b) que faz trabalho mínimo? Foz do Iguaçu, 14 de março de 2018 Víctor Arturo Martínez León 6

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza 1. Dado um campo vetorial bidimensional ÁLULO

Leia mais

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos:

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos: Lista álculo III -A- 201-1 10 Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 201-1 Integral de Linha de ampo Vetorial Teorema de Green ampos

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas Departamento de Matematica Prof. Juan arlos Vila Bravo Lista de exercicios de cálculo II uritiba, 28 de Maio de 2014 INTEGRAL DE LINHA DE AMPO VETORIAL:

Leia mais

CÁLCULO II - MAT0023. F (x, y, z) =

CÁLCULO II - MAT0023. F (x, y, z) = UNIERIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da ida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO II - MAT0023 17 a Lista de exercícios 1.

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas epartamento de Matematica Prof. Juan arlos Vila Bravo 5 ta Lista de exercicios de cálculo II uritiba, 02 de Junho de 2010 INTEGRAL E LINHA E FUNÇÃO

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0: 2. NTEGRAL E LNHA CÁLCULO 3-2018.1 2.1. :::: :::::::::::::::::::::::: ARCOS REGULARES Um arco (ou trajetória) : ~r (t) = x (t)~i + y (t)~j + z (t) ~ k; a t b; denomina-se arco regular quando as componentes

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk

Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk Lista 3 Cálculo Vetorial Integrais de Linha e o Teorema de Green Parametrizações Encontre uma parametrização apropriada para a curva suave por partes em R 3. a) intersecção do plano z = 3 com o cilindro

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

Cálculo 3. Integrais de Linha Resumo e Exercícios P2

Cálculo 3. Integrais de Linha Resumo e Exercícios P2 Cálculo 3 Integrais de Linha Resumo e Exercícios P2 Integrais de Linhas de Campos Vetoriais Calculo pelo produto escalar Dado um campo vetorial F e uma curva γ e sua orientação com parametrização γ t a

Leia mais

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes.

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes. Se tima Lista de Exercı cios a lculo II - Engenharia de Produc a o extraı da do livro A LULO - vol, James Stewart a lculo Vetorial 1) Determine o campo vetorial gradiente de f. a) f (x, y) = ln(x + y)

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x

Leia mais

CÁLCULO III - MAT Encontre todos os máximos locais, mínimos locais e pontos de sela nas seguintes funções:

CÁLCULO III - MAT Encontre todos os máximos locais, mínimos locais e pontos de sela nas seguintes funções: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0036 9 a Lista de exercícios

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

a definição de derivada parcial como limite do que aplicar as regras de derivação.)

a definição de derivada parcial como limite do que aplicar as regras de derivação.) 2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2 Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 014 1. Em cada caso, esboce a superfície de nível c da função F : R R: a) Fx, y, z) = x + y + z e c = 1 b) Fx, y, z) =

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Derivadas Parciais - parte 2. x + 2 z. y = 1

Derivadas Parciais - parte 2. x + 2 z. y = 1 Quarta Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol, James Stewart ) Derivadas Parciais - parte 1) Verifique que a função u = 1/ x + y + z é uma solução da

Leia mais

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha INTEGRAIS DE LINHA INTRODUÇÃO: Temos como objetivo definir uma integral que é semelhante a uma integral simples, exceto que ao invés de integrarmos sobre um intervalo [a,b], integramos sobre uma curva

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT44 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 01 1. Esboce a superfície de nível da função F : A R R para o nível c: a) F(x, y, z) = x+y+z e c = 1 b) F(x, y, z) = x

Leia mais

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule UFPR - Universidade Federal do Paraná etor de Ciências Exatas Departamento de Matemática CM139 - Cálculo III Turma A Prof. Zeca Eidam Lista 2 uperfícies parametrizadas 1. Determine uma representação paramétrica

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..

