Åaxwell Mariano de Barros

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Åaxwell Mariano de Barros"

Transcrição

1 ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA

2 ËÙÑ Ö Ó 1 Vetores no Espaço Bases Exercícios Produto Escalar Exercícios Referências Bibliográficas 14

3 Ë Ç½º½ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø ÆÇÌ Ë ÍÄ ¹¼ Î ØÓÖ ÒÓ Ô Ó O que estudamos sobre os vetores, até momento, nos dão informações puramente geométrica sobre os mesmos. Nosso objetivo agora, é o de fazer esses estudo, associando vetores e números reais, os quais chamaremos de coordenadas do vetor. Como anteriormente, denotaremos por V 3 o conjunto de todos os vetores no espaço munido das operações estudadas nas seções anteriores. Chamaremos de uma base ordenada de V 3 a todo conjunto de vetores ordenado LI, com tres elementos. Assim sendo, se três vetores formam uma base de V 3, os mesmo não possuem representantes em um mesmo plano. O primeiro resultado importante sobre base dev 3 é seguinte: Proposição Se { u 1, u 2, u 3 } é uma base de V 3, então qualquer vetor v V 3 é uma combinação linear de u 1, u 2 e u 3, isto é, existe números reais a 1, a 2 e a 3 tais que v = a z u 1 + a 2 u 2 +a 3 u 3. Demonstração. Dado um pontop, escolhemos pontosa,b,c ed tais que u 1 = PA, u 2 = PB, u 3 = PC e v = PD.

4 Vetores no Espaço 3 C D P 4 B P 2 P 1 P A P 3 Como u 1, u 2 e u 3 são LI, os seguimentos orientados [P,A], [P,B] e [P,C] não estão em um mesmo plano. Logo, a reta paralela a [P,C] que passa pelo ponto D determina um ponto P 1 no plano que contém os pontos P,A, e B. Pelo mesmo motivo, as retas que passa por P 1 paralelas a [P,A] e a [P,B] determinam, respectivamente, os pontos P 2 e P 3 nas retas que contém os segmentos [P,B] e[p,a]. O plano que passa pelo pontode é paralelo ao plano que contém os pontosp,aeb, determina na reta que contém o segmento [P,C] um ponto P 4 (ver figura acima). Como [P,A] e [P,P 3 ] são paralelos, podemos escrever PP 3 = a 1PA = a1 u 1. Como [P,B] e [P,P 2 ] são parelelos, existe um número real a 2 tal que PP 2 = a 2 PB = a2 u 2. De maneira análoga, existe a 3 tal que PP 4 =a 3 PC = a3 u 3. Logo, v = PD = PP3 + PP 2 + PP 4 =a 1 u 1 +a 2 u 2 +a 1 u 3. A proposição nos garante que, se B = { u 1, u 2, u 3 } é uma base ordenada dev 3 e se v é um vetor, existem números reaisa 1, a 2 ea 3 tais que v = a1 u 1 +a 2 u 2 +a 3 u 3. O seguinte resultado, mostrar que esses números são unicamente determinados. Proposição Sejam X = { u 1, u 2, u 3 } uma base dev 3 e v um vetor. Se v = a1 u 1 +a 2 u 2 +a 3 u 3 e v = b1 u 1 +b 2 u 2 +b 3 u 3, entãoa 1 = b 1, a 2 = b 2 e a 3 = b 3.

