Integrais Duplos e Triplos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Integrais Duplos e Triplos."

Transcrição

1 Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x ) dx dy xcosy) ycosx)) dy dx x 3 e y x dy dx xercício sboce a região delimitada pelas curvas dadas pelas equações seguintes e calcule a sua área. a. y = x, x = 4, y = b. y = x 3, x =, y = 2 y = x 3, x = 2, y = y = x, y = x 3 xercício sboce a região de integração para cada um dos seguintes integrais iterados: a. x x 2 fx, y) dy dx b. 3 y y fx, y) dx dy 4 x x 2 fx, y) dy dx π lny) π siny) fx, y) dx dy e. x+2 1 x 2 fx, y) dy dx f. y 6 y fx, y) dx dy

2 24 Integrais uplos e Triplos. xercício Para cada uma das seguintes alíneas calcule fx, y) da. a. fx, y) = y + 2x e é o rectângulo de vértices 1, 1), 2, 1), 2, 1), 1, 1). b. fx, y) = xy, = { x, y) 2 : x 2, y x 2} fx, y) = xy 2 e é triângulo de vértices 2, 9), 2, 1), 2, 1). fx, y) = x 2 + y 2, = { x, y) 2 : y sinx) x π 2 e. fx, y) = e x y e é a região delimitada pelas rectas de equações y = 2x+1, y = x+1, y = 4. } xercício Considerando = {x, y) 2 : x + y 1} calcule e x+y da. xercício Uma lâmina com densidade de massa por área δx, y) é delimitada pelas curvas de equações dadas. Calcule a massa da lâmina através de um integral duplo. a. δx, y) = y 2 ; y = e x, x =, x = 1, y =. b. δx, y) = x 2 + y 2 ; xy 2 = 1, x =, y = 1, y = 2. xercício Calcule o volume dos sólidos limitados pelas seguintes superfícies. a. Parabolóide elíptico z = 2x 2 + y 2 + 1, plano x + y = 1 e planos coordenados. b. Parabolóide hiperbólico z = x 2 y 2 e os planos z = e x = 1. z = x 2 + y 2, y = x 2, y = 1 e z =. 4.2 Valor Médio de Uma Função xercício Calcule o valor médio das funções nas alíneas dos exercícios e na respectiva região de integração. xercício etermine o valor médio do quadrado da distância de um ponto P S à origem do referencial, sendo S = { x, y) : x a) 2 + y 2 r 2 } onde a e r são constantes reais não nulas. 24/25-2 o semestre Análise Matemática IV

3 4.3 Troca da Ordem de Integração 25 xercício Mostre que: 1 a. Se é o triângulo de vértices, ), 1, 1) e 1, ) então, 6 b. Se é o circulo de raio 2 e centrado na origem então, 4π Para = [, 1] [, 1], Para = [ π, π] [ π, π], 1 cos e 1 4π 2 sin x 1 + xy) 4 da 1 e sinx+y) dx dy e da y x x 2 + y ) dx dy 2π 4.3 Troca da Ordem de Integração xercício Calcule os seguintes integrais, invertendo previamente a ordem de integração: a. 2x e y2 dy dx b. 9 3 y sinx 3 ) dx dy 2 y y x 2 y 4 dx dy x 2 x 3 siny 3 ) dy dx e. x y 4 cosxy 2 ) dy dx f. e lnx) 1 y dy dx 4.4 Integrais Triplos xercício Calcule os seguintes integrais triplos: a x + y 3z dx dy dz b. z 2 x+z 1 x z z dy dx dz y x/ 3 x x 2 dz dx dy + z2 4 x 2 6 z 1 3x 2 y x dx dy dz xercício Calcule o volume dos sólidos limitados por: a. z = 4 x 2 y 2 z =. b. x + y + z = 3 e pelos planos coordenados. x 2 a 2 + y2 b 2 + z2 c 2 = 1. x 2 + y 2 + z 2 = r 2 e z 2 = x 2 + y 2 externo em relação ao cone). Análise Matemática IV 24/25-2 o semestre

4 26 Integrais uplos e Triplos. xercício Um sólido de densidade δx, y, z) é delimitado pelas superfícies de equações dadas. Calcule a massa do sólido através de um integral triplo. a. δx, y, z) = x 2 + y 2 ; x + 2y + z = 4, x =, y =, z =. b. δx, y, z) = z + 1; z = 9 x 2 y 2, z =. xercício Próximo do nível do mar, a densidade δ da atmosfera terrestre a uma altura de z metros pode ser aproximada por δ = 1, 225, 113z kg/m 3. Aproxime a massa de uma região da atmosfera que tenha a forma de um cubo com 1 km de aresta e uma das faces apoiada na superfície da Terra. 4.5 Mudança de Variável no Integral uplo e Triplo. xercício Calcule os integrais que se seguem, utilizando coordenadas polares: a. 4 x 2 y 2 dx dy, onde é o círculo de raio 2 centrado na origem. b. y dx dy, onde = {x, y) 2 : x 2 + y 2 9, x y }. y 2 x 2 + y 2 dx dy, onde é a coroa circular dada por 1 x2 + y x 2 e x 2 +y 2 dy dx. e. 3 9 y 2 sinx 2 + y 2 ) dx dy. xercício Calcule a área da região definida em coordenadas cartesianas) por x2 a 2 + y2 b 2 coordenadas r, θ) tais que x = aρ cosθ), y = bρ sinθ). 1, usando xercício Calcule a massa de uma placa limitada pelas circunferências de equações x 2) 2 + y 2 = 4; x 1) 2 + y 2 = 1, supondo que a densidade em cada ponto é directamente proporcional à distância à origem. xercício Seja S = {x, y) 2 : y x + 2, x, y }. Calcule seguinte mudança de variáveis: u = x y x + y, v = x + y. S e x y x+y dx dy, utilizando a 24/25-2 o semestre Análise Matemática IV

5 4.5 Mudança de Variável no Integral uplo e Triplo. 27 xercício Sejam K = { u, v) 2 : 1 u 2 v 2 4, 1 uv 3, u, v } e g : K 2 definida por gu, v) = u 2 v 2, 2uv) a. sboce a região K. b. Mostre que a mudança de variáveis g envia a região K num rectângulo. Mostre que K u 2 + v 2) du dv = 1 Área K) 4 xercício Use coordenadas cilíndricas para calcular os seguintes integrais: a. x 2 + z 2 ) dv ; = { x, y, z) 3 : x 2 + z 2 4, x, y, z } ; b. e. 2y dv, onde = { x, y, z) 3 : x 2 + z 2 4, x + y + z 4, x, y, z } ; xy dv ; = { x, y, z) 3 : x 2 + y 2 z, x, y, z 2 } ; x 2 + y 2 dx dy dz; = { x, y, z) 3 : z 9 x 2 y 2, x y, z } ; y dx dy dz, onde é limitada por y = x 2 + z 2, y = 2 x 2 z 2. f. 1 x 2 x 1 1 x 2 x 2 +y 2 1 dz dy dx. xercício Use coordenadas esféricas para calcular os seguintes integrais: a. x, y, z) dx dy dz, onde é a esfera de raio 1 centrada na origem e P) é a distância de P à origem. b. y + 1 dx dy dz, onde é a semi-esfera de raio 2 centrada na origem cujos pontos têm cota positiva. { x 2 + y 2 dx dy dz; = x, y, z) 3 : x 2 + y 2 + z 2 1, } x y, z ; 3 y dx dy dz, onde é o sólido que se encontra no 1 o octante entre as esferas de equação x 2 + y 2 + z 2 = 1; x 2 + y 2 + z 2 = 4. Análise Matemática IV 24/25-2 o semestre

6 28 Integrais uplos e Triplos. e. f. 4 x 2 2y dx dy dz, onde = { x, y, z) 3 : x 2 + y 2 + z 2 16, x 2 + y 2 z 2, z } ; 2 4 x 2 x 2 +y 2 8 x 2 y 2 x 2 + y 2 + z 2 ) dz dy dx. 4.6 xercícios Variados. Aplicações. Para a resolução dos exercícios desta secção, consulte o formulário no final deste capítulo. xercício etermine o valor médio das funções seguintes nos conjuntos,, indicados. a. fx, y) = y sinxy), = [, π] [, π]. b. fx, y) = e x+y, : triângulo de vértices, ),, 1) e 1, ). xercício etermine o centro de massa das seguintes regiões cujas densidades são as indicadas. a. egião plana compreendida entre y = x 2 e y = x e densidade δ = x + y. b. egião plana compreendida entre y = e y = x 2, x π/2, e densidade δ = 1. xercício etermine a massa e o centro de massa de um sólido hemisférico de raio a, sabendo que a sua densidade em cada ponto P é directamente proporcional à distância do centro da base a P. xercício Supondo que a Terra é esférica com raio 6 37 km, a densidade δ em kg/m 3 ) da atmosfera a uma distância de ρ metros do centro da Terra pode ser aproximada por para 6 37 ρ δ = 619, 9 9, )ρ a. ê uma estimativa da massa da atmosfera entre o nível do solo e uma altitude de 3 km. b. A atmosfera estende-se para além de uma altitude de 1 km e tem uma massa total de aproximadamente 5, kg. Que percentagem da massa está nos 3 km inferiores da atmosfera? xercício Uma peça, plana, em ouro pode ser descrita matematicamente como a região plana = { x, y) : x 2π y π}.unidades em centímetros) Considere-se que a densidade da peça é descrita por δx, y) = y 2 sin 2 4x) + 2, [g/cm 2 ]. a. Se a cotação do ouro for de 7e/g, determine o valor da peça. b. Qual a densidade de massa média da peça em g/cm 2 )? 24/25-2 o semestre Análise Matemática IV

7 4.6 xercícios Variados. Aplicações. 29 xercício Considerem-se coordenadas esféricas ρ, θ, φ) em 3. Suponha-se que uma superfície que limita um sólido contendo a origem do referencial é dada pela função continua e positiva ρ = fθ, φ). Mostre que o volume do sólido limitado pela superfície é V = 1 3 π π [fθ, φ)] 3 sin φ dφ dθ. xercício Considere B : triângulo de vértices, ),, 1)1, e 1, 1). Usando uma mudança de variáveis adequada calcule e y x y+x dx dy. veja o ex ) B xercício Suponha que a densidade de um sólido esférico de raio r é dado por δx, y) = 1 + dx, y) 3) 1, onde dx, y) é a distância do ponto x, y) da esfera ao centro desta. Calcule a massa total do sólido. xercício etermine o valor médio das funções seguintes nos conjuntos indicados. a. fx, y, z) = sin 2 πz) cos πx, = [, 2] [, 4] [, 6]. b. fx, y, z) = e z, = {x, y, z) : x 2 + y 2 + z 2 1}. xercício etermine o momento de inércia segundo o eixo Oy da esfera x 2 + y 2 + z 2 r 2 supondo que a sua densidade de massa é constante e igual a δ. xercício Considere a região sólida limitada superiormente pelo plano z = a e inferiormente pelo cone definido em coordenadas esféricas por φ = k, onde k é uma constante, < k < π/2,. Se o sólido tem densidade constante δ, construa um integral mas não o calcule) que corresponda ao momento de inércia do sólido segundo o eixo Oz. xercício etermine o centro de massa da região sólida, de densidade constante, definida por y 2 + z 2 1 4, x 1)2 + y 2 + z 2 1, x 1. xercício etermine o centro de massa da região sólida, de densidade δ = x 2 + y 2 )z 2, definida por y 2 + y 2 1, 1 z 2. Análise Matemática IV 24/25-2 o semestre

8 3 Integrais uplos e Triplos. Apêndice: Formulário Valor Médio ada uma função f : 2 o valor médio de f, em é: f = 1 fx, y) dx dy, A) onde A) é a área de. Analogamente, se f : W 3 o valor médio de f, em W é: f = 1 fx, y, z) dx dy dz, V W ) onde V W ) é o volume de W. Centros de Massa Considere-se uma placa bidimensional com densidade δx, y). As coordenadas x, ȳ) do centro de massa de são dadas por: x δx, y) dx dy y δx, y) dx dy x = δx, y) dx dy e ȳ = δx, y) dx dy Para um objecto sólido W de densidade δx, y, z) sabe-se que: Volume: V = dx dy dz W Massa: m = δx, y, z) dx dy dz Consequentemente, as coordenadas x, ȳ, z) do centro de massa de W são dadas por: x = 1 x δx, y, z) dx dy dz, m W ȳ = 1 y δx, y, z) dx dy dz m W z = 1 z δx, y, z) dx dy dz m W W Momentos de Inércia ado um corpo sólido W de densidade uniforme δ δx, y, z), os momentos de inércia I x, I y e I z são dados por: I x = y 2 + z 2) δ dx dy dz W I y = x 2 + z 2) δ dx dy dz W I z = x 2 + y 2) δ dx dy dz 24/25-2 o semestre Análise Matemática IV W

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 1a. Prova - 1o. Semestre /04/2010

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 1a. Prova - 1o. Semestre /04/2010 Turma A Questão : (a) (, pontos) Calcule Instituto de Matemática e Estatística da USP MAT - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. Semestre - // 8 ( y e x dx ) dy. (b) (, pontos)

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2 Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária)

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) 9 de Maio de 9. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: (a) O triângulo de vértices

Leia mais

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j).

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j). MAT1153 / 2008.1 LISTA DE EXECÍCIOS : EGIÕES DO PLANO, INTEGAIS DUPLAS E VOLUMES (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) (2) Fazer

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

3.2 Coordenadas Cilíndricas

3.2 Coordenadas Cilíndricas Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente

Leia mais

Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I =

Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I = 1 Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas 1. Calcular I = (x 1)dV, sendo T a região do espaço delimitada pelos planos y =, z =, T y + z = 5 e pelo cilindro parabólico z = 4 x.. Determinar

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões

Leia mais

Cálculo Diferencial e Integral 2: Integrais Duplas

Cálculo Diferencial e Integral 2: Integrais Duplas Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

MAT Cálculo a Várias Variáveis I. Período

MAT Cálculo a Várias Variáveis I. Período MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Matemática IV. Textos de Apoio

Matemática IV. Textos de Apoio Matemática IV 2 o semestre do ano lectivo 2004/2005 Engenharias de Materiais e Química Textos de Apoio Cristina Caldeira A grande maioria dos exercícios presentes nestes textos de apoio foram recolhidos

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier Provas de Cálculo II 0/008 Professor Rudolf R. Maier UNIVERSIDADE DE BRASÍLIA Brasília, 5 de setembro de 008. a prova em CALCULO II ) Determinar as retas normais da curva y = + x que passam pela origem.

Leia mais

Capítulo I - Funções Vectoriais EXERCÍCIOS

Capítulo I - Funções Vectoriais EXERCÍCIOS ANÁLISE MATEMÁTIA II Universidade Fernando Pessoa Faculdade de iência e Tecnologia apítulo I - Funções Vectoriais EXERÍIOS 1. Sendo F, G e H funções vectoriais de t, encontre uma fórmula para a derivada

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

2.1 Mudança de variáveis em integral dupla

2.1 Mudança de variáveis em integral dupla ! "! # $! % & #! ' ( $ Objetivos. Os objetivos desta Aula são: apresentar a ideia de mudança de variáveis no plano para calcular integrais duplas; usar as coordenadas polares para calcular a integral dupla

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores FCULDDE DE ENGENHRI D UNIVERSIDDE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de Computadores nálise Matemática 2 pontamentos das aulas teóricas - Integrais Múltiplos 29/21 Maria do Rosário

Leia mais

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS INTEGAIS DE FUNÇÕES DE VÁIAS VAIÁVEIS Gil da Costa Marques. Introdução. Integrais Duplas.. Propriedades das Integrais Duplas.. Cálculo de Integrais Duplas..4 Integrais duplas em regiões não retangulares.

Leia mais

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes

AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem.

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem. 3.1. Locallize e classifiqueospontoscríticosdafunçãoz = f (x, y). Determine se a função tem máximo ou mínimo absoluto em seu domínio. (a) z = xy (b) z =ln(xy) 2x 3y (c) z = xy 2 + x 2 y xy (d) z = x 2

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Unidade 10 Geometria Espacial. Esfera

Unidade 10 Geometria Espacial. Esfera Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Volume de um sólido de Revolução

Volume de um sólido de Revolução Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas

Leia mais

EXERCÍCIOS DE AULA - 01

EXERCÍCIOS DE AULA - 01 EXERCÍCIOS DE AULA - 01 Representação de objectos em axonometria normalizada FA.ULisboa Ano lectivo 2017/2018 1º semestre Professor Luís Mateus (lmmateus@fa.ulisboa.pt) Notas: 1) Resolva os exercícios

Leia mais

{ y} Cálculo III. 1 - Funções de Várias Variáveis

{ y} Cálculo III. 1 - Funções de Várias Variáveis 1 Cálculo III 1 - Funções de Várias Variáveis Em muitos casos, o valor de uma grandeza depende do valor de duas ou mais outras. O volume de água de um reservatório, por exemplo, depende das chuvas e da

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

Lista de Exercícios de Cálculo 3 Oitava Semana

Lista de Exercícios de Cálculo 3 Oitava Semana Lista de Exercícios de Cálculo 3 Oitava Semana Parte A. Utilize integrais triplas para encontrar o volume das regiões dadas. (a) Uma esfera de raio a. (b) Um cone de altura h e raio a. (c) Uma pirâmide

Leia mais

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Cálculo III. por PAULO XAVIER PAMPLONA

Cálculo III. por PAULO XAVIER PAMPLONA Cálculo III por PAULO XAVIER PAMPLONA CCTA/UFCG 15 Conteúdo 1 Funções de Várias Variáveis 4 1.1 Conceito de Funções de Várias Variáveis.................... 4 1. omínio e Imagem................................

Leia mais

Resumo dos resumos de CDI-II

Resumo dos resumos de CDI-II Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas

Leia mais

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C Notas de Aulas de Cálculo III Prof. Sandro Rodrigues Mazorche 1 o semestre de 2015 Turmas: A e C Capítulo 1: Integral Dupla 1.1 Definição: Vamos considerar uma função z = f(x, y) definida em uma região

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

Apostila De Matemática ESFERA

Apostila De Matemática ESFERA Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET CÁLCULO IV

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET CÁLCULO IV UNIVESIDADE ESTADUAL DE SANTA CUZ - UESC PÓ-EITOIA DE GADUAÇÃO - POGAD DEPATAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GUIA DE ESTUDO N 0 2 CÁLCULO IV OBJETIVOS: Proporcionar o ábito de leitura no

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho

Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho - Cacule a integral dupla I fx, y) dxdy onde f e R são dados abaixo. R a) fx, y) x + y e R [, ] [, ]; b) fx, y) x + xy + e R

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Primitva. Integral Indenida

Primitva. Integral Indenida Primitva Denição. 1 Uma função F (x) é chamada uma primitiva da função f(x) em um intervalo I (ou simplesmente uma primitiva de f(x), se para todo x I, temos F (x) = f(x). Exemplo. 1 1. emos que cos(x)

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Aula prática 1 EXERCÍCIO 1 Em Mecânica dos Fluidos é muito frequente que interesse medir a diferença entre duas pressões. Os manómetros de tubos em U, que são um dos modelos mais

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 Grupo I 1. Se uma recta é paralela ao eixo SD, qualquer vector director dessa recta tem primeira e segunda coordenadas iguais a zero. Resposta B 2.

Leia mais

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente Capítulo 2 Cálculo integral 2.1 Superfícies quádricas Uma superfície quádrica é um subconjunto de R 3 constituído por todos os pontos de R 3 que satisfazem uma equação com a forma A + B + Cz 2 + Dxy +

Leia mais

Exercícios propostos para as aulas práticas

Exercícios propostos para as aulas práticas Análise Matemática III Engenharia Civil 2005/2006 Exercícios propostos para as aulas práticas Departamento de Matemática da Universidade de Coimbra Algumas noções topológicas em IR n 1 Verifique se cada

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

1. Qual éolugar geométrico dos pontosequidistantes de A = (1,0,0),B = ( 1,1,0),C = (0,2,0) e D = (0,0,0).

1. Qual éolugar geométrico dos pontosequidistantes de A = (1,0,0),B = ( 1,1,0),C = (0,2,0) e D = (0,0,0). Universidade Federal Fluminense PURO Instituto de Ciência e Tecnologia Departamento de Física e Matemática Geometria Analítica e Cálculo Vetorial 7 a Lista de Exercícios 1/2011 Distâncias Observação: Todos

Leia mais

F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I

F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL Disciplina Matemática A T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Ensino Secundário Ano 11º - A e B Duração 90 min Curso CCS

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

Segunda Lista - Lei de Gauss

Segunda Lista - Lei de Gauss Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

CÁLCULO I. Gabarito - Lista Semanal = 0, 5 π 70 dr. 0, 55 m/min. m3 /min. Então, para = 0, 2 m/min, teremos

CÁLCULO I. Gabarito - Lista Semanal = 0, 5 π 70 dr. 0, 55 m/min. m3 /min. Então, para = 0, 2 m/min, teremos CÁLCULO I Prof. André Almeida Prof. Marcos Diniz Gabarito - Lista Semanal 06 Questão. Uma tempestade no mar danicou uma plataforma do petróleo, produzindo uma vazamento de 60 m /min que resultou numa mancha

Leia mais

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011

EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011 EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011 Este documento contém um conjunto de exercícios resolvidos sobre o tema das superfícies. Os exercícios foram retirados de provas de frequências

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

Primeira Lista - lei de Coulomb

Primeira Lista - lei de Coulomb Primeira Lista - lei de Coulomb FGE211 - Física III 1 Sumário A força elétrica que uma carga q 1 exerce sobre uma carga q 2 é dada pela lei de Coulomb: onde q 1 q 2 F 12 = k e r 2 ˆr = 1 q 1 q 2 4πɛ 0

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um

Leia mais

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015 MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2

Leia mais