Leia mais

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 4 Superfícies parametrizadas 1. Determine uma representação paramétrica de cada

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

1. Calcule as integrais de linha de primeira espécie. (a) (b)

1. Calcule as integrais de linha de primeira espécie. (a) (b) Lista de Exercícios de álculo 3 Nona Semana Parte 1. alcule as integrais de linha de primeira espécie. xds sobre o arco da parábola y = x 2 de (0, 0) a (1, 1). x2 + y 2 ds sobre a curva r(t) = 4 cos ti

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017

MAT Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 MAT2455 - Cálculo Diferencial e Integral para Engenharia III 3a. Lista de Exercícios - 1o. semestre de 2017 1. Determine uma representação paramétrica de cada uma das superfícies abaixo e calcule sua área:

Leia mais

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais:

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0021 7 a Lista de exercícios

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

UNIDADE III LISTA DE EXERCÍCIOS

UNIDADE III LISTA DE EXERCÍCIOS Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista.

Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. MAT 2454 - Cálculo II - POLI - 2 a Lista de Exercícios 2 o semestre de 2002 Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. 1. Calcule w t e w pela regra da cadeia e confira os resultados

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFGS Instituto de Matemática 2015/1 MAT0154 álculo e Geometria Analítica IIA POVA 2 15 de maio de 2015 08h0 1 2 4 5 081 Nome artão Turma hamada 0811 Seja a região plana delimitada pela curva de equação

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec x) y = cosx), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x a reta tangente

Leia mais

(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz.

(7) Suponha que sobre uma certa região do espaço o potencial elétrico V é dado por V(x, y, z) = 5x 2 3xy + xyz. 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA 3 a LISTA DE EXERCÍCIOS - 017 1) Em cada caso, esboce a superfície de nível c da função F : R 3 R: a) Fx, y, z) = x + y + 3z e c = 1 b) Fx,

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

Cálculo II - Superfícies no Espaço

Cálculo II - Superfícies no Espaço UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Cálculo IV EP10 Tutor

Cálculo IV EP10 Tutor Fundação entro de iências e Educação Superior a istância do Estado do Rio de Janeiro entro de Educação Superior a istância do Estado do Rio de Janeiro álculo IV EP Tutor Eercício : alcule a integral de

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17;

1. as equações paramétricas da reta que contém o ponto A e é perpendicular ao plano de equação x 2y + 3z = 17; PROVA 1 09 de setembro de 2015 08h30 1 2 3 4 5 081 x = 1 + 3t 0811 Considere a reta L de equações paramétricas y = t z = 5 A = (5, 0, 2). Obtenha e o ponto 1. as equações paramétricas da reta que contém

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA 1. Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens estavam em R. Essas funções são chamadas de funções com valores

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim. MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)

Leia mais

GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0

GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza 1. GEOMETRIA ANALÍTICA Respostas da 10 a

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Exercícios de Geometria Analítica - Prof. Ademir

Exercícios de Geometria Analítica - Prof. Ademir Exercícios de Geometria nalítica - Prof. demir Vetores 1. onsidere o triângulo, onde = (1, 1, 1), = (2, 1, 0) e = (3, 2, 3). Verifique que este triângulo é retângulo, diga qual vértice contém o ângulo

Leia mais

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1 14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

Lista 2. (d) f (x, y) = x y x

Lista 2. (d) f (x, y) = x y x UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.

Leia mais

Cálculo III-A Lista 8

Cálculo III-A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se

Leia mais

Cálculo III-A Módulo 9 Tutor

Cálculo III-A Módulo 9 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Tutor Eercício : alcule a integral de linha diretamente e, também, pelo teorema

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Escalar

Exercícios Resolvidos Integral de Linha de um Campo Escalar Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se encontra

Leia mais

Cilindros projetantes de uma curva

Cilindros projetantes de uma curva Cilindros projetantes de uma curva Dada uma curva C no espaço é possível obter tres cilindros retos cujas interseções fornecem a curva C. Estes cilindros são obtidos projetando-se a curva em cada um dos

Leia mais