5 Vetores no Espaço 4 Demonstração. Como v = a 1 u 1 +a 2 u 2 +a 3 u 3 e v = b 1 u 1 +b 2 u 2 +b 3 u 3, temos que a 1 u 1 +a 2 u 2 +a 3 u 3 =b 1 u 1 +b 2 u 2 +b 3 u 3, e portanto, (a 1 b 1 ) u 1 +(a 2 b 2 ) u 2 +(a 3 b 3 ) u 3 = 0. Assim, como X é LI, segue da proposição?? que a 1 b 1 = 0, a 2 b 2 = 0 e a 3 b 3 0, ou seja, a 1 = b 1, a 2 = b 2 e a 3 = b 3. Em resumo, temos que, dado uma base B = { u 1, u 2, u 3 } de V 3, se v é um vetor, então existem e são unicos, números reais a 1, a 2 e a 3 tais que v = a 1 u 1 +a 2 u 2 + a 3 u 3. Tais números são chamados de coordenadas do vetor v na base B e será indicado por (a 1,a 2,a 3 ) B. Logo, dizer que um vetor v tem coordenadas (a 1,a 2,a 3 ) na base B = { u 1, u 2, u 3 }, significa dizer que v = a 1 u 1 +a 2 u 2 +a 3 u 3. Logo, conhecendo a base, podemos identificar o vetor v com suas coordenadas, o que nos permite usar a notação v = (a 1,a 2,a 3 ) B. É importante observar que as coordenadas de um vetor depende da escolha da base. Além disso, como uma base é um conjunto ordenado, a ordem na qual os números a 1, a 2 e a 3 aparecem na tripla (a 1,a 2,a 3 ) B é muito importante. Por exemplo, se a 1 a 2, as triplas(a 1,a 2,a 3 ) B e (a 2,a 1,a 3 ) B estão associadas a vetores diferentes. Usando as propriedades de soma de vetores e de produto de números reais por vetores, é facil verificar que são verdadeiras as seguintes igualdades: 1. (a 1,a 2,a 3 ) B +(b 1,b 2,b 3 ) B = (a 1 +b 1,a 2 +b 2,a 3 +b 3 ) B. 2. α(a 1,a 2,a 3 ) B = (αa 1,αa 2,αa 3 ) B, qualquer que seja o número real α. Proposição Dois vetores u = (a 1,a 2,a 3 ) B e v = (b 1,b 2,b 3 ) B não nulos são LD se, e somente se existeα Rtal que a 1 = αb 1, a 2 = αb 2 e a 3 =αb 3. Demonstração. A prova é consequência imediata do fato de que dois vetores são LD se, e somente se, são paralelos.

6 Vetores no Espaço 5 Usando a proposição??, temos o seguinte resultado: Corolário Dois vetores u = (a 1,a 2,a 3 ) B e v = (b 1,b 2,b 3 ) B não nulos são LD se, e somente se, as matrizes a 1 a 2 b 1 b 2 possuem determinantes nulos., a 1 a 3 b 1 b 3 e a 2 a 3 b 2 b 3 Proposição Três vetores u = (a 1,a 2,a 3 ) B, v = (b 1,b 2,b 3 ) B e w = (c 1,c 2,c 3 ) B são LD se, e somente se, a matriz tem determinante nulo. a 1 a 2 a 3 A= b 1 b 2 b 3 c 1 c 2 c 3 Demonstração. Sabemos que tres vetores são LD se, e somente se, um deles é combinação linear dos outros. Podemos supor, sem perda de generalidade, que u é uma combinação linear dos vetores v e w. Assim sendo, existem α,β R tais que u = α v +β w. Portanto, (a 1,a 2,a 3 ) = (αb 1 +βc 1,αb 2 +βc 2,αb 3 +βc 3 ),, ou seja, a 1 = αb 1 +βc 1, a 2 = αb 2 +βc 2 e a 3 =αb 3 +βc 3. Logo a 1 a 2 a 3 αb 1 +βc 1 αb 2 +βc 2 αb 3 +βc 3 A= b 1 b 2 b 3 = b 1 b 2 b 3 c 1 c 2 c 3 c 1 c 2 c 3. É facil verificar, através das operações elementares sobre as linhas de uma matriz, que a matrizaépode ser transformada em uma matrizm que tem umas das linhas nula, isto é, numa matriz não inversível. Logo, pela proposição??, A não é inversível, o portanto, deta=0. Vamos agora, introduzir o conceito de vetores ortogonais, fazendo uso do conceito geométrico de ortogonalidade entre segmentos. Dados dois vetores não nulos u e v

7 Vetores no Espaço 6 dizemos que u é ortogonal a v se existem representantes [A,B] e [C,D] de u e v respectivamente, que são ortogonais. O vetor nulo é ortogonal a qualquer vetor. Usaremos a notação u v para indicar que u é ortogonal ao vetor v. É claro que, se u v então v u. B u v A u = AB v = CA C Como consequência do teorema de Pitágoras, temos o seguinte resultado: Proposição Sejam u e v vetores não nulos. Então u e v são ortogonais se, e somente se, u + v 2 = u 2 + v 2. C v u + v B u A Uma baseb ={ u 1, u 2, u 3 } dita ser ortonormal se seus vetores são unitários e dois a dois ortogonais, isto é, B = { u 1, u 2, u 3 } é uma base ortonormal se: 1. u 1 = u 2 = u 3 = 1 e 2. u 1 u 2, u 1 u 3 e u 2 u 3 u 3 u 2 u 1 Base Ortonormal

8 Vetores no Espaço 7 Proposição Se B = { u 1, u 2, u 3 } é uma base ortonormal e u = (a 1,a 2,a 3 ) B, então u 2 = a 2 1 +a2 2 +a2 3 Demonstração. Faremos a prova apenas para o caso em que a 1 > 0, a 2 > 0 e a 3 > 0 (ver figura abaixo). a 3 u 3 u 3 u B u 1 A u 2 a 2 u 2 D a 1 u 1 C a 1 >1, a 2 > 1, a 3 > 1 Observe que u é a hipotenusa do triângulo retângulo ACB cujos catetos são a 1 u 1 +a a u 2 e a 3 u 3. Logo, pelo teorema de Pitágoras, temos u 2 = a 1 u 1 +a 2 u a 3 u 3 2. (1.1.1) ComoB é ortonormal, os vetoresa 1 u 1 ea 2 u 2 são ortogonais. Portanto, pela proposição 1.1.5, temos que a 1 u 1 + a 2 u 2 2 = a 1 u a 2 u 2 2. Usando essa igualdade em (1.1.1) obtemos u 2 = a 1 u a 2 u a 3 u 3 2. (1.1.2) Por outro lado, para cada i {1,2,3}, a i u i = a i pois a i u i = a i u i e u i = 1 uma ½º½º½ vez B é uma base ortonormal. Assim sendo, segue de (1.1.2) que u 2 = a 1 Ü Ö Ó 2 + a a 3 2 =a 2 1 +a2 2 +a SejaB uma base. Dados u =(1, 3,5) B e v =( 3,5 2) B encontre as coordenadas do vetor w na base B sabendo que w = 2 u 4 v.

9 Vetores no Espaço 8 2. Seja B uma base. Verifique se o vetor u = ( 1,3,9) B é uma combinação linear dos vetores v = (2, 1,5) B e w =( 1,1,3) B 3. Suponha que B = { u 1, u 2, u 3 } é uma base e sejam v 1 = u 1 + u 2 + u 3, v 2 = u 1 + u 2 e v 3 = u 3. Verifique se o conjunto B = { v 1, v 2, v 3 } é também uma base. 4. Suponha que B = { u 1, u 2, u 3 } é uma base e sejam v 1 = 2 u 1 u 2 + u 3, v 2 = u 2 u 3 e v 3 =3 u 3. (a) Prove que B ={ v 1, v 2, v 3 } é uma base. (b) Se u = (2, 1,1) B encontre x,y e z tais que u = (x,y,z) B. 5. Suponha queb é uma base ortonormal. Se u = (2, 1, 2) B encontre u. 6. Suponha queb é uma base ortonormal. Encontre um vetor unitário, isto é um vetor de norma 1, na mesma direção e sentido do vetor u = ( 2,0,3) B. 7. Sejam B uma base ortonormal, P o = (a,b,c) B um ponto no espaço e r um número real positivo. A esfera de raio r e centro no P o é o conjunto de todos os pontos o Ë Ç½º¾ espaço cuja a distância para o pontop o é igual ar. Mostre quep =(x,y,z) pertence a esfera de raior e centro emp ÈÖÓ ÙØÓ Ð Ö o se, e somente se (x a) 2 +(y b) 2 +(z c) 2 = r 2. Na seção anterior, definimos vetores ortogonais. Portanto, é razoável nos perguntar se podemos medir ângulos entre vetores. A resposta a essa pergunta é sim. Para isso, fazeremos uso de uma operação chamada de produto escalar. Porém, antes disso, é necessário definir ângulos entre dois vetores. Dados dois vetores u e v não-nulos e um pontop qualquer do espaço, sabemos que podemos escolher dois pontos A e B tais que u = PA e v = PB. O ângulo entre u e v é, por definição, o menor dos ângulo A PB e B PA. É claro que a medida de tal ângulo,

10 Vetores no Espaço 9 independe da escolha do ponto P e da escolha dos segmentos orientados [P,A] e [P,B], com origem comum, representantes de u e v, respectivamente. Note que, seθ é o ângulo entre dois vetores quaisquer, então por definição,θ é o menor entre os ângulos A PB eb PA. Portanto 0 θ π. A P u θ v B Se u e v são vetores não nulos, o ângulo entre eles será denotado por ang( u, v ). Suponha que u = PA e v = PB. Usando a lei dos cossenos no triângulo APB (ver figura abaixo), obtemos a seguinte relação: uma vez que BA= u v. u v 2 = u 2 + v 2 2 u v cosθ (1.2.1) A P u θ v B Então, Suponha queb é uma base ortonormal dev 3, que u =(a 1,a 2,a 3 ) B e v =(b 1,b 2,b 3 ) B. u v 2 = (a 1 b 1 ) 2 +(a 2 b 2 ) 2 +(a 3 b 3 ) 2 = (a 2 1 +a2 2 +a2 3 )+(b2 1 +b2 2 +b2 3 )+2(a 1b 1 +a 2 b 2 +a 3 b 3 ) = u 2 + v 2 +2(a 1 b 1 +a 2 b 2 +a 3 b 3 ). (1.2.2) Comparando (1.2.1) com (1.2.2), obtemos a seguinte relação: u v cosθ = a 1 b 1 +a 2 b 2 +a 3 b 3. (1.2.3)

11 Vetores no Espaço 10 Observe que a relação (1.2.3) nos permite calcular o cosseno entre dois vetores não nulos através de suas coordenadas. Dados dois vetores u e v, chamamos de produto escalar de u por v ao número real, denotado por u, v, que satisfaz: 1. u, v = 0 se u = 0 ou v = Se u 0 e v 0, então u, v = u v cosθ, onde θ = ang( u, v ). Algumas observações: 1. Segue da definição que, se u 0 e v 0, então onde θ = ang( u, v ). cosθ = u, v u v, 2. Além disso, temos que u = u, u. De fato, se u = 0, a igualdade ocorre trivialmente. Se u 0, temos que θ = ang( u, u) = 0, ou seja, cosθ = 1. Logo, usando a definição de produto escalar teremos: u = u, u 3. Se u v, então u, v =0(ver exercício ). 4. Segue de (1.2.3) que, se B é uma base ortonormal de V 3 e se u = (a 1,a 2,a 3 ) B, v = (b 1,b 2,b 3 ) B são vetores não nulos então u, v =a 1 b 1 +a 2 b 2 +a 3 b Segue dos itens 2. e 3. que, seb = { u 1, u 2, u 3 } é uma base ortonormal então, v 1, v 1 = v 2, v 2 = v 3, v 3 =1 e v 1, v 2 = v 1, v 3 = v 2, v 3 =0. A prova da proposição abaixo será deixada como exercício. Proposição Sejam u, v e w vetores. As seguintes propriedades são verdadeiras:

12 Vetores no Espaço Se u 0, então u, u >0 2. u, v = v, u. 3. u, v + w = u, v + u, w. 4. α u, v =α u, v, para todo α R. Proposição Dados u e v valem as seguintes propriedades: 1. u + v 2 = u 2 +2 u, v + v u, v u v (Desigualdade de Schawarz). 3. u + v u + v (Desigualdade Triangular). Demonstração. 1. Note que u + v = u ( v ). Logo, por (1.2.1) temos u + v 2 = u ( v ) 2 = u 2 + v 2 u, v = u 2 + v +2 u, v, uma vez que v = v e pela proposição (item 4.), u, v = u, v. 2. Note primeiro que, se u = 0 ou v = 0, vale a igualdade. Se u 0 e v 0 então, por definição cosθ = u, v u v onde θ = ang( u, v ). Com0 cosθ 1, segue que ou seja, u, v u v. u, v u v 1 A desigualdade triangular é consequência dos itens 1 e 2 e a prova da mesma será deixada com exercício. Dados dois vetores u e v. Suponha que v 0. Chamamos de projeção ortogonal de u sobre v ao vetor w, que satisfaz as seguintes condições:

13 Vetores no Espaço w é paralelo a v e 2. w u é ortogonal a v. Normalmente, a projeção ortogonal de u sobre v é denotada por prj v u. u e v f prj v u prj f e Segue da definição de prj v u que existe α Rtal que prj v u = α v e prj v u u, v = 0. Logo, prj v u u, v = 0 α v u, v =0 α v, v u, v =0 ou seja, Portanto, temos que α = u, v v 2. prj v u = u, v v 2 v Exemplo Suponha que B = { u 1, u 2, u 3 } é uma base ortonormal. Sejam u = (5,1,2) ½º¾º½ B e v =( 2, 2,1) B. Como u, v = = 10 e v 2 = 4+4+1=9, temos que prj u, v v u = v = Ü Ö Ó 10 v 2 9 ( 2, 2,1) =(20 9,20 9, 10 9 ) B. 1. Prove a proposição Prove a desigualdade triangular.

14 Vetores no Espaço Seja B uma base. Dados u = (a1,b 1,c 1 ) B, v = (a2,b 2,c 2 ) e w = (b1 c 2 c 1,a 2 c 1 c 2 a 1 a 1 c 2 a 2 c 2 ), calcule u, w e v, w. 4. Sejam B uma base e u = (a,b,c) B um vetor unitário tal que abc 0. Encontre α sabendo que os vetores v = ( αb,αb,0) B e w = ( αac,αbc, α 1 ) B e u formam uma base ortonormal. 5. É verdade que se u 1, u 2, u 3 e u 4 são quatro vetores no espaço um deles é combinação linear dos outros três? Justifique. 6. Seja B uma base ortonormal. Determine o valor de m de modo que os vetores u = (m+1,1,3) B e v = (m 1, 1, 2) B sejam ortogonais. 7. Sejam u, v e w vetores tais queang( u, v )=30 o,ang( u, w)=45 o eang( v, w)= 90 o. Prove que B ={ u, v, w} é uma base. 8. Prove que se B = { u 1, u 2, u 2 } é uma base ortonormal e se u = (a,b,c) B então a= u, u 1, b= u, u 2 e c = u, u Sejam u e v. Prove que: (a) 4 u, v = u + v 2 u v 2. (b) Se u v então u + v 2 = u v 2. (c) u + v 2 + u v 2 = 2 ( u 2 + v 2). 10. SejaB={ u 1, u 2, u 3 } uma base ortonormal. Dados u =(2, 2,1) B e v =(3, 6,0) B encontre a projeção ortogonal de v sobre u. 11. Seja B = { u 1, u 2, u 3 } uma base ortonormal, u um vetor não nulo e α 0. Prove que, para qualque vetor v, vale prj u v = prj α u v

15 Ê Ö Ò Ð Ó Ö [1] Camargo, I. de. e Boulos, P., Geometria Analítica: um tratamento vetorial, São Paulo, Prentice Hall, [2] Lima, E.L., Coordenadas no Plano, Coleção do Professor de Matemática, Rio de Janeiro, SBM, [3] Lima, E.L., Coordenadas no Espaço, Rio de Janeiro, SBM, [4] Reis, G.L. dos. e outros, Geometria Analítica, 2.ed.,Rio de Janeiro, LTC, [5] Santos, N.M. dos., Vetores e matrizes, Rio de Janeiro, LTC,1979.

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ö Ð Ó Å Ö Ò Ó ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹ ¼½ ÐÙÐÓ Î ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ËÓ ÄÙ ¹ ÅA ¾¼½½ ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Reta Orientada....................................

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

Vetores. Definição geométrica de vetores

Vetores. Definição geométrica de vetores Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são

Leia mais

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN 1. Traço de Matrizes. Definição 1.1: O traço de uma matriz quadrada A a de ordem n é a soma dos elementos da diagonal principal. Em símbolos, TrA a a a a. Daqui em diante, A denotará uma matriz quadrada

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

Prof. José Carlos Morilla

Prof. José Carlos Morilla 1 Cálculo Vetorial e Geometria Analítica Santos 009 1 CÁLCULO VETORIAL... 4 1.1 Segmentos Orientados... 4 1. Vetores... 4 1..1 Soma de um ponto com um vetor... 5 1.. Adição de vetores... 5 1..3 Diferença

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Conceitos Fundamentais

Conceitos Fundamentais Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;

Leia mais

Notas de Aula. Álgebra Linear I

Notas de Aula. Álgebra Linear I Notas de Aula Álgebra Linear I Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudança de Coordenadas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 13 de deembro de 2001 1 Rotação e Translação

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Álgebra Linear I Solução da 5ª Lista de Exercícios

Álgebra Linear I Solução da 5ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k. Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y

Leia mais

Lista 1: Vetores -Turma L

Lista 1: Vetores -Turma L Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

ELIPSES INSCRITAS NUM TRIÂNGULO

ELIPSES INSCRITAS NUM TRIÂNGULO ELIPSES INSCRITAS NUM TRIÂNGULO SERGIO ALVES IME-USP Freqüentemente apresentada como um exemplo notável de sistema dedutivo, a Geometria tem, em geral, seus aspectos indutivos relegados a um segundo plano.

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v. Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Computação Gráfica Interativa

Computação Gráfica Interativa Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w).

Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w). Produto Interno INTRODUÇÃO Galera, vamos aprender agora as definições e as aplicações de Produto Interno. Essa matéria não é difícil, mas para ter segurança nela é necessário que o aluno tenha certa bagagem

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

(a) Encontre o custo total de ações, usando multiplicação de matrizes.

(a) Encontre o custo total de ações, usando multiplicação de matrizes. NIVERSIDADE ESTADAL DE SANTA CRZ - ESC DEARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSNTO: MATRIZES EXERCÍCIOS RESOLVIDOS. Suponha que um corretor da Bolsa de Valores faça um pedido

Leia mais

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) 1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Marília Brasil Xavier REITORA Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odivaldo Teixeira Lopes ARTE FINAL DA CAPA Odivaldo Teixeira

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N.

2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N. 2.4. PROJECÇÕES 2. dim(l)=dim(m)+dim(n) Demonstração. Se L=M N, qualquer vector x L se pode escrever de forma única como a soma de um vector x M M e outro vector x N N. 1. Dada uma base de M, x M pode

Leia mais

Gobooks.com.br. PucQuePariu.com.br

Gobooks.com.br. PucQuePariu.com.br ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Notas de Aula. Álgebra Linear

Notas de Aula. Álgebra Linear Notas de Aula Álgebra Linear Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

1 Base de um Espaço Vetorial

1 Base de um Espaço Vetorial Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura. (Números Complexos)

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura. (Números Complexos) UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura (Números Complexos) Jéssica Roldão de Oliveira Assis RA 160332 Campinas 2014 1 HISTÓRIA

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

2.1.1 Grandezas escalares e sistema referencial em uma reta

2.1.1 Grandezas escalares e sistema referencial em uma reta Capítulo 2 Vetores Uma introdução geométrica 2.1 Grandezas escalares e grandezas vetoriais 2.1.1 Grandezas escalares e sistema referencial em uma reta As grandezas escalares são conceitos que podem ser

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

As cônicas. c, a 2 elipse é uma curva do plano em que qualquer um de seus pontos, por exemplo,, satisfaz a relação:

As cônicas. c, a 2 elipse é uma curva do plano em que qualquer um de seus pontos, por exemplo,, satisfaz a relação: As cônicas As cônicas podem ser definidas a partir de certas relações que caracterizam seus pontos. A partir delas podemos obter suas equações analíticas e, a partir delas, suas propriedades.. A elipse

Leia mais

CADERNO DE ATIVIDADES

CADERNO DE ATIVIDADES 1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Pós-Graduação em Ensino de Ciências e Matemática CADERNO DE ATIVIDADES DESENVOLVIMENTO DE UMA SEQUÊNCIA DIDÁTICA PARA O PROCESSO DE APRENDIZAGEM

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais