Superfícies Parametrizadas

Tamanho: px
Começar a partir da página:

Download "Superfícies Parametrizadas"

Transcrição

1 Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT Superfícies Parametrizadas Prof. oherty Andrade Universidade Estadual de Maringá epartamento de Matemática Maringá-PR, Brazil Superfícies Parametrizadas Sumário 1. Superfícies Parametrizadas 1 2. Primeira Forma Quadrática 3 3. Área de uma superfície 5 4. Superfícies de Revolução 6 5. Integral de um campo escalar sobre uma superfície 7 1. Superfícies Parametrizadas Uma superfície parametrizada é uma função σ de classe C 1 tendo por domínio uma região simples (do tipo I ou do tipo II). Uma superfície é a imagem M de uma superfície parametrizada σ : R 3 (u, v) ((x(u, v), y(u, v), z(u, v)) satisfazendo: σ é de classe C 1

2 2 Prof. oherty Andrade σ é injetora no interior de e se q 1 pertence ao interior de e q 2, então σ(q 1 ) σ(q 2 ). N σ = σ u σ v (vetor normal a M ) não se anula no interior de. Uma tal função σ é chamada de uma parametrização de M. Seja σ uma parametrização de M e p 0 = σ(q 0 ) tal que N σ(q0 ) 0. O plano tangente a M em um ponto p 0 é o plano que passa por p 0 e tem N σ(q0 ) como vetor normal. O plano tangente de uma superfície S no ponto p S é denotado por T p (S). Exemplos 1 a) Seja f : R uma função de classe C 1. O gráco de f é uma superfície M. Armamos que σ : R 3 (x, y) (x, y, f(x, y)) é uma parametrização para M. disso, e fato, notemos facilmente que σ é de classe C 1 e injetora sobre ; além N σ = σ x σ y = ( f x, f y, 1) 0. b) Seja f : R uma função de classe C 1 dada por f(x, y) = x 2 + y 2, onde = {(x, y) R 2 ; x 2 + y 2 4}. O seu gráco é uma superfície parametrizada por σ : R 3 (x, y) (x, y, x 2 + y 2 ), como vimos em a). Uma parametrização alternativa para M pode ser: σ : R 3 (r, θ) (r cos θ, r sin θ, r), onde = [0, 2] [0, 2π]. Aqui vemos que σ r = (cos θ, sin θ, 1) Assim, N = ( r sin θ, r cos θ, r) 0. σ θ = ( r sin θ, r cos θ, 0). Vamos resumir:

3 c KIT - Cálculo iferencial e Integral 3 1 Coordenadas Retangulares: Podemos olhar o gráco de z = f(x, y), onde f é uma função C 1 denida sobre um domínio,como uma superfície parametrizada com parâmetros x e y. Basta tomar x = x, y = y e z = f(x, y). 2 Coordenadas Polares: o mesmo modo podemos olhar uma superfície dada em coordenadas cilindricas como z = g(r, θ), como uma superfície parametrizada. Basta denir x = r cos(θ), y = r sin(θ), z = g(r, θ). 3 Coordenadas Esféricas: Também podemos olhar uma superfície dada em coordendas esféricas ρ = h(φ, θ) como uma superfície parametrizada com parâmetros φ e θ. Basta denir x = h(φ, θ) sin(φ) cos(θ), y = h(φ, θ) sin(φ) sin(θ), z = h(φ, θ) cos(φ). 4 TORO: O toro é exemplo de uma superfície de revolução. É a superfície obtida pela revolução de um círculo. Por exemplo, o círculo dado por (x b) 2 + z 2 = a 2 no plano xz girando em torno do eixo z tem a seguinte parametrização x = r cos(θ) = (b + a cos(φ)) cos(θ) y = r sin(θ) = (b + a cos(φ)) sin(θ) z = a sin(φ). Veja a seção Ÿ4. para mais informações sobre as superfícies de revolução. 2. Primeira Forma Quadrática O produto interno do R 3 S induz em cada plano tangente T p (S) de uma superfície parametrizada S um produto interno, denotado por.,. p. Se w 1 e w 2 pertencem a T p (S), então w 1, w 2 p é igual a w 1, w 2 no R 3. A primeira forma fundamental I p é a aplicação que a cada vetor w do plano tangente T p (S) da superfície S associa o número real w, w p. Se σ é uma parametrização para S, então podemos escrever I p em termos dos vetores tangentes σ u e σ v : os coecientes são dados por E = σ u σ u

4 4 Prof. oherty Andrade G = σ v σ v F = σ u σ v Calcule os coecientes da primeira forma fundamental nos casos anteriores: Clique aqui para ver o caso da superfície dada em coordenadas retangulares, Clique aqui para ver a superfície em coordenadas polares, e Clique aqui para ver a superfície em coordenadas esféricas, e também nos seguintes casos: a então Parametrização do Plano: Sejam w 1 e w 2 vetores ortonormais, X(u, v) = p 0 + uw 1 + vw 2, onde (u, v) R R, é uma parametrização do plano. b por Parametrização do Cilindro: O cilindro x 2 +y 2 = 1, é parametrizado X(u, v) = (cos u, sin u, v) onde (u, v) [0, 2π] R. c Parametrização da Hélicóide: A hélicóide é uma escada em espiral", tem a seguinte parametrização onde (u, v) [0, 2π] R. X(u, v) = (v cos u, v sin u, au) d Parametrização do Elipsóide: O elipsóide tem a seguinte parametrização x 2 a 2 + y2 b 2 + z2 c 2 = 1 X(u, v) = (a sin u cos v, b sin u sin v, c cos u). e Parametrização do Parabolóide: O parabolóide z = x2 a + y2 2 b 2 tem a seguinte parametrização X(u, v) = (au cos v, bu sin v, u 2 )

5 c KIT - Cálculo iferencial e Integral 5 3. Área de uma superfície Seja R S uma região limitada de uma superfície regular contida num sistema de vizinhanças coordenadas da parametrização X : U R 2 S. O número positivo Q chamamos de área de R. Note que de modo que X u X v du dv = A(R), Q = X 1 (R), X u X v 2 + X u, X v 2 = X u 2 X v 2, Assim podemos reescrever A(R) = Q X u X v = EG F 2. X u X v du dv = Q EG F 2 du dv. 1 Calcule a área da esfera de centro O e raio a > 0. Seja σ a parametrização da esfera σ(u, v) = (a sin v cos u, a sin v cos u, a cos v), onde 0 u π e 0 θ 2π. É fácil obter que σ u = ( a sin v sin u, a sin v cos u, 0) σ v = (a cos v cos u, a cos v sin u, a sin v), segue que Logo, E = a 2 sin 2 v, F = 0, G = a 2. N = EG F 2 = a 2 sin v. Portanto A(M) = N = EG F 2 = a 2 sin vdudv = 4πa 2. 2 Calcule a área da superfície M que é o gráco da função f(x, y) = x2 + y 2 com x 2 + y 2 4.

6 6 Prof. oherty Andrade Uma parametrização para M é dada por σ(r, θ) = (r cos θ, r sin θ, r), onde 0 r 2 e 0 θ 2π. É fácil obter que E = 2, G = r 2 e F = 0. Segue que A(M) = 2r2 drdθ = 4π 2. 3 Calcule a área da superfície limitada pelo plano 2x+y+z = 4 e o cilindro x 2 + y 2 = 1. Sejam o disco x 2 + y 2 1 e σ : R 3 a parametrização dada por σ(x, y) = (x, y, 4 2x y). Pode-se determinar que E = 5, F = 2 e G = 2. Logo, A(M) = EG F 2 da = 6dA = 6 área de = π 6. 4 Calcule a área do toro, clique aqui para ver a parametrização do toro. Uma parametrização para o toro é dada por σ(φ, θ) = ((b + a cos φ) cos θ, (b + a cos φ) sin θ, a sin φ), onde φ, θ [0, 2π]. Vemos que (tomando b = 3 e a = 1), σ φ = ( sin φ cos θ, sin φ cos θ, cos φ) σ θ = ((b + a cos φ) sin θ, (b + a cos φ) cos θ, 0), onde temos que E = 1, F = 0, G = (3 + cos φ) 2. Logo, a área de M é dada por A(M) = 2π 2π Superfícies de Revolução (3 + cos φ)2 = 12π 2. Uma maneira de obter uma superfície é girar um curva plana C em torno de uma reta L no seu plano. Isto dá uma superfície de revolução com eixo L.

7 c KIT - Cálculo iferencial e Integral 7 enição 2 (Superfície de Revolução) Seja C uma curva plana e L uma reta no mesmo plano da curva. A superfície obtida pela revolução da curva C em torno da reta L é chamada superfície de revolução. A reta L é chamada eixo e a curva C de geratriz. A esfera pode ser gerada pela revolução de uma semi-circunferência. O cilindro circular reto é obtido pela revolução de uma reta C em torno de uma reta paralela L. Teorema 3 Seja f : [a, b] R uma função positiva com f contínua em [a, b]. Se A é a área da superfície de revolução obtida girando-se a curva y = f(x) com a x b, em torno do eixo x, então temos temos A = 2π b a f(x) [f (x)] 2 + 1dx. ( ) Se o gráco da curva y = f(x), a x b, é girado em torno do eixo y, A = 2π b a x [f (x)] 2 + 1dx. Para deduzir (*) devemos dar uma parametrização de S. ena a parametrização por x = u, y = f(u) cos v, z = f(u) sin v onde a u b, 0 v 2π. Agora usando a expressão para a área de uma superfície parametrizada obtemos que A(S) = = = = 2π b 2π a 0 b a [f(u)] 2 sin 2 v + [f(u)] 2 cos 2 v + [f(u)] 2 [f (u)] 2 dv du f(u) 1 + [f (u)] 2 dv du f(u) 1 + [f (u)] 2 dv du f(u) 1 + [f (u)] 2 du. 5. Integral de um campo escalar sobre uma superfície Seja M uma superfície confeccionada com material de densidade dada por f(x, y, z). Seja σ : R 3 M uma parametrização para M. Queremos

8 8 Prof. oherty Andrade achar a massa de M. Para isto dividimos o domínio em subretângulos i. A área de σ( i ) é aproximadamente σ( i ) N(q i ) A( i ), onde q i é um ponto de i. Segue que a massa de σ( i ) é aproximadamente σ( i ) f(σ(q i ) N(q i ) A( i ). Somando obtemos uma aproximação para a massa de M : n f(σ(q i )) N(q i ) A( i ), i=1 que é uma soma de Riemann que converge para Logo, podemos denir: f(σ(q)) N(q) da. enição 4 Se f é um campo escalar contínuo, cujo domínio contém a superfície M, a integral de f sobre M, indicada por f(p)ds ou fds, M M é denida por fds = f(σ(q)) N(q) da = f(σ(q)) EG F 2 da. M Se f(x, y, z) 1, então o que se obtém na integral acima coincide com a área da superfície. Referências [1] J. Stewart, Cálculo vol 2,Pioneira,1999. [2] Z. Abud and P. Boulos, Cálculo vol 2.

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014 Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=

Leia mais

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO PROFESSOR RICARDO SÁ EARP (1) Superfícies regradas. Seja I um intervalo aberto da reta. Uma superfície imersa regrada S em R 3 é a imagem de uma imersão

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Exercícios resolvidos P3

Exercícios resolvidos P3 Exercícios resolvidos P3 Questão 1 Calcule a área da superfície obtida pela revolução da curva α(t) (R cos t,, R sin t + a), t [, 2π], < R < a, em torno do eixo x. Esta superfície é chamada de Toro. Resposta:

Leia mais

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) a) etermine números reais a 0, b, c, e d tais que o gráfico de f(x) ax + bx + cx + d tenha um ponto de inflexão em (1, ) e o coeficiente angular

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo A Lista 9 Eercício : eja uma superfície parametriada por com u π e v. ϕu,v) vcosu, vsenu,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

Superfícies Quádricas

Superfícies Quádricas Superfícies Quádricas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Superfícies de Revolução São superfícies criadas pela rotação

Leia mais

Geometria Analítica II - Aula 5 108

Geometria Analítica II - Aula 5 108 Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ

Leia mais

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1 Teoria INTEGRAIS MÚLTIPLAS Integral Dupla: Seja o retângulo R = {(x, y) R a x b, c y d} e a = x 0 < x 1

Leia mais

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP Integrais Múltiplos Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 2 c 2000, 1998 Integrais Múltiplos 1 Integrais Duplos Generalização do conceito de integral a subconjuntos limitados

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017 Instituto de Matemática e Estatística da USP MAT55 - Cálculo iferencial e Integral III para Engenharia a. Prova - 1o. Semestre 17-3/5/17 Turma A Questão 1: Calcule xy ds, onde é dada pela interseção das

Leia mais

MAT Cálculo a Várias Variáveis I. Período

MAT Cálculo a Várias Variáveis I. Período MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

F 520/MS550 - Métodos Matemáticos da Física I/Métodos de Matemática Aplicada I UNICAMP

F 520/MS550 - Métodos Matemáticos da Física I/Métodos de Matemática Aplicada I UNICAMP F 5/MS55 - Métodos Matemáticos da Física I/Métodos de Matemática Aplicada I UNICAMP Nome: GABARITO a Prova (//). Nesta questão, foi dada a superfície z = a x y, para z, e pedia-se para calcular a integral

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

2.2 Aplicações da Integral dupla

2.2 Aplicações da Integral dupla . Aplicações da Integral dupla..1 Área de figuras planas Sobre esta aplicação, não há muito o que acrescentar, pois esta foi a motivação para o conceito de integral dupla. Para calcular a área de uma região

Leia mais

Cálculo III-A Módulo 10

Cálculo III-A Módulo 10 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 10 Aula 19 Superfícies Parametriadas Objetivo Estudar as superfícies parametriadas,

Leia mais

CÁLCULO II: VOLUME II

CÁLCULO II: VOLUME II CÁLCULO II: VOLUME II MAURICIO A. VILCHES - MARIA LUIZA CORRÊA epartamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies

Leia mais

MAT Geometria Diferencial 1 - Lista 2

MAT Geometria Diferencial 1 - Lista 2 MAT036 - Geometria Diferencial 1 - Lista Monitor: Ivo Terek Couto 19 de outubro de 016 1 Superfícies - parte ; Exercício 1. Mostre que, em um ponto hiperbólico, as direções principais bissectam as direções

Leia mais

Geometria Analítica II - Aula 7 178

Geometria Analítica II - Aula 7 178 Geometria Analítica II - Aula 7 178 Aula 8 Superfícies Regradas Dizemos que uma superfície S é regrada quando por todo ponto P pertencente a S passa pelo menos uma reta r P inteiramente contida em S. Fig.

Leia mais

Cálculo II - Superfícies no Espaço

Cálculo II - Superfícies no Espaço UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG INTITUTO E MATEMÁTIA epartamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/1 Prova da área I 1-8 9 10 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

Universidade de São Paulo Eletromagnetismo ( ) Prova 1

Universidade de São Paulo Eletromagnetismo ( ) Prova 1 Instituto de Física de São Carlos Universidade de São Paulo Eletromagnetismo 760001) 3 de abril de 018 Prof. D. Boito Mon.:. Carvalho 1 sem. 018: Bacharelados em Física Nome e sobrenome: n. USP: Prova

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

Cálculo III-A Módulo 12

Cálculo III-A Módulo 12 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 1 Aula Integral de uperfície de um Campo Vetorial Objetivo Compreender a noção

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 RICARDO SA EARP Vamos tratar a Geometria Diferencial das curvas e superfícies de R 3. Vamos aplicar as equações de compatibilidade; equação de curvatura de Gauss e

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:

Leia mais

Primeira avaliação - MAT MATEMÁTICA APLICADA II - Turma A

Primeira avaliação - MAT MATEMÁTICA APLICADA II - Turma A Primeira avaliação - MAT1168 - MATEMÁTICA APLICADA II - Turma A Nome: Cartao: Regras a observar: eja sucinto porém completo. Justifique todo procedimento usado. Use notação matemática consistente. Ao usar

Leia mais

Dessa forma, podemos reescrever o domínio

Dessa forma, podemos reescrever o domínio Turma A Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. Semestre - 9// Questão. (. pontos) Calcule as seguintes integrais: (a) arctg(y)

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y Universidade Federal Fluminense Andrés Gabarito - Primeira Verificação Escolar de álculo IIIA GMA - Turma. onsidere a integral dupla a Esboce a região. y Temos que onde Observando que f(x, ydxdy + y {(x,

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada).

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada). APOIO À FICHA 7 MAGAIDA BAÍA, DM, IST (Alguns) Exemplos das aulas teóricas de 5-4-219 (revistos e com solução detalhada). 1. Calcule o volume de = {(x, y, z) 3 : x 2 + y 2 + z 2 16, z } esolução: Queremos

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

Cálculo III-A Lista 5

Cálculo III-A Lista 5 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Lista 5 Eercício : Calcule + dv onde é a região contida dentro do cilindro + = 4

Leia mais

3.6 O Teorema de Stokes

3.6 O Teorema de Stokes 18 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.6 O Teorema de tokes Definição 3.41 eja K R um conjunto fechado e limitado, com interior não vazio, cuja fronteira K é uma curva fechada, simples e regular ou regular

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

(b) a quantidade de cloro no tanque no instante t;

(b) a quantidade de cloro no tanque no instante t; NOME: Universidade Federal do Rio de Janeiro Instituto de Matemtica Departamento de Mtodos Matemticos Gabarito da a Prova de Cálculo II - 06//0 a QUESTÃO : Um tanque possui 0 litros de solução com cloro

Leia mais

2 Integrais Duplas em Coordenadas Polares

2 Integrais Duplas em Coordenadas Polares Lista 3: CDCI2 Turmas: 2AEMN e 2BEMN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Mudança de Variáveis em Integrais Duplas Exercício 1: Calcule a integral dupla transformando a região de integração

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

0.1 Superfícies Regradas

0.1 Superfícies Regradas Título : Superfícies Regradas Mínimas no Espaço Euclidiano Autor:Gilvan Alves Nascimento Instituição de Origem:Faculdade José Augusto Vieira (FJAV) Sessão temática:geometria Diferencial. RESUMO Apresentaremos

Leia mais

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO ecc~ao de Algebra e Analise, Departamento de Matematica, Instituto uperior Tecnico Analise Matematica III A - o semestre de 6/7 FIHA DE TRABALHO 6 - REOLU ~AO ) Indique se as formas diferenciais seguintes

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como

Leia mais

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas epartamento de Matematica Prof. Juan arlos Vila Bravo 5 ta Lista de exercicios de cálculo II uritiba, 02 de Junho de 2010 INTEGRAL E LINHA E FUNÇÃO

Leia mais

Marcelo M. Santos DM-IMECC-UNICAMP msantos/

Marcelo M. Santos DM-IMECC-UNICAMP  msantos/ Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III Escola Politécnica - 3 a Prova - 21/06/2016. Turma A 1 a Questão: a) (1,5) Seja

MAT Cálculo Diferencial e Integral para Engenharia III Escola Politécnica - 3 a Prova - 21/06/2016. Turma A 1 a Questão: a) (1,5) Seja urma A 1 a Questão: MA55 - Cálculo Diferencial e Integral para Engenharia III Escola Politécnica - a Prova - 1/6/16 a 1,5 eja parte do plano x + y + z = 8 limitada pelos plano x =, y = e z =. Calcule F

Leia mais

Cálculo III-A Módulo 2 Tutor

Cálculo III-A Módulo 2 Tutor Eercício : Calcule Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor + e +. + da onde é a região compreendida pelas retas,,

Leia mais

FICHA DE TRABALHO 2 - RESOLUÇÃO

FICHA DE TRABALHO 2 - RESOLUÇÃO Secção de Álgebra e Análise, Departamento de Matemática, Instituto Superior Técnico Análise Matemática III A - 1 o semestre de 2003/04 FICHA DE TRABALHO 2 - RESOLUÇÃO 1) Seja U R n um aberto e f : U R

Leia mais

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 4 Superfícies parametrizadas 1. Determine uma representação paramétrica de cada

